xref: /linux/drivers/gpu/drm/i915/gt/intel_gtt.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <linux/slab.h> /* fault-inject.h is not standalone! */
7 
8 #include <linux/fault-inject.h>
9 #include <linux/sched/mm.h>
10 
11 #include <drm/drm_cache.h>
12 
13 #include "gem/i915_gem_internal.h"
14 #include "gem/i915_gem_lmem.h"
15 #include "i915_reg.h"
16 #include "i915_trace.h"
17 #include "i915_utils.h"
18 #include "intel_gt.h"
19 #include "intel_gt_mcr.h"
20 #include "intel_gt_print.h"
21 #include "intel_gt_regs.h"
22 #include "intel_gtt.h"
23 
24 bool i915_ggtt_require_binder(struct drm_i915_private *i915)
25 {
26 	/* Wa_13010847436 & Wa_14019519902 */
27 	return !i915_direct_stolen_access(i915) &&
28 		MEDIA_VER_FULL(i915) == IP_VER(13, 0);
29 }
30 
31 static bool intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *i915)
32 {
33 	return IS_BROXTON(i915) && i915_vtd_active(i915);
34 }
35 
36 bool intel_vm_no_concurrent_access_wa(struct drm_i915_private *i915)
37 {
38 	return IS_CHERRYVIEW(i915) || intel_ggtt_update_needs_vtd_wa(i915);
39 }
40 
41 struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz)
42 {
43 	struct drm_i915_gem_object *obj;
44 
45 	/*
46 	 * To avoid severe over-allocation when dealing with min_page_size
47 	 * restrictions, we override that behaviour here by allowing an object
48 	 * size and page layout which can be smaller. In practice this should be
49 	 * totally fine, since GTT paging structures are not typically inserted
50 	 * into the GTT.
51 	 *
52 	 * Note that we also hit this path for the scratch page, and for this
53 	 * case it might need to be 64K, but that should work fine here since we
54 	 * used the passed in size for the page size, which should ensure it
55 	 * also has the same alignment.
56 	 */
57 	obj = __i915_gem_object_create_lmem_with_ps(vm->i915, sz, sz,
58 						    vm->lmem_pt_obj_flags);
59 	/*
60 	 * Ensure all paging structures for this vm share the same dma-resv
61 	 * object underneath, with the idea that one object_lock() will lock
62 	 * them all at once.
63 	 */
64 	if (!IS_ERR(obj)) {
65 		obj->base.resv = i915_vm_resv_get(vm);
66 		obj->shares_resv_from = vm;
67 
68 		if (vm->fpriv)
69 			i915_drm_client_add_object(vm->fpriv->client, obj);
70 	}
71 
72 	return obj;
73 }
74 
75 struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz)
76 {
77 	struct drm_i915_gem_object *obj;
78 
79 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
80 		i915_gem_shrink_all(vm->i915);
81 
82 	obj = i915_gem_object_create_internal(vm->i915, sz);
83 	/*
84 	 * Ensure all paging structures for this vm share the same dma-resv
85 	 * object underneath, with the idea that one object_lock() will lock
86 	 * them all at once.
87 	 */
88 	if (!IS_ERR(obj)) {
89 		obj->base.resv = i915_vm_resv_get(vm);
90 		obj->shares_resv_from = vm;
91 
92 		if (vm->fpriv)
93 			i915_drm_client_add_object(vm->fpriv->client, obj);
94 	}
95 
96 	return obj;
97 }
98 
99 int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
100 {
101 	enum i915_map_type type;
102 	void *vaddr;
103 
104 	type = intel_gt_coherent_map_type(vm->gt, obj, true);
105 	/*
106 	 * FIXME: It is suspected that some Address Translation Service (ATS)
107 	 * issue on IOMMU is causing CAT errors to occur on some MTL workloads.
108 	 * Applying a write barrier to the ppgtt set entry functions appeared
109 	 * to have no effect, so we must temporarily use I915_MAP_WC here on
110 	 * MTL until a proper ATS solution is found.
111 	 */
112 	if (IS_METEORLAKE(vm->i915))
113 		type = I915_MAP_WC;
114 
115 	vaddr = i915_gem_object_pin_map_unlocked(obj, type);
116 	if (IS_ERR(vaddr))
117 		return PTR_ERR(vaddr);
118 
119 	i915_gem_object_make_unshrinkable(obj);
120 	return 0;
121 }
122 
123 int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
124 {
125 	enum i915_map_type type;
126 	void *vaddr;
127 
128 	type = intel_gt_coherent_map_type(vm->gt, obj, true);
129 	/*
130 	 * FIXME: It is suspected that some Address Translation Service (ATS)
131 	 * issue on IOMMU is causing CAT errors to occur on some MTL workloads.
