xref: /linux/drivers/gpu/drm/i915/gt/intel_gtt.c (revision c5dbf04160005e07e8ca7232a7faa77ab1547ae0)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <linux/slab.h> /* fault-inject.h is not standalone! */
7 
8 #include <linux/fault-inject.h>
9 #include <linux/sched/mm.h>
10 
11 #include <drm/drm_cache.h>
12 
13 #include "gem/i915_gem_internal.h"
14 #include "gem/i915_gem_lmem.h"
15 #include "i915_reg.h"
16 #include "i915_trace.h"
17 #include "i915_utils.h"
18 #include "intel_gt.h"
19 #include "intel_gt_mcr.h"
20 #include "intel_gt_print.h"
21 #include "intel_gt_regs.h"
22 #include "intel_gtt.h"
23 
24 bool i915_ggtt_require_binder(struct drm_i915_private *i915)
25 {
26 	/* Wa_13010847436 & Wa_14019519902 */
27 	return MEDIA_VER_FULL(i915) == IP_VER(13, 0);
28 }
29 
30 static bool intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *i915)
31 {
32 	return IS_BROXTON(i915) && i915_vtd_active(i915);
33 }
34 
35 bool intel_vm_no_concurrent_access_wa(struct drm_i915_private *i915)
36 {
37 	return IS_CHERRYVIEW(i915) || intel_ggtt_update_needs_vtd_wa(i915);
38 }
39 
40 struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz)
41 {
42 	struct drm_i915_gem_object *obj;
43 
44 	/*
45 	 * To avoid severe over-allocation when dealing with min_page_size
46 	 * restrictions, we override that behaviour here by allowing an object
47 	 * size and page layout which can be smaller. In practice this should be
48 	 * totally fine, since GTT paging structures are not typically inserted
49 	 * into the GTT.
50 	 *
51 	 * Note that we also hit this path for the scratch page, and for this
52 	 * case it might need to be 64K, but that should work fine here since we
53 	 * used the passed in size for the page size, which should ensure it
54 	 * also has the same alignment.
55 	 */
56 	obj = __i915_gem_object_create_lmem_with_ps(vm->i915, sz, sz,
57 						    vm->lmem_pt_obj_flags);
58 	/*
59 	 * Ensure all paging structures for this vm share the same dma-resv
60 	 * object underneath, with the idea that one object_lock() will lock
61 	 * them all at once.
62 	 */
63 	if (!IS_ERR(obj)) {
64 		obj->base.resv = i915_vm_resv_get(vm);
65 		obj->shares_resv_from = vm;
66 	}
67 
68 	return obj;
69 }
70 
71 struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz)
72 {
73 	struct drm_i915_gem_object *obj;
74 
75 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
76 		i915_gem_shrink_all(vm->i915);
77 
78 	obj = i915_gem_object_create_internal(vm->i915, sz);
79 	/*
80 	 * Ensure all paging structures for this vm share the same dma-resv
81 	 * object underneath, with the idea that one object_lock() will lock
82 	 * them all at once.
83 	 */
84 	if (!IS_ERR(obj)) {
85 		obj->base.resv = i915_vm_resv_get(vm);
86 		obj->shares_resv_from = vm;
87 	}
88 
89 	return obj;
90 }
91 
92 int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
93 {
94 	enum i915_map_type type;
95 	void *vaddr;
96 
97 	type = intel_gt_coherent_map_type(vm->gt, obj, true);
98 	vaddr = i915_gem_object_pin_map_unlocked(obj, type);
99 	if (IS_ERR(vaddr))
100 		return PTR_ERR(vaddr);
101 
102 	i915_gem_object_make_unshrinkable(obj);
103 	return 0;
104 }
105 
106 int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
107 {
108 	enum i915_map_type type;
109 	void *vaddr;
110 
111 	type = intel_gt_coherent_map_type(vm->gt, obj, true);
112 	vaddr = i915_gem_object_pin_map(obj, type);
113 	if (IS_ERR(vaddr))
114 		return PTR_ERR(vaddr);
115 
116 	i915_gem_object_make_unshrinkable(obj);
117 	return 0;
118 }
119 
120 static void clear_vm_list(struct list_head *list)
121 {
122 	struct i915_vma *vma, *vn;
123 
124 	list_for_each_entry_safe(vma, vn, list, vm_link) {
125 		struct drm_i915_gem_object *obj = vma->obj;
126 
127 		if (!i915_gem_object_get_rcu(obj)) {
128 			/*
129 			 * Object is dying, but has not yet cleared its
130 			 * vma list.
