1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include <linux/slab.h> /* fault-inject.h is not standalone! */ 7 8 #include <linux/fault-inject.h> 9 #include <linux/sched/mm.h> 10 11 #include <drm/drm_cache.h> 12 13 #include "gem/i915_gem_internal.h" 14 #include "gem/i915_gem_lmem.h" 15 #include "i915_reg.h" 16 #include "i915_trace.h" 17 #include "i915_utils.h" 18 #include "intel_gt.h" 19 #include "intel_gt_mcr.h" 20 #include "intel_gt_print.h" 21 #include "intel_gt_regs.h" 22 #include "intel_gtt.h" 23 24 bool i915_ggtt_require_binder(struct drm_i915_private *i915) 25 { 26 /* Wa_13010847436 & Wa_14019519902 */ 27 return !i915_direct_stolen_access(i915) && 28 MEDIA_VER_FULL(i915) == IP_VER(13, 0); 29 } 30 31 static bool intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *i915) 32 { 33 return IS_BROXTON(i915) && i915_vtd_active(i915); 34 } 35 36 bool intel_vm_no_concurrent_access_wa(struct drm_i915_private *i915) 37 { 38 return IS_CHERRYVIEW(i915) || intel_ggtt_update_needs_vtd_wa(i915); 39 } 40 41 struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz) 42 { 43 struct drm_i915_gem_object *obj; 44 45 /* 46 * To avoid severe over-allocation when dealing with min_page_size 47 * restrictions, we override that behaviour here by allowing an object 48 * size and page layout which can be smaller. In practice this should be 49 * totally fine, since GTT paging structures are not typically inserted 50 * into the GTT. 51 * 52 * Note that we also hit this path for the scratch page, and for this 53 * case it might need to be 64K, but that should work fine here since we 54 * used the passed in size for the page size, which should ensure it 55 * also has the same alignment. 56 */ 57 obj = __i915_gem_object_create_lmem_with_ps(vm->i915, sz, sz, 58 vm->lmem_pt_obj_flags); 59 /* 60 * Ensure all paging structures for this vm share the same dma-resv 61 * object underneath, with the idea that one object_lock() will lock 62 * them all at once. 63 */ 64 if (!IS_ERR(obj)) { 65 obj->base.resv = i915_vm_resv_get(vm); 66 obj->shares_resv_from = vm; 67 68 if (vm->fpriv) 69 i915_drm_client_add_object(vm->fpriv->client, obj); 70 } 71 72 return obj; 73 } 74 75 struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz) 76 { 77 struct drm_i915_gem_object *obj; 78 79 if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1))) 80 i915_gem_shrink_all(vm->i915); 81 82 obj = i915_gem_object_create_internal(vm->i915, sz); 83 /* 84 * Ensure all paging structures for this vm share the same dma-resv 85 * object underneath, with the idea that one object_lock() will lock 86 * them all at once. 87 */ 88 if (!IS_ERR(obj)) { 89 obj->base.resv = i915_vm_resv_get(vm); 90 obj->shares_resv_from = vm; 91 92 if (vm->fpriv) 93 i915_drm_client_add_object(vm->fpriv->client, obj); 94 } 95 96 return obj; 97 } 98 99 int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj) 100 { 101 enum i915_map_type type; 102 void *vaddr; 103 104 type = intel_gt_coherent_map_type(vm->gt, obj, true); 105 /* 106 * FIXME: It is suspected that some Address Translation Service (ATS) 107 * issue on IOMMU is causing CAT errors to occur on some MTL workloads. 108 * Applying a write barrier to the ppgtt set entry functions appeared 109 * to have no effect, so we must temporarily use I915_MAP_WC here on 110 * MTL until a proper ATS solution is found. 111 */ 112 if (IS_METEORLAKE(vm->i915)) 113 type = I915_MAP_WC; 114 115 vaddr = i915_gem_object_pin_map_unlocked(obj, type); 116 if (IS_ERR(vaddr)) 117 return PTR_ERR(vaddr); 118 119 i915_gem_object_make_unshrinkable(obj); 120 return 0; 121 } 122 123 int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj) 124 { 125 enum i915_map_type type; 126 void *vaddr; 127 128 type = intel_gt_coherent_map_type(vm->gt, obj, true); 129 /* 130 * FIXME: It is suspected that some Address Translation Service (ATS) 131 * issue on IOMMU is causing CAT errors to occur on some MTL workloads. 