132 	 * Applying a write barrier to the ppgtt set entry functions appeared
133 	 * to have no effect, so we must temporarily use I915_MAP_WC here on
134 	 * MTL until a proper ATS solution is found.
135 	 */
136 	if (IS_METEORLAKE(vm->i915))
137 		type = I915_MAP_WC;
138 
139 	vaddr = i915_gem_object_pin_map(obj, type);
140 	if (IS_ERR(vaddr))
141 		return PTR_ERR(vaddr);
142 
143 	i915_gem_object_make_unshrinkable(obj);
144 	return 0;
145 }
146 
147 static void clear_vm_list(struct list_head *list)
148 {
149 	struct i915_vma *vma, *vn;
150 
151 	list_for_each_entry_safe(vma, vn, list, vm_link) {
152 		struct drm_i915_gem_object *obj = vma->obj;
153 
154 		if (!i915_gem_object_get_rcu(obj)) {
155 			/*
156 			 * Object is dying, but has not yet cleared its
157 			 * vma list.
158 			 * Unbind the dying vma to ensure our list
159 			 * is completely drained. We leave the destruction to
160 			 * the object destructor to avoid the vma
161 			 * disappearing under it.
162 			 */
163 			atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
164 			WARN_ON(__i915_vma_unbind(vma));
165 
166 			/* Remove from the unbound list */
167 			list_del_init(&vma->vm_link);
168 
169 			/*
170 			 * Delay the vm and vm mutex freeing until the
171 			 * object is done with destruction.
172 			 */
173 			i915_vm_resv_get(vma->vm);
174 			vma->vm_ddestroy = true;
175 		} else {
176 			i915_vma_destroy_locked(vma);
177 			i915_gem_object_put(obj);
178 		}
179 
180 	}
181 }
182 
183 static void __i915_vm_close(struct i915_address_space *vm)
184 {
185 	mutex_lock(&vm->mutex);
186 
187 	clear_vm_list(&vm->bound_list);
188 	clear_vm_list(&vm->unbound_list);
189 
190 	/* Check for must-fix unanticipated side-effects */
191 	GEM_BUG_ON(!list_empty(&vm->bound_list));
192 	GEM_BUG_ON(!list_empty(&vm->unbound_list));
193 
194 	mutex_unlock(&vm->mutex);
195 }
196 
197 /* lock the vm into the current ww, if we lock one, we lock all */
198 int i915_vm_lock_objects(struct i915_address_space *vm,
199 			 struct i915_gem_ww_ctx *ww)
200 {
201 	if (vm->scratch[0]->base.resv == &vm->_resv) {
202 		return i915_gem_object_lock(vm->scratch[0], ww);
203 	} else {
204 		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
205 
206 		/* We borrowed the scratch page from ggtt, take the top level object */
207 		return i915_gem_object_lock(ppgtt->pd->pt.base, ww);
208 	}
209 }
210 
211 void i915_address_space_fini(struct i915_address_space *vm)
212 {
213 	drm_mm_takedown(&vm->mm);
214 }
215 
216 /**
217  * i915_vm_resv_release - Final struct i915_address_space destructor
218  * @kref: Pointer to the &i915_address_space.resv_ref member.
219  *
220  * This function is called when the last lock sharer no longer shares the
221  * &i915_address_space._resv lock, and also if we raced when
222  * destroying a vma by the vma destruction
223  */
224 void i915_vm_resv_release(struct kref *kref)
225 {
226 	struct i915_address_space *vm =
227 		container_of(kref, typeof(*vm), resv_ref);
228 
229 	dma_resv_fini(&vm->_resv);
230 	mutex_destroy(&vm->mutex);
231 
232 	kfree(vm);
233 }
234 
235 static void __i915_vm_release(struct work_struct *work)
236 {
237 	struct i915_address_space *vm =
238 		container_of(work, struct i915_address_space, release_work);
239 
240 	__i915_vm_close(vm);
241 
242 	/* Synchronize async unbinds. */
243 	i915_vma_resource_bind_dep_sync_all(vm);
244 
245 	vm->cleanup(vm);
246 	i915_address_space_fini(vm);
247 
248 	i915_vm_resv_put(vm);
249 }
250 
251 void i915_vm_release(struct kref *kref)
252 {
253 	struct i915_address_space *vm =
254 		container_of(kref, struct i915_address_space, ref);
255 
256 	GEM_BUG_ON(i915_is_ggtt(vm));
257 	trace_i915_ppgtt_release(vm);
258 
259 	queue_work(vm->i915->wq, &vm->release_work);
260 }
261 
262 void i915_address_space_init(struct i915_address_space *vm, int subclass)
263 {
264 	kref_init(&vm->ref);
265 
266 	/*
267 	 * Special case for GGTT that has already done an early
268 	 * kref_init here.