131 			 * Unbind the dying vma to ensure our list
132 			 * is completely drained. We leave the destruction to
133 			 * the object destructor to avoid the vma
134 			 * disappearing under it.
135 			 */
136 			atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
137 			WARN_ON(__i915_vma_unbind(vma));
138 
139 			/* Remove from the unbound list */
140 			list_del_init(&vma->vm_link);
141 
142 			/*
143 			 * Delay the vm and vm mutex freeing until the
144 			 * object is done with destruction.
145 			 */
146 			i915_vm_resv_get(vma->vm);
147 			vma->vm_ddestroy = true;
148 		} else {
149 			i915_vma_destroy_locked(vma);
150 			i915_gem_object_put(obj);
151 		}
152 
153 	}
154 }
155 
156 static void __i915_vm_close(struct i915_address_space *vm)
157 {
158 	mutex_lock(&vm->mutex);
159 
160 	clear_vm_list(&vm->bound_list);
161 	clear_vm_list(&vm->unbound_list);
162 
163 	/* Check for must-fix unanticipated side-effects */
164 	GEM_BUG_ON(!list_empty(&vm->bound_list));
165 	GEM_BUG_ON(!list_empty(&vm->unbound_list));
166 
167 	mutex_unlock(&vm->mutex);
168 }
169 
170 /* lock the vm into the current ww, if we lock one, we lock all */
171 int i915_vm_lock_objects(struct i915_address_space *vm,
172 			 struct i915_gem_ww_ctx *ww)
173 {
174 	if (vm->scratch[0]->base.resv == &vm->_resv) {
175 		return i915_gem_object_lock(vm->scratch[0], ww);
176 	} else {
177 		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
178 
179 		/* We borrowed the scratch page from ggtt, take the top level object */
180 		return i915_gem_object_lock(ppgtt->pd->pt.base, ww);
181 	}
182 }
183 
184 void i915_address_space_fini(struct i915_address_space *vm)
185 {
186 	drm_mm_takedown(&vm->mm);
187 }
188 
189 /**
190  * i915_vm_resv_release - Final struct i915_address_space destructor
191  * @kref: Pointer to the &i915_address_space.resv_ref member.
192  *
193  * This function is called when the last lock sharer no longer shares the
194  * &i915_address_space._resv lock, and also if we raced when
195  * destroying a vma by the vma destruction
196  */
197 void i915_vm_resv_release(struct kref *kref)
198 {
199 	struct i915_address_space *vm =
200 		container_of(kref, typeof(*vm), resv_ref);
201 
202 	dma_resv_fini(&vm->_resv);
203 	mutex_destroy(&vm->mutex);
204 
205 	kfree(vm);
206 }
207 
208 static void __i915_vm_release(struct work_struct *work)
209 {
210 	struct i915_address_space *vm =
211 		container_of(work, struct i915_address_space, release_work);
212 
213 	__i915_vm_close(vm);
214 
215 	/* Synchronize async unbinds. */
216 	i915_vma_resource_bind_dep_sync_all(vm);
217 
218 	vm->cleanup(vm);
219 	i915_address_space_fini(vm);
220 
221 	i915_vm_resv_put(vm);
222 }
223 
224 void i915_vm_release(struct kref *kref)
225 {
226 	struct i915_address_space *vm =
227 		container_of(kref, struct i915_address_space, ref);
228 
229 	GEM_BUG_ON(i915_is_ggtt(vm));
230 	trace_i915_ppgtt_release(vm);
231 
232 	queue_work(vm->i915->wq, &vm->release_work);
233 }
234 
235 void i915_address_space_init(struct i915_address_space *vm, int subclass)
236 {
237 	kref_init(&vm->ref);
238 
239 	/*
240 	 * Special case for GGTT that has already done an early
241 	 * kref_init here.