132 * Applying a write barrier to the ppgtt set entry functions appeared 133 * to have no effect, so we must temporarily use I915_MAP_WC here on 134 * MTL until a proper ATS solution is found. 135 */ 136 if (IS_METEORLAKE(vm->i915)) 137 type = I915_MAP_WC; 138 139 vaddr = i915_gem_object_pin_map(obj, type); 140 if (IS_ERR(vaddr)) 141 return PTR_ERR(vaddr); 142 143 i915_gem_object_make_unshrinkable(obj); 144 return 0; 145 } 146 147 static void clear_vm_list(struct list_head *list) 148 { 149 struct i915_vma *vma, *vn; 150 151 list_for_each_entry_safe(vma, vn, list, vm_link) { 152 struct drm_i915_gem_object *obj = vma->obj; 153 154 if (!i915_gem_object_get_rcu(obj)) { 155 /* 156 * Object is dying, but has not yet cleared its 157 * vma list. 158 * Unbind the dying vma to ensure our list 159 * is completely drained. We leave the destruction to 160 * the object destructor to avoid the vma 161 * disappearing under it. 162 */ 163 atomic_and(~I915_VMA_PIN_MASK, &vma->flags); 164 WARN_ON(__i915_vma_unbind(vma)); 165 166 /* Remove from the unbound list */ 167 list_del_init(&vma->vm_link); 168 169 /* 170 * Delay the vm and vm mutex freeing until the 171 * object is done with destruction. 172 */ 173 i915_vm_resv_get(vma->vm); 174 vma->vm_ddestroy = true; 175 } else { 176 i915_vma_destroy_locked(vma); 177 i915_gem_object_put(obj); 178 } 179 180 } 181 } 182 183 static void __i915_vm_close(struct i915_address_space *vm) 184 { 185 mutex_lock(&vm->mutex); 186 187 clear_vm_list(&vm->bound_list); 188 clear_vm_list(&vm->unbound_list); 189 190 /* Check for must-fix unanticipated side-effects */ 191 GEM_BUG_ON(!list_empty(&vm->bound_list)); 192 GEM_BUG_ON(!list_empty(&vm->unbound_list)); 193 194 mutex_unlock(&vm->mutex); 195 } 196 197 /* lock the vm into the current ww, if we lock one, we lock all */ 198 int i915_vm_lock_objects(struct i915_address_space *vm, 199 struct i915_gem_ww_ctx *ww) 200 { 201 if (vm->scratch[0]->base.resv == &vm->_resv) { 202 return i915_gem_object_lock(vm->scratch[0], ww); 203 } else { 204 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 205 206 /* We borrowed the scratch page from ggtt, take the top level object */ 207 return i915_gem_object_lock(ppgtt->pd->pt.base, ww); 208 } 209 } 210 211 void i915_address_space_fini(struct i915_address_space *vm) 212 { 213 drm_mm_takedown(&vm->mm); 214 } 215 216 /** 217 * i915_vm_resv_release - Final struct i915_address_space destructor 218 * @kref: Pointer to the &i915_address_space.resv_ref member. 219 * 220 * This function is called when the last lock sharer no longer shares the 221 * &i915_address_space._resv lock, and also if we raced when 222 * destroying a vma by the vma destruction 223 */ 224 void i915_vm_resv_release(struct kref *kref) 225 { 226 struct i915_address_space *vm = 227 container_of(kref, typeof(*vm), resv_ref); 228 229 dma_resv_fini(&vm->_resv); 230 mutex_destroy(&vm->mutex); 231 232 kfree(vm); 233 } 234 235 static void __i915_vm_release(struct work_struct *work) 236 { 237 struct i915_address_space *vm = 238 container_of(work, struct i915_address_space, release_work); 239 240 __i915_vm_close(vm); 241 242 /* Synchronize async unbinds. */ 243 i915_vma_resource_bind_dep_sync_all(vm); 244 245 vm->cleanup(vm); 246 i915_address_space_fini(vm); 247 248 i915_vm_resv_put(vm); 249 } 250 251 void i915_vm_release(struct kref *kref) 252 { 253 struct i915_address_space *vm = 254 container_of(kref, struct i915_address_space, ref); 255 256 GEM_BUG_ON(i915_is_ggtt(vm)); 257 trace_i915_ppgtt_release(vm); 258 259 queue_work(vm->i915->wq, &vm->release_work); 260 } 261 262 void i915_address_space_init(struct i915_address_space *vm, int subclass) 263 { 264 kref_init(&vm->ref); 265 266 /* 267 * Special case for GGTT that has already done an early 268 * kref_init here. 269 */ 270 if (!kref_read(&vm->resv_ref)) 271 kref_init(&vm->resv_ref); 272 273 vm->pending_unbind = RB_ROOT_CACHED; 274 INIT_WORK(&vm->release_work, __i915_vm_release); 275 276 /* 277 * The vm->mutex must be reclaim safe (for use in the shrinker). 