269 	 */
270 	if (!kref_read(&vm->resv_ref))
271 		kref_init(&vm->resv_ref);
272 
273 	vm->pending_unbind = RB_ROOT_CACHED;
274 	INIT_WORK(&vm->release_work, __i915_vm_release);
275 
276 	/*
277 	 * The vm->mutex must be reclaim safe (for use in the shrinker).
278 	 * Do a dummy acquire now under fs_reclaim so that any allocation
279 	 * attempt holding the lock is immediately reported by lockdep.
280 	 */
281 	mutex_init(&vm->mutex);
282 	lockdep_set_subclass(&vm->mutex, subclass);
283 
284 	if (!intel_vm_no_concurrent_access_wa(vm->i915)) {
285 		i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
286 	} else {
287 		/*
288 		 * CHV + BXT VTD workaround use stop_machine(),
289 		 * which is allowed to allocate memory. This means &vm->mutex
290 		 * is the outer lock, and in theory we can allocate memory inside
291 		 * it through stop_machine().
292 		 *
293 		 * Add the annotation for this, we use trylock in shrinker.
294 		 */
295 		mutex_acquire(&vm->mutex.dep_map, 0, 0, _THIS_IP_);
296 		might_alloc(GFP_KERNEL);
297 		mutex_release(&vm->mutex.dep_map, _THIS_IP_);
298 	}
299 	dma_resv_init(&vm->_resv);
300 
301 	GEM_BUG_ON(!vm->total);
302 	drm_mm_init(&vm->mm, 0, vm->total);
303 
304 	memset64(vm->min_alignment, I915_GTT_MIN_ALIGNMENT,
305 		 ARRAY_SIZE(vm->min_alignment));
306 
307 	if (HAS_64K_PAGES(vm->i915)) {
308 		vm->min_alignment[INTEL_MEMORY_LOCAL] = I915_GTT_PAGE_SIZE_64K;
309 		vm->min_alignment[INTEL_MEMORY_STOLEN_LOCAL] = I915_GTT_PAGE_SIZE_64K;
310 	}
311 
312 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
313 
314 	INIT_LIST_HEAD(&vm->bound_list);
315 	INIT_LIST_HEAD(&vm->unbound_list);
316 }
317 
318 void *__px_vaddr(struct drm_i915_gem_object *p)
319 {
320 	enum i915_map_type type;
321 
322 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
323 	return page_unpack_bits(p->mm.mapping, &type);
324 }
325 
326 dma_addr_t __px_dma(struct drm_i915_gem_object *p)
327 {
328 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
329 	return sg_dma_address(p->mm.pages->sgl);
330 }
331 
332 struct page *__px_page(struct drm_i915_gem_object *p)
333 {
334 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
335 	return sg_page(p->mm.pages->sgl);
336 }
337 
338 void
339 fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count)
340 {
341 	void *vaddr = __px_vaddr(p);
342 
343 	memset64(vaddr, val, count);
344 	drm_clflush_virt_range(vaddr, PAGE_SIZE);
345 }
346 
347 static void poison_scratch_page(struct drm_i915_gem_object *scratch)
348 {
349 	void *vaddr = __px_vaddr(scratch);
350 	u8 val;
351 
352 	val = 0;
353 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
354 		val = POISON_FREE;
355 
356 	memset(vaddr, val, scratch->base.size);
357 	drm_clflush_virt_range(vaddr, scratch->base.size);
358 }
359 
360 int setup_scratch_page(struct i915_address_space *vm)
361 {
362 	unsigned long size;
363 
364 	/*
365 	 * In order to utilize 64K pages for an object with a size < 2M, we will
366 	 * need to support a 64K scratch page, given that every 16th entry for a
367 	 * page-table operating in 64K mode must point to a properly aligned 64K
368 	 * region, including any PTEs which happen to point to scratch.