242 	 */
243 	if (!kref_read(&vm->resv_ref))
244 		kref_init(&vm->resv_ref);
245 
246 	vm->pending_unbind = RB_ROOT_CACHED;
247 	INIT_WORK(&vm->release_work, __i915_vm_release);
248 
249 	/*
250 	 * The vm->mutex must be reclaim safe (for use in the shrinker).
251 	 * Do a dummy acquire now under fs_reclaim so that any allocation
252 	 * attempt holding the lock is immediately reported by lockdep.
253 	 */
254 	mutex_init(&vm->mutex);
255 	lockdep_set_subclass(&vm->mutex, subclass);
256 
257 	if (!intel_vm_no_concurrent_access_wa(vm->i915)) {
258 		i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
259 	} else {
260 		/*
261 		 * CHV + BXT VTD workaround use stop_machine(),
262 		 * which is allowed to allocate memory. This means &vm->mutex
263 		 * is the outer lock, and in theory we can allocate memory inside
264 		 * it through stop_machine().
265 		 *
266 		 * Add the annotation for this, we use trylock in shrinker.
267 		 */
268 		mutex_acquire(&vm->mutex.dep_map, 0, 0, _THIS_IP_);
269 		might_alloc(GFP_KERNEL);
270 		mutex_release(&vm->mutex.dep_map, _THIS_IP_);
271 	}
272 	dma_resv_init(&vm->_resv);
273 
274 	GEM_BUG_ON(!vm->total);
275 	drm_mm_init(&vm->mm, 0, vm->total);
276 
277 	memset64(vm->min_alignment, I915_GTT_MIN_ALIGNMENT,
278 		 ARRAY_SIZE(vm->min_alignment));
279 
280 	if (HAS_64K_PAGES(vm->i915)) {
281 		vm->min_alignment[INTEL_MEMORY_LOCAL] = I915_GTT_PAGE_SIZE_64K;
282 		vm->min_alignment[INTEL_MEMORY_STOLEN_LOCAL] = I915_GTT_PAGE_SIZE_64K;
283 	}
284 
285 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
286 
287 	INIT_LIST_HEAD(&vm->bound_list);
288 	INIT_LIST_HEAD(&vm->unbound_list);
289 }
290 
291 void *__px_vaddr(struct drm_i915_gem_object *p)
292 {
293 	enum i915_map_type type;
294 
295 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
296 	return page_unpack_bits(p->mm.mapping, &type);
297 }
298 
299 dma_addr_t __px_dma(struct drm_i915_gem_object *p)
300 {
301 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
302 	return sg_dma_address(p->mm.pages->sgl);
303 }
304 
305 struct page *__px_page(struct drm_i915_gem_object *p)
306 {
307 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
308 	return sg_page(p->mm.pages->sgl);
309 }
310 
311 void
312 fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count)
313 {
314 	void *vaddr = __px_vaddr(p);
315 
316 	memset64(vaddr, val, count);
317 	drm_clflush_virt_range(vaddr, PAGE_SIZE);
318 }
319 
320 static void poison_scratch_page(struct drm_i915_gem_object *scratch)
321 {
322 	void *vaddr = __px_vaddr(scratch);
323 	u8 val;
324 
325 	val = 0;
326 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
327 		val = POISON_FREE;
328 
329 	memset(vaddr, val, scratch->base.size);
330 	drm_clflush_virt_range(vaddr, scratch->base.size);
331 }
332 
333 int setup_scratch_page(struct i915_address_space *vm)
334 {
335 	unsigned long size;
336 
337 	/*
338 	 * In order to utilize 64K pages for an object with a size < 2M, we will
339 	 * need to support a 64K scratch page, given that every 16th entry for a
340 	 * page-table operating in 64K mode must point to a properly aligned 64K
341 	 * region, including any PTEs which happen to point to scratch.
342 	 *
343 	 * This is only relevant for the 48b PPGTT where we support
344 	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
345 	 * scratch (read-only) between all vm, we create one 64k scratch page
346 	 * for all.