278 * Do a dummy acquire now under fs_reclaim so that any allocation 279 * attempt holding the lock is immediately reported by lockdep. 280 */ 281 mutex_init(&vm->mutex); 282 lockdep_set_subclass(&vm->mutex, subclass); 283 284 if (!intel_vm_no_concurrent_access_wa(vm->i915)) { 285 i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex); 286 } else { 287 /* 288 * CHV + BXT VTD workaround use stop_machine(), 289 * which is allowed to allocate memory. This means &vm->mutex 290 * is the outer lock, and in theory we can allocate memory inside 291 * it through stop_machine(). 292 * 293 * Add the annotation for this, we use trylock in shrinker. 294 */ 295 mutex_acquire(&vm->mutex.dep_map, 0, 0, _THIS_IP_); 296 might_alloc(GFP_KERNEL); 297 mutex_release(&vm->mutex.dep_map, _THIS_IP_); 298 } 299 dma_resv_init(&vm->_resv); 300 301 GEM_BUG_ON(!vm->total); 302 drm_mm_init(&vm->mm, 0, vm->total); 303 304 memset64(vm->min_alignment, I915_GTT_MIN_ALIGNMENT, 305 ARRAY_SIZE(vm->min_alignment)); 306 307 if (HAS_64K_PAGES(vm->i915)) { 308 vm->min_alignment[INTEL_MEMORY_LOCAL] = I915_GTT_PAGE_SIZE_64K; 309 vm->min_alignment[INTEL_MEMORY_STOLEN_LOCAL] = I915_GTT_PAGE_SIZE_64K; 310 } 311 312 vm->mm.head_node.color = I915_COLOR_UNEVICTABLE; 313 314 INIT_LIST_HEAD(&vm->bound_list); 315 INIT_LIST_HEAD(&vm->unbound_list); 316 } 317 318 void *__px_vaddr(struct drm_i915_gem_object *p) 319 { 320 enum i915_map_type type; 321 322 GEM_BUG_ON(!i915_gem_object_has_pages(p)); 323 return page_unpack_bits(p->mm.mapping, &type); 324 } 325 326 dma_addr_t __px_dma(struct drm_i915_gem_object *p) 327 { 328 GEM_BUG_ON(!i915_gem_object_has_pages(p)); 329 return sg_dma_address(p->mm.pages->sgl); 330 } 331 332 struct page *__px_page(struct drm_i915_gem_object *p) 333 { 334 GEM_BUG_ON(!i915_gem_object_has_pages(p)); 335 return sg_page(p->mm.pages->sgl); 336 } 337 338 void 339 fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count) 340 { 341 void *vaddr = __px_vaddr(p); 342 343 memset64(vaddr, val, count); 344 drm_clflush_virt_range(vaddr, PAGE_SIZE); 345 } 346 347 static void poison_scratch_page(struct drm_i915_gem_object *scratch) 348 { 349 void *vaddr = __px_vaddr(scratch); 350 u8 val; 351 352 val = 0; 353 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 354 val = POISON_FREE; 355 356 memset(vaddr, val, scratch->base.size); 357 drm_clflush_virt_range(vaddr, scratch->base.size); 358 } 359 360 int setup_scratch_page(struct i915_address_space *vm) 361 { 362 unsigned long size; 363 364 /* 365 * In order to utilize 64K pages for an object with a size < 2M, we will 366 * need to support a 64K scratch page, given that every 16th entry for a 367 * page-table operating in 64K mode must point to a properly aligned 64K 368 * region, including any PTEs which happen to point to scratch. 369 * 370 * This is only relevant for the 48b PPGTT where we support 371 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the 372 * scratch (read-only) between all vm, we create one 64k scratch page 373 * for all. 374 */ 375 size = I915_GTT_PAGE_SIZE_4K; 376 if (i915_vm_is_4lvl(vm) && 377 HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K) && 378 !HAS_64K_PAGES(vm->i915)) 379 size = I915_GTT_PAGE_SIZE_64K; 380 381 do { 382 struct drm_i915_gem_object *obj; 383 384 obj = vm->alloc_scratch_dma(vm, size); 385 if (IS_ERR(obj)) 386 goto skip; 387 388 if (map_pt_dma(vm, obj)) 389 goto skip_obj; 390 391 /* We need a single contiguous page for our scratch */ 392 if (obj->mm.page_sizes.sg < size) 393 goto skip_obj; 394 395 /* And it needs to be correspondingly aligned */ 396 if (__px_dma(obj) & (size - 1)) 397 goto skip_obj; 398 399 /* 400 * Use a non-zero scratch page for debugging. 