369 	 *
370 	 * This is only relevant for the 48b PPGTT where we support
371 	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
372 	 * scratch (read-only) between all vm, we create one 64k scratch page
373 	 * for all.
374 	 */
375 	size = I915_GTT_PAGE_SIZE_4K;
376 	if (i915_vm_is_4lvl(vm) &&
377 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K) &&
378 	    !HAS_64K_PAGES(vm->i915))
379 		size = I915_GTT_PAGE_SIZE_64K;
380 
381 	do {
382 		struct drm_i915_gem_object *obj;
383 
384 		obj = vm->alloc_scratch_dma(vm, size);
385 		if (IS_ERR(obj))
386 			goto skip;
387 
388 		if (map_pt_dma(vm, obj))
389 			goto skip_obj;
390 
391 		/* We need a single contiguous page for our scratch */
392 		if (obj->mm.page_sizes.sg < size)
393 			goto skip_obj;
394 
395 		/* And it needs to be correspondingly aligned */
396 		if (__px_dma(obj) & (size - 1))
397 			goto skip_obj;
398 
399 		/*
400 		 * Use a non-zero scratch page for debugging.
401 		 *
402 		 * We want a value that should be reasonably obvious
403 		 * to spot in the error state, while also causing a GPU hang
404 		 * if executed. We prefer using a clear page in production, so
405 		 * should it ever be accidentally used, the effect should be
406 		 * fairly benign.
407 		 */
408 		poison_scratch_page(obj);
409 
410 		vm->scratch[0] = obj;
411 		vm->scratch_order = get_order(size);
412 		return 0;
413 
414 skip_obj:
415 		i915_gem_object_put(obj);
416 skip:
417 		if (size == I915_GTT_PAGE_SIZE_4K)
418 			return -ENOMEM;
419 
420 		size = I915_GTT_PAGE_SIZE_4K;
421 	} while (1);
422 }
423 
424 void free_scratch(struct i915_address_space *vm)
425 {
426 	int i;
427 
428 	if (!vm->scratch[0])
429 		return;
430 
431 	for (i = 0; i <= vm->top; i++)
432 		i915_gem_object_put(vm->scratch[i]);
433 }
434 
435 void gtt_write_workarounds(struct intel_gt *gt)
436 {
437 	struct drm_i915_private *i915 = gt->i915;
438 	struct intel_uncore *uncore = gt->uncore;
439 
440 	/*
441 	 * This function is for gtt related workarounds. This function is
442 	 * called on driver load and after a GPU reset, so you can place
443 	 * workarounds here even if they get overwritten by GPU reset.
444 	 */
445 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
446 	if (IS_BROADWELL(i915))
447 		intel_uncore_write(uncore,
448 				   GEN8_L3_LRA_1_GPGPU,
449 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
450 	else if (IS_CHERRYVIEW(i915))
451 		intel_uncore_write(uncore,
452 				   GEN8_L3_LRA_1_GPGPU,
453 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
454 	else if (IS_GEN9_LP(i915))
455 		intel_uncore_write(uncore,
456 				   GEN8_L3_LRA_1_GPGPU,
457 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
458 	else if (GRAPHICS_VER(i915) >= 9 && GRAPHICS_VER(i915) <= 11)
459 		intel_uncore_write(uncore,
460 				   GEN8_L3_LRA_1_GPGPU,
461 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
462 
463 	/*
464 	 * To support 64K PTEs we need to first enable the use of the
465 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
466 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
467 	 * shouldn't be needed after GEN10.
468 	 *
469 	 * 64K pages were first introduced from BDW+, although technically they
470 	 * only *work* from gen9+. For pre-BDW we instead have the option for
471 	 * 32K pages, but we don't currently have any support for it in our
472 	 * driver.
473 	 */
474 	if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
475 	    GRAPHICS_VER(i915) <= 10)
476 		intel_uncore_rmw(uncore,
477 				 GEN8_GAMW_ECO_DEV_RW_IA,
478 				 0,
479 				 GAMW_ECO_ENABLE_64K_IPS_FIELD);
480 
481 	if (IS_GRAPHICS_VER(i915, 8, 11)) {
482 		bool can_use_gtt_cache = true;
483 
484 		/*
485 		 * According to the BSpec if we use 2M/1G pages then we also
486 		 * need to disable the GTT cache. At least on BDW we can see
487 		 * visual corruption when using 2M pages, and not disabling the
488 		 * GTT cache.