347 	 */
348 	size = I915_GTT_PAGE_SIZE_4K;
349 	if (i915_vm_is_4lvl(vm) &&
350 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K) &&
351 	    !HAS_64K_PAGES(vm->i915))
352 		size = I915_GTT_PAGE_SIZE_64K;
353 
354 	do {
355 		struct drm_i915_gem_object *obj;
356 
357 		obj = vm->alloc_scratch_dma(vm, size);
358 		if (IS_ERR(obj))
359 			goto skip;
360 
361 		if (map_pt_dma(vm, obj))
362 			goto skip_obj;
363 
364 		/* We need a single contiguous page for our scratch */
365 		if (obj->mm.page_sizes.sg < size)
366 			goto skip_obj;
367 
368 		/* And it needs to be correspondingly aligned */
369 		if (__px_dma(obj) & (size - 1))
370 			goto skip_obj;
371 
372 		/*
373 		 * Use a non-zero scratch page for debugging.
374 		 *
375 		 * We want a value that should be reasonably obvious
376 		 * to spot in the error state, while also causing a GPU hang
377 		 * if executed. We prefer using a clear page in production, so
378 		 * should it ever be accidentally used, the effect should be
379 		 * fairly benign.
380 		 */
381 		poison_scratch_page(obj);
382 
383 		vm->scratch[0] = obj;
384 		vm->scratch_order = get_order(size);
385 		return 0;
386 
387 skip_obj:
388 		i915_gem_object_put(obj);
389 skip:
390 		if (size == I915_GTT_PAGE_SIZE_4K)
391 			return -ENOMEM;
392 
393 		size = I915_GTT_PAGE_SIZE_4K;
394 	} while (1);
395 }
396 
397 void free_scratch(struct i915_address_space *vm)
398 {
399 	int i;
400 
401 	if (!vm->scratch[0])
402 		return;
403 
404 	for (i = 0; i <= vm->top; i++)
405 		i915_gem_object_put(vm->scratch[i]);
406 }
407 
408 void gtt_write_workarounds(struct intel_gt *gt)
409 {
410 	struct drm_i915_private *i915 = gt->i915;
411 	struct intel_uncore *uncore = gt->uncore;
412 
413 	/*
414 	 * This function is for gtt related workarounds. This function is
415 	 * called on driver load and after a GPU reset, so you can place
416 	 * workarounds here even if they get overwritten by GPU reset.
417 	 */
418 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
419 	if (IS_BROADWELL(i915))
420 		intel_uncore_write(uncore,
421 				   GEN8_L3_LRA_1_GPGPU,
422 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
423 	else if (IS_CHERRYVIEW(i915))
424 		intel_uncore_write(uncore,
425 				   GEN8_L3_LRA_1_GPGPU,
426 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
427 	else if (IS_GEN9_LP(i915))
428 		intel_uncore_write(uncore,
429 				   GEN8_L3_LRA_1_GPGPU,
430 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
431 	else if (GRAPHICS_VER(i915) >= 9 && GRAPHICS_VER(i915) <= 11)
432 		intel_uncore_write(uncore,
433 				   GEN8_L3_LRA_1_GPGPU,
434 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
435 
436 	/*
437 	 * To support 64K PTEs we need to first enable the use of the
438 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
439 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
440 	 * shouldn't be needed after GEN10.
441 	 *
442 	 * 64K pages were first introduced from BDW+, although technically they
443 	 * only *work* from gen9+. For pre-BDW we instead have the option for
444 	 * 32K pages, but we don't currently have any support for it in our
445 	 * driver.
446 	 */
447 	if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
448 	    GRAPHICS_VER(i915) <= 10)
449 		intel_uncore_rmw(uncore,
450 				 GEN8_GAMW_ECO_DEV_RW_IA,
451 				 0,
452 				 GAMW_ECO_ENABLE_64K_IPS_FIELD);
453 
454 	if (IS_GRAPHICS_VER(i915, 8, 11)) {
455 		bool can_use_gtt_cache = true;
456 
457 		/*
458 		 * According to the BSpec if we use 2M/1G pages then we also
459 		 * need to disable the GTT cache. At least on BDW we can see
460 		 * visual corruption when using 2M pages, and not disabling the
461 		 * GTT cache.