401 * 402 * We want a value that should be reasonably obvious 403 * to spot in the error state, while also causing a GPU hang 404 * if executed. We prefer using a clear page in production, so 405 * should it ever be accidentally used, the effect should be 406 * fairly benign. 407 */ 408 poison_scratch_page(obj); 409 410 vm->scratch[0] = obj; 411 vm->scratch_order = get_order(size); 412 return 0; 413 414 skip_obj: 415 i915_gem_object_put(obj); 416 skip: 417 if (size == I915_GTT_PAGE_SIZE_4K) 418 return -ENOMEM; 419 420 size = I915_GTT_PAGE_SIZE_4K; 421 } while (1); 422 } 423 424 void free_scratch(struct i915_address_space *vm) 425 { 426 int i; 427 428 if (!vm->scratch[0]) 429 return; 430 431 for (i = 0; i <= vm->top; i++) 432 i915_gem_object_put(vm->scratch[i]); 433 } 434 435 void gtt_write_workarounds(struct intel_gt *gt) 436 { 437 struct drm_i915_private *i915 = gt->i915; 438 struct intel_uncore *uncore = gt->uncore; 439 440 /* 441 * This function is for gtt related workarounds. This function is 442 * called on driver load and after a GPU reset, so you can place 443 * workarounds here even if they get overwritten by GPU reset. 444 */ 445 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */ 446 if (IS_BROADWELL(i915)) 447 intel_uncore_write(uncore, 448 GEN8_L3_LRA_1_GPGPU, 449 GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW); 450 else if (IS_CHERRYVIEW(i915)) 451 intel_uncore_write(uncore, 452 GEN8_L3_LRA_1_GPGPU, 453 GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV); 454 else if (IS_GEN9_LP(i915)) 455 intel_uncore_write(uncore, 456 GEN8_L3_LRA_1_GPGPU, 457 GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT); 458 else if (GRAPHICS_VER(i915) >= 9 && GRAPHICS_VER(i915) <= 11) 459 intel_uncore_write(uncore, 460 GEN8_L3_LRA_1_GPGPU, 461 GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL); 462 463 /* 464 * To support 64K PTEs we need to first enable the use of the 465 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical 466 * mmio, otherwise the page-walker will simply ignore the IPS bit. This 467 * shouldn't be needed after GEN10. 468 * 469 * 64K pages were first introduced from BDW+, although technically they 470 * only *work* from gen9+. For pre-BDW we instead have the option for 471 * 32K pages, but we don't currently have any support for it in our 472 * driver. 473 */ 474 if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) && 475 GRAPHICS_VER(i915) <= 10) 476 intel_uncore_rmw(uncore, 477 GEN8_GAMW_ECO_DEV_RW_IA, 478 0, 479 GAMW_ECO_ENABLE_64K_IPS_FIELD); 480 481 if (IS_GRAPHICS_VER(i915, 8, 11)) { 482 bool can_use_gtt_cache = true; 483 484 /* 485 * According to the BSpec if we use 2M/1G pages then we also 486 * need to disable the GTT cache. At least on BDW we can see 487 * visual corruption when using 2M pages, and not disabling the 488 * GTT cache. 489 */ 490 if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M)) 491 can_use_gtt_cache = false; 492 493 /* WaGttCachingOffByDefault */ 494 intel_uncore_write(uncore, 495 HSW_GTT_CACHE_EN, 496 can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0); 497 gt_WARN_ON_ONCE(gt, can_use_gtt_cache && 498 intel_uncore_read(uncore, 499 HSW_GTT_CACHE_EN) == 0); 500 } 501 } 502 503 static void xelpmp_setup_private_ppat(struct intel_uncore *uncore) 504 { 505 intel_uncore_write(uncore, XELPMP_PAT_INDEX(0), 506 MTL_PPAT_L4_0_WB); 507 intel_uncore_write(uncore, XELPMP_PAT_INDEX(1), 508 MTL_PPAT_L4_1_WT); 509 intel_uncore_write(uncore, XELPMP_PAT_INDEX(2), 510 MTL_PPAT_L4_3_UC); 511 intel_uncore_write(uncore, XELPMP_PAT_INDEX(3), 512 MTL_PPAT_L4_0_WB | MTL_2_COH_1W); 513 intel_uncore_write(uncore, XELPMP_PAT_INDEX(4), 514 MTL_PPAT_L4_0_WB | MTL_3_COH_2W); 515 516 /* 517 * Remaining PAT entries are left at the hardware-default 518 * fully-cached setting 519 */ 520 } 521 522 static void xelpg_setup_private_ppat(struct intel_gt *gt) 523 { 524 intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(0), 525 MTL_PPAT_L4_0_WB); 526 intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(1), 527 MTL_PPAT_L4_1_WT); 528 intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(2), 529 MTL_PPAT_L4_3_UC); 530 intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(3), 531 MTL_PPAT_L4_0_WB | MTL_2_COH_1W); 532 intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(4), 533 MTL_PPAT_L4_0_WB | MTL_3_COH_2W); 534 535 /* 536 * Remaining PAT entries are left at the hardware-default 537 * fully-cached setting 538 */ 539 } 540 541 static void tgl_setup_private_ppat(struct intel_uncore *uncore) 542 { 543 /* TGL doesn't support LLC or AGE settings */ 544 intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB); 545 intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC); 546 intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT); 547 intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC); 548 intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB); 549 intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB); 550 intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB); 551 intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB); 552 } 553 554 static void xehp_setup_private_ppat(struct intel_gt *gt) 555 { 556 enum forcewake_domains fw; 557 unsigned long flags; 558 559 fw = intel_uncore_forcewake_for_reg(gt->uncore, _MMIO(XEHP_PAT_INDEX(0).reg), 560 FW_REG_WRITE); 561 intel_uncore_forcewake_get(gt->uncore, fw); 562 563 intel_gt_mcr_lock(gt, &flags); 564 intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(0), GEN8_PPAT_WB); 565 intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(1), GEN8_PPAT_WC); 566 intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(2), GEN8_PPAT_WT); 567 intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(3), GEN8_PPAT_UC); 568 intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(4), GEN8_PPAT_WB); 569 intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(5), GEN8_PPAT_WB); 570 intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(6), GEN8_PPAT_WB); 571 intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(7), GEN8_PPAT_WB); 572 intel_gt_mcr_unlock(gt, flags); 573 574 intel_uncore_forcewake_put(gt->uncore, fw); 575 } 576 577 static void icl_setup_private_ppat(struct intel_uncore *uncore) 578 { 579 intel_uncore_write(uncore, 580 GEN10_PAT_INDEX(0), 581 GEN8_PPAT_WB | GEN8_PPAT_LLC); 582 intel_uncore_write(uncore, 583 GEN10_PAT_INDEX(1), 584 GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); 585 intel_uncore_write(uncore, 586 GEN10_PAT_INDEX(2), 587 GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE); 588 intel_uncore_write(uncore, 589 GEN10_PAT_INDEX(3), 590 GEN8_PPAT_UC); 591 intel_uncore_write(uncore, 592 GEN10_PAT_INDEX(4), 593 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)); 594 intel_uncore_write(uncore, 595 GEN10_PAT_INDEX(5), 596 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)); 597 intel_uncore_write(uncore, 598 GEN10_PAT_INDEX(6), 599 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)); 600 intel_uncore_write(uncore, 601 GEN10_PAT_INDEX(7), 602 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); 603 } 604 605 /* 606 * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability 607 * bits. When using advanced contexts each context stores its own PAT, but 608 * writing this data shouldn't be harmful even in those cases. 