1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include <linux/slab.h> /* fault-inject.h is not standalone! */ 7 8 #include <linux/fault-inject.h> 9 10 #include "i915_trace.h" 11 #include "intel_gt.h" 12 #include "intel_gtt.h" 13 14 struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz) 15 { 16 if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1))) 17 i915_gem_shrink_all(vm->i915); 18 19 return i915_gem_object_create_internal(vm->i915, sz); 20 } 21 22 int pin_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj) 23 { 24 int err; 25 26 err = i915_gem_object_pin_pages(obj); 27 if (err) 28 return err; 29 30 i915_gem_object_make_unshrinkable(obj); 31 return 0; 32 } 33 34 void __i915_vm_close(struct i915_address_space *vm) 35 { 36 struct i915_vma *vma, *vn; 37 38 if (!atomic_dec_and_mutex_lock(&vm->open, &vm->mutex)) 39 return; 40 41 list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) { 42 struct drm_i915_gem_object *obj = vma->obj; 43 44 /* Keep the obj (and hence the vma) alive as _we_ destroy it */ 45 if (!kref_get_unless_zero(&obj->base.refcount)) 46 continue; 47 48 atomic_and(~I915_VMA_PIN_MASK, &vma->flags); 49 WARN_ON(__i915_vma_unbind(vma)); 50 __i915_vma_put(vma); 51 52 i915_gem_object_put(obj); 53 } 54 GEM_BUG_ON(!list_empty(&vm->bound_list)); 55 56 mutex_unlock(&vm->mutex); 57 } 58 59 void i915_address_space_fini(struct i915_address_space *vm) 60 { 61 drm_mm_takedown(&vm->mm); 62 mutex_destroy(&vm->mutex); 63 } 64 65 static void __i915_vm_release(struct work_struct *work) 66 { 67 struct i915_address_space *vm = 68 container_of(work, struct i915_address_space, rcu.work); 69 70 vm->cleanup(vm); 71 i915_address_space_fini(vm); 72 73 kfree(vm); 74 } 75 76 void i915_vm_release(struct kref *kref) 77 { 78 struct i915_address_space *vm = 79 container_of(kref, struct i915_address_space, ref); 80 81 GEM_BUG_ON(i915_is_ggtt(vm)); 82 trace_i915_ppgtt_release(vm); 83 84 queue_rcu_work(vm->i915->wq, &vm->rcu); 85 } 86 87 void i915_address_space_init(struct i915_address_space *vm, int subclass) 88 { 89 kref_init(&vm->ref); 90 INIT_RCU_WORK(&vm->rcu, __i915_vm_release); 91 atomic_set(&vm->open, 1); 92 93 /* 94 * The vm->mutex must be reclaim safe (for use in the shrinker). 95 * Do a dummy acquire now under fs_reclaim so that any allocation 96 * attempt holding the lock is immediately reported by lockdep. 97 */ 98 mutex_init(&vm->mutex); 99 lockdep_set_subclass(&vm->mutex, subclass); 100 i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex); 101 102 GEM_BUG_ON(!vm->total); 103 drm_mm_init(&vm->mm, 0, vm->total); 104 vm->mm.head_node.color = I915_COLOR_UNEVICTABLE; 105 106 INIT_LIST_HEAD(&vm->bound_list); 107 } 108 109 void clear_pages(struct i915_vma *vma) 110 { 111 GEM_BUG_ON(!vma->pages); 112 113 if (vma->pages != vma->obj->mm.pages) { 114 sg_free_table(vma->pages); 115 kfree(vma->pages); 116 } 117 vma->pages = NULL; 118 119 memset(&vma->page_sizes, 0, sizeof(vma->page_sizes)); 120 } 121 122 dma_addr_t __px_dma(struct drm_i915_gem_object *p) 123 { 124 GEM_BUG_ON(!i915_gem_object_has_pages(p)); 125 return sg_dma_address(p->mm.pages->sgl); 126 } 127 128 struct page *__px_page(struct drm_i915_gem_object *p) 129 { 130 GEM_BUG_ON(!i915_gem_object_has_pages(p)); 131 return sg_page(p->mm.pages->sgl); 132 } 133 134 void 135 fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count) 136 { 137 struct page *page = __px_page(p); 138 void *vaddr; 139 140 vaddr = kmap(page); 141 memset64(vaddr, val, count); 142 clflush_cache_range(vaddr, PAGE_SIZE); 143 kunmap(page); 144 } 145 146 static void poison_scratch_page(struct drm_i915_gem_object *scratch) 147 { 148 struct sgt_iter sgt; 149 struct page *page; 150 u8 val; 151 152 val = 0; 153 