489 		 */
490 		if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
491 			can_use_gtt_cache = false;
492 
493 		/* WaGttCachingOffByDefault */
494 		intel_uncore_write(uncore,
495 				   HSW_GTT_CACHE_EN,
496 				   can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
497 		gt_WARN_ON_ONCE(gt, can_use_gtt_cache &&
498 				intel_uncore_read(uncore,
499 						  HSW_GTT_CACHE_EN) == 0);
500 	}
501 }
502 
503 static void xelpmp_setup_private_ppat(struct intel_uncore *uncore)
504 {
505 	intel_uncore_write(uncore, XELPMP_PAT_INDEX(0),
506 			   MTL_PPAT_L4_0_WB);
507 	intel_uncore_write(uncore, XELPMP_PAT_INDEX(1),
508 			   MTL_PPAT_L4_1_WT);
509 	intel_uncore_write(uncore, XELPMP_PAT_INDEX(2),
510 			   MTL_PPAT_L4_3_UC);
511 	intel_uncore_write(uncore, XELPMP_PAT_INDEX(3),
512 			   MTL_PPAT_L4_0_WB | MTL_2_COH_1W);
513 	intel_uncore_write(uncore, XELPMP_PAT_INDEX(4),
514 			   MTL_PPAT_L4_0_WB | MTL_3_COH_2W);
515 
516 	/*
517 	 * Remaining PAT entries are left at the hardware-default
518 	 * fully-cached setting
519 	 */
520 }
521 
522 static void xelpg_setup_private_ppat(struct intel_gt *gt)
523 {
524 	intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(0),
525 				     MTL_PPAT_L4_0_WB);
526 	intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(1),
527 				     MTL_PPAT_L4_1_WT);
528 	intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(2),
529 				     MTL_PPAT_L4_3_UC);
530 	intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(3),
531 				     MTL_PPAT_L4_0_WB | MTL_2_COH_1W);
532 	intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(4),
533 				     MTL_PPAT_L4_0_WB | MTL_3_COH_2W);
534 
535 	/*
536 	 * Remaining PAT entries are left at the hardware-default
537 	 * fully-cached setting
538 	 */
539 }
540 
541 static void tgl_setup_private_ppat(struct intel_uncore *uncore)
542 {
543 	/* TGL doesn't support LLC or AGE settings */
544 	intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
545 	intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
546 	intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
547 	intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
548 	intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
549 	intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
550 	intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
551 	intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
552 }
553 
554 static void xehp_setup_private_ppat(struct intel_gt *gt)
555 {
556 	enum forcewake_domains fw;
557 	unsigned long flags;
558 
559 	fw = intel_uncore_forcewake_for_reg(gt->uncore, _MMIO(XEHP_PAT_INDEX(0).reg),
560 					    FW_REG_WRITE);
561 	intel_uncore_forcewake_get(gt->uncore, fw);
562 
563 	intel_gt_mcr_lock(gt, &flags);
564 	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(0), GEN8_PPAT_WB);
565 	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(1), GEN8_PPAT_WC);
566 	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(2), GEN8_PPAT_WT);
567 	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(3), GEN8_PPAT_UC);
568 	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(4), GEN8_PPAT_WB);
569 	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(5), GEN8_PPAT_WB);
570 	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(6), GEN8_PPAT_WB);
571 	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(7), GEN8_PPAT_WB);
572 	intel_gt_mcr_unlock(gt, flags);
573 
574 	intel_uncore_forcewake_put(gt->uncore, fw);
575 }
576 
577 static void icl_setup_private_ppat(struct intel_uncore *uncore)
578 {
579 	intel_uncore_write(uncore,
580 			   GEN10_PAT_INDEX(0),
581 			   GEN8_PPAT_WB | GEN8_PPAT_LLC);
582 	intel_uncore_write(uncore,
583 			   GEN10_PAT_INDEX(1),
584 			   GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
585 	intel_uncore_write(uncore,
586 			   GEN10_PAT_INDEX(2),
587 			   GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
588 	intel_uncore_write(uncore,
589 			   GEN10_PAT_INDEX(3),
590 			   GEN8_PPAT_UC);
591 	intel_uncore_write(uncore,
592 			   GEN10_PAT_INDEX(4),
593 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
594 	intel_uncore_write(uncore,
595 			   GEN10_PAT_INDEX(5),
596 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
597 	intel_uncore_write(uncore,
598 			   GEN10_PAT_INDEX(6),
599 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
600 	intel_uncore_write(uncore,
601 			   GEN10_PAT_INDEX(7),
602 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
603 }
604 
605 /*
606  * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
607  * bits. When using advanced contexts each context stores its own PAT, but
608  * writing this data shouldn't be harmful even in those cases.