462 		 */
463 		if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
464 			can_use_gtt_cache = false;
465 
466 		/* WaGttCachingOffByDefault */
467 		intel_uncore_write(uncore,
468 				   HSW_GTT_CACHE_EN,
469 				   can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
470 		gt_WARN_ON_ONCE(gt, can_use_gtt_cache &&
471 				intel_uncore_read(uncore,
472 						  HSW_GTT_CACHE_EN) == 0);
473 	}
474 }
475 
476 static void xelpmp_setup_private_ppat(struct intel_uncore *uncore)
477 {
478 	intel_uncore_write(uncore, XELPMP_PAT_INDEX(0),
479 			   MTL_PPAT_L4_0_WB);
480 	intel_uncore_write(uncore, XELPMP_PAT_INDEX(1),
481 			   MTL_PPAT_L4_1_WT);
482 	intel_uncore_write(uncore, XELPMP_PAT_INDEX(2),
483 			   MTL_PPAT_L4_3_UC);
484 	intel_uncore_write(uncore, XELPMP_PAT_INDEX(3),
485 			   MTL_PPAT_L4_0_WB | MTL_2_COH_1W);
486 	intel_uncore_write(uncore, XELPMP_PAT_INDEX(4),
487 			   MTL_PPAT_L4_0_WB | MTL_3_COH_2W);
488 
489 	/*
490 	 * Remaining PAT entries are left at the hardware-default
491 	 * fully-cached setting
492 	 */
493 }
494 
495 static void xelpg_setup_private_ppat(struct intel_gt *gt)
496 {
497 	intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(0),
498 				     MTL_PPAT_L4_0_WB);
499 	intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(1),
500 				     MTL_PPAT_L4_1_WT);
501 	intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(2),
502 				     MTL_PPAT_L4_3_UC);
503 	intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(3),
504 				     MTL_PPAT_L4_0_WB | MTL_2_COH_1W);
505 	intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(4),
506 				     MTL_PPAT_L4_0_WB | MTL_3_COH_2W);
507 
508 	/*
509 	 * Remaining PAT entries are left at the hardware-default
510 	 * fully-cached setting
511 	 */
512 }
513 
514 static void tgl_setup_private_ppat(struct intel_uncore *uncore)
515 {
516 	/* TGL doesn't support LLC or AGE settings */
517 	intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
518 	intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
519 	intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
520 	intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
521 	intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
522 	intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
523 	intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
524 	intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
525 }
526 
527 static void xehp_setup_private_ppat(struct intel_gt *gt)
528 {
529 	enum forcewake_domains fw;
530 	unsigned long flags;
531 
532 	fw = intel_uncore_forcewake_for_reg(gt->uncore, _MMIO(XEHP_PAT_INDEX(0).reg),
533 					    FW_REG_WRITE);
534 	intel_uncore_forcewake_get(gt->uncore, fw);
535 
536 	intel_gt_mcr_lock(gt, &flags);
537 	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(0), GEN8_PPAT_WB);
538 	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(1), GEN8_PPAT_WC);
539 	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(2), GEN8_PPAT_WT);
540 	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(3), GEN8_PPAT_UC);
541 	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(4), GEN8_PPAT_WB);
542 	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(5), GEN8_PPAT_WB);
543 	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(6), GEN8_PPAT_WB);
544 	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(7), GEN8_PPAT_WB);
545 	intel_gt_mcr_unlock(gt, flags);
546 
547 	intel_uncore_forcewake_put(gt->uncore, fw);
548 }
549 
550 static void icl_setup_private_ppat(struct intel_uncore *uncore)
551 {
552 	intel_uncore_write(uncore,
553 			   GEN10_PAT_INDEX(0),
554 			   GEN8_PPAT_WB | GEN8_PPAT_LLC);
555 	intel_uncore_write(uncore,
556 			   GEN10_PAT_INDEX(1),
557 			   GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
558 	intel_uncore_write(uncore,
559 			   GEN10_PAT_INDEX(2),
560 			   GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
561 	intel_uncore_write(uncore,
562 			   GEN10_PAT_INDEX(3),
563 			   GEN8_PPAT_UC);
564 	intel_uncore_write(uncore,
565 			   GEN10_PAT_INDEX(4),
566 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
567 	intel_uncore_write(uncore,
568 			   GEN10_PAT_INDEX(5),
569 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
570 	intel_uncore_write(uncore,
571 			   GEN10_PAT_INDEX(6),
572 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
573 	intel_uncore_write(uncore,
574 			   GEN10_PAT_INDEX(7),
575 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
576 }
577 
578 /*
579  * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
580  * bits. When using advanced contexts each context stores its own PAT, but
581  * writing this data shouldn't be harmful even in those cases.