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 154 val = POISON_FREE; 155 156 for_each_sgt_page(page, sgt, scratch->mm.pages) { 157 void *vaddr; 158 159 vaddr = kmap(page); 160 memset(vaddr, val, PAGE_SIZE); 161 kunmap(page); 162 } 163 } 164 165 int setup_scratch_page(struct i915_address_space *vm) 166 { 167 unsigned long size; 168 169 /* 170 * In order to utilize 64K pages for an object with a size < 2M, we will 171 * need to support a 64K scratch page, given that every 16th entry for a 172 * page-table operating in 64K mode must point to a properly aligned 64K 173 * region, including any PTEs which happen to point to scratch. 174 * 175 * This is only relevant for the 48b PPGTT where we support 176 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the 177 * scratch (read-only) between all vm, we create one 64k scratch page 178 * for all. 179 */ 180 size = I915_GTT_PAGE_SIZE_4K; 181 if (i915_vm_is_4lvl(vm) && 182 HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) 183 size = I915_GTT_PAGE_SIZE_64K; 184 185 do { 186 struct drm_i915_gem_object *obj; 187 188 obj = vm->alloc_pt_dma(vm, size); 189 if (IS_ERR(obj)) 190 goto skip; 191 192 if (pin_pt_dma(vm, obj)) 193 goto skip_obj; 194 195 /* We need a single contiguous page for our scratch */ 196 if (obj->mm.page_sizes.sg < size) 197 goto skip_obj; 198 199 /* And it needs to be correspondingly aligned */ 200 if (__px_dma(obj) & (size - 1)) 201 goto skip_obj; 202 203 /* 204 * Use a non-zero scratch page for debugging. 205 * 206 * We want a value that should be reasonably obvious 207 * to spot in the error state, while also causing a GPU hang 208 * if executed. We prefer using a clear page in production, so 209 * should it ever be accidentally used, the effect should be 210 * fairly benign. 211 */ 212 poison_scratch_page(obj); 213 214 vm->scratch[0] = obj; 215 vm->scratch_order = get_order(size); 216 return 0; 217 218 skip_obj: 219 i915_gem_object_put(obj); 220 skip: 221 if (size == I915_GTT_PAGE_SIZE_4K) 222 return -ENOMEM; 223 224 size = I915_GTT_PAGE_SIZE_4K; 225 } while (1); 226 } 227 228 void free_scratch(struct i915_address_space *vm) 229 { 230 int i; 231 232 for (i = 0; i <= vm->top; i++) 233 i915_gem_object_put(vm->scratch[i]); 234 } 235 236 void gtt_write_workarounds(struct intel_gt *gt) 237 { 238 struct drm_i915_private *i915 = gt->i915; 239 struct intel_uncore *uncore = gt->uncore; 240 241 /* 242 * This function is for gtt related workarounds. This function is 243 * called on driver load and after a GPU reset, so you can place 244 * workarounds here even if they get overwritten by GPU reset. 245 */ 246 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */ 247 if (IS_BROADWELL(i915)) 248 intel_uncore_write(uncore, 249 GEN8_L3_LRA_1_GPGPU, 250 GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW); 251 else if (IS_CHERRYVIEW(i915)) 252 intel_uncore_write(uncore, 253 GEN8_L3_LRA_1_GPGPU, 254 GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV); 255 else if (IS_GEN9_LP(i915)) 256 intel_uncore_write(uncore, 257 GEN8_L3_LRA_1_GPGPU, 258 GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT); 259 else if (INTEL_GEN(i915) >= 9 && INTEL_GEN(i915) <= 11) 260 intel_uncore_write(uncore, 261 GEN8_L3_LRA_1_GPGPU, 262 GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL); 263 264 /* 265 * To support 64K PTEs we need to first enable the use of the 266 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical 267 * mmio, otherwise the page-walker will simply ignore the IPS bit. This 268 * shouldn't be needed after GEN10. 269 * 270 * 64K pages were first introduced from BDW+, although technically they 271 * only *work* from gen9+. For pre-BDW we instead have the option for 272 * 32K pages, but we don't currently have any support for it in our 273 * driver. 