609  */
610 static void bdw_setup_private_ppat(struct intel_uncore *uncore)
611 {
612 	struct drm_i915_private *i915 = uncore->i915;
613 	u64 pat;
614 
615 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) |	/* for normal objects, no eLLC */
616 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) |	/* for something pointing to ptes? */
617 	      GEN8_PPAT(3, GEN8_PPAT_UC) |			/* Uncached objects, mostly for scanout */
618 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
619 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
620 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
621 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
622 
623 	/* for scanout with eLLC */
624 	if (GRAPHICS_VER(i915) >= 9)
625 		pat |= GEN8_PPAT(2, GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
626 	else
627 		pat |= GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
628 
629 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
630 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
631 }
632 
633 static void chv_setup_private_ppat(struct intel_uncore *uncore)
634 {
635 	u64 pat;
636 
637 	/*
638 	 * Map WB on BDW to snooped on CHV.
639 	 *
640 	 * Only the snoop bit has meaning for CHV, the rest is
641 	 * ignored.
642 	 *
643 	 * The hardware will never snoop for certain types of accesses:
644 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
645 	 * - PPGTT page tables
646 	 * - some other special cycles
647 	 *
648 	 * As with BDW, we also need to consider the following for GT accesses:
649 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
650 	 * so RTL will always use the value corresponding to
651 	 * pat_sel = 000".
652 	 * Which means we must set the snoop bit in PAT entry 0
653 	 * in order to keep the global status page working.
654 	 */
655 
656 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
657 	      GEN8_PPAT(1, 0) |
658 	      GEN8_PPAT(2, 0) |
659 	      GEN8_PPAT(3, 0) |
660 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
661 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
662 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
663 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
664 
665 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
666 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
667 }
668 
669 void setup_private_pat(struct intel_gt *gt)
670 {
671 	struct intel_uncore *uncore = gt->uncore;
672 	struct drm_i915_private *i915 = gt->i915;
673 
674 	GEM_BUG_ON(GRAPHICS_VER(i915) < 8);
675 
676 	if (gt->type == GT_MEDIA) {
677 		xelpmp_setup_private_ppat(gt->uncore);
678 		return;
679 	}
680 
681 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
682 		xelpg_setup_private_ppat(gt);
683 	else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
684 		xehp_setup_private_ppat(gt);
685 	else if (GRAPHICS_VER(i915) >= 12)
686 		tgl_setup_private_ppat(uncore);
687 	else if (GRAPHICS_VER(i915) >= 11)
688 		icl_setup_private_ppat(uncore);
689 	else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
690 		chv_setup_private_ppat(uncore);
691 	else
692 		bdw_setup_private_ppat(uncore);
693 }
694 
695 struct i915_vma *
696 __vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size)
697 {
698 	struct drm_i915_gem_object *obj;
699 	struct i915_vma *vma;
700 
701 	obj = i915_gem_object_create_internal(vm->i915, PAGE_ALIGN(size));
702 	if (IS_ERR(obj))
703 		return ERR_CAST(obj);
704 
705 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
706 
707 	vma = i915_vma_instance(obj, vm, NULL);
708 	if (IS_ERR(vma)) {
709 		i915_gem_object_put(obj);
710 		return vma;
711 	}
712 
713 	return vma;
714 }
715 
716 struct i915_vma *
717 __vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size)
718 {
719 	struct i915_vma *vma;
720 	int err;
721 
722 	vma = __vm_create_scratch_for_read(vm, size);
723 	if (IS_ERR(vma))
724 		return vma;
725 
726 	err = i915_vma_pin(vma, 0, 0,
727 			   i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
728 	if (err) {
729 		i915_vma_put(vma);
730 		return ERR_PTR(err);
731 	}
732 
733 	return vma;
734 }
735 
736 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
737 #include "selftests/mock_gtt.c"
738 #endif
739