582  */
583 static void bdw_setup_private_ppat(struct intel_uncore *uncore)
584 {
585 	struct drm_i915_private *i915 = uncore->i915;
586 	u64 pat;
587 
588 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) |	/* for normal objects, no eLLC */
589 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) |	/* for something pointing to ptes? */
590 	      GEN8_PPAT(3, GEN8_PPAT_UC) |			/* Uncached objects, mostly for scanout */
591 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
592 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
593 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
594 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
595 
596 	/* for scanout with eLLC */
597 	if (GRAPHICS_VER(i915) >= 9)
598 		pat |= GEN8_PPAT(2, GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
599 	else
600 		pat |= GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
601 
602 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
603 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
604 }
605 
606 static void chv_setup_private_ppat(struct intel_uncore *uncore)
607 {
608 	u64 pat;
609 
610 	/*
611 	 * Map WB on BDW to snooped on CHV.
612 	 *
613 	 * Only the snoop bit has meaning for CHV, the rest is
614 	 * ignored.
615 	 *
616 	 * The hardware will never snoop for certain types of accesses:
617 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
618 	 * - PPGTT page tables
619 	 * - some other special cycles
620 	 *
621 	 * As with BDW, we also need to consider the following for GT accesses:
622 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
623 	 * so RTL will always use the value corresponding to
624 	 * pat_sel = 000".
625 	 * Which means we must set the snoop bit in PAT entry 0
626 	 * in order to keep the global status page working.
627 	 */
628 
629 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
630 	      GEN8_PPAT(1, 0) |
631 	      GEN8_PPAT(2, 0) |
632 	      GEN8_PPAT(3, 0) |
633 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
634 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
635 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
636 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
637 
638 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
639 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
640 }
641 
642 void setup_private_pat(struct intel_gt *gt)
643 {
644 	struct intel_uncore *uncore = gt->uncore;
645 	struct drm_i915_private *i915 = gt->i915;
646 
647 	GEM_BUG_ON(GRAPHICS_VER(i915) < 8);
648 
649 	if (gt->type == GT_MEDIA) {
650 		xelpmp_setup_private_ppat(gt->uncore);
651 		return;
652 	}
653 
654 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
655 		xelpg_setup_private_ppat(gt);
656 	else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
657 		xehp_setup_private_ppat(gt);
658 	else if (GRAPHICS_VER(i915) >= 12)
659 		tgl_setup_private_ppat(uncore);
660 	else if (GRAPHICS_VER(i915) >= 11)
661 		icl_setup_private_ppat(uncore);
662 	else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
663 		chv_setup_private_ppat(uncore);
664 	else
665 		bdw_setup_private_ppat(uncore);
666 }
667 
668 struct i915_vma *
669 __vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size)
670 {
671 	struct drm_i915_gem_object *obj;
672 	struct i915_vma *vma;
673 
674 	obj = i915_gem_object_create_internal(vm->i915, PAGE_ALIGN(size));
675 	if (IS_ERR(obj))
676 		return ERR_CAST(obj);
677 
678 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
679 
680 	vma = i915_vma_instance(obj, vm, NULL);
681 	if (IS_ERR(vma)) {
682 		i915_gem_object_put(obj);
683 		return vma;
684 	}
685 
686 	return vma;
687 }
688 
689 struct i915_vma *
690 __vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size)
691 {
692 	struct i915_vma *vma;
693 	int err;
694 
695 	vma = __vm_create_scratch_for_read(vm, size);
696 	if (IS_ERR(vma))
697 		return vma;
698 
699 	err = i915_vma_pin(vma, 0, 0,
700 			   i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
701 	if (err) {
702 		i915_vma_put(vma);
703 		return ERR_PTR(err);
704 	}
705 
706 	return vma;
707 }
708 
709 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
710 #include "selftests/mock_gtt.c"
711 #endif
712