609 */ 610 static void bdw_setup_private_ppat(struct intel_uncore *uncore) 611 { 612 struct drm_i915_private *i915 = uncore->i915; 613 u64 pat; 614 615 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */ 616 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */ 617 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */ 618 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) | 619 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) | 620 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) | 621 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); 622 623 /* for scanout with eLLC */ 624 if (GRAPHICS_VER(i915) >= 9) 625 pat |= GEN8_PPAT(2, GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE); 626 else 627 pat |= GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); 628 629 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); 630 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); 631 } 632 633 static void chv_setup_private_ppat(struct intel_uncore *uncore) 634 { 635 u64 pat; 636 637 /* 638 * Map WB on BDW to snooped on CHV. 639 * 640 * Only the snoop bit has meaning for CHV, the rest is 641 * ignored. 642 * 643 * The hardware will never snoop for certain types of accesses: 644 * - CPU GTT (GMADR->GGTT->no snoop->memory) 645 * - PPGTT page tables 646 * - some other special cycles 647 * 648 * As with BDW, we also need to consider the following for GT accesses: 649 * "For GGTT, there is NO pat_sel[2:0] from the entry, 650 * so RTL will always use the value corresponding to 651 * pat_sel = 000". 652 * Which means we must set the snoop bit in PAT entry 0 653 * in order to keep the global status page working. 654 */ 655 656 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) | 657 GEN8_PPAT(1, 0) | 658 GEN8_PPAT(2, 0) | 659 GEN8_PPAT(3, 0) | 660 GEN8_PPAT(4, CHV_PPAT_SNOOP) | 661 GEN8_PPAT(5, CHV_PPAT_SNOOP) | 662 GEN8_PPAT(6, CHV_PPAT_SNOOP) | 663 GEN8_PPAT(7, CHV_PPAT_SNOOP); 664 665 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); 666 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); 667 } 668 669 void setup_private_pat(struct intel_gt *gt) 670 { 671 struct intel_uncore *uncore = gt->uncore; 672 struct drm_i915_private *i915 = gt->i915; 673 674 GEM_BUG_ON(GRAPHICS_VER(i915) < 8); 675 676 if (gt->type == GT_MEDIA) { 677 xelpmp_setup_private_ppat(gt->uncore); 678 return; 679 } 680 681 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) 682 xelpg_setup_private_ppat(gt); 683 else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) 684 xehp_setup_private_ppat(gt); 685 else if (GRAPHICS_VER(i915) >= 12) 686 tgl_setup_private_ppat(uncore); 687 else if (GRAPHICS_VER(i915) >= 11) 688 icl_setup_private_ppat(uncore); 689 else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915)) 690 chv_setup_private_ppat(uncore); 691 else 692 bdw_setup_private_ppat(uncore); 693 } 694 695 struct i915_vma * 696 __vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size) 697 { 698 struct drm_i915_gem_object *obj; 699 struct i915_vma *vma; 700 701 obj = i915_gem_object_create_internal(vm->i915, PAGE_ALIGN(size)); 702 if (IS_ERR(obj)) 703 return ERR_CAST(obj); 704 705 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC); 706 707 vma = i915_vma_instance(obj, vm, NULL); 708 if (IS_ERR(vma)) { 709 i915_gem_object_put(obj); 710 return vma; 711 } 712 713 return vma; 714 } 715 716 struct i915_vma * 717 __vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size) 718 { 719 struct i915_vma *vma; 720 int err; 721 722 vma = __vm_create_scratch_for_read(vm, size); 723 if (IS_ERR(vma)) 724 return vma; 725 726 err = i915_vma_pin(vma, 0, 0, 727 i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER); 728 if (err) { 729 i915_vma_put(vma); 730 return ERR_PTR(err); 731 } 732 733 return vma; 734 } 735 736 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 737 #include "selftests/mock_gtt.c" 738 #endif 739