274 */ 275 if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) && 276 INTEL_GEN(i915) <= 10) 277 intel_uncore_rmw(uncore, 278 GEN8_GAMW_ECO_DEV_RW_IA, 279 0, 280 GAMW_ECO_ENABLE_64K_IPS_FIELD); 281 282 if (IS_GEN_RANGE(i915, 8, 11)) { 283 bool can_use_gtt_cache = true; 284 285 /* 286 * According to the BSpec if we use 2M/1G pages then we also 287 * need to disable the GTT cache. At least on BDW we can see 288 * visual corruption when using 2M pages, and not disabling the 289 * GTT cache. 290 */ 291 if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M)) 292 can_use_gtt_cache = false; 293 294 /* WaGttCachingOffByDefault */ 295 intel_uncore_write(uncore, 296 HSW_GTT_CACHE_EN, 297 can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0); 298 drm_WARN_ON_ONCE(&i915->drm, can_use_gtt_cache && 299 intel_uncore_read(uncore, 300 HSW_GTT_CACHE_EN) == 0); 301 } 302 } 303 304 static void tgl_setup_private_ppat(struct intel_uncore *uncore) 305 { 306 /* TGL doesn't support LLC or AGE settings */ 307 intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB); 308 intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC); 309 intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT); 310 intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC); 311 intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB); 312 intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB); 313 intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB); 314 intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB); 315 } 316 317 static void cnl_setup_private_ppat(struct intel_uncore *uncore) 318 { 319 intel_uncore_write(uncore, 320 GEN10_PAT_INDEX(0), 321 GEN8_PPAT_WB | GEN8_PPAT_LLC); 322 intel_uncore_write(uncore, 323 GEN10_PAT_INDEX(1), 324 GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); 325 intel_uncore_write(uncore, 326 GEN10_PAT_INDEX(2), 327 GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE); 328 intel_uncore_write(uncore, 329 GEN10_PAT_INDEX(3), 330 GEN8_PPAT_UC); 331 intel_uncore_write(uncore, 332 GEN10_PAT_INDEX(4), 333 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)); 334 intel_uncore_write(uncore, 335 GEN10_PAT_INDEX(5), 336 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)); 337 intel_uncore_write(uncore, 338 GEN10_PAT_INDEX(6), 339 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)); 340 intel_uncore_write(uncore, 341 GEN10_PAT_INDEX(7), 342 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); 343 } 344 345 /* 346 * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability 347 * bits. When using advanced contexts each context stores its own PAT, but 348 * writing this data shouldn't be harmful even in those cases. 349 */ 350 static void bdw_setup_private_ppat(struct intel_uncore *uncore) 351 { 352 struct drm_i915_private *i915 = uncore->i915; 353 u64 pat; 354 355 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */ 356 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */ 357 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */ 358 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) | 359 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) | 360 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) | 361 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); 362 363 /* for scanout with eLLC */ 364 if (INTEL_GEN(i915) >= 9) 365 pat |= GEN8_PPAT(2, GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE); 366 else 367 pat |= GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); 368 369 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); 370 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); 371 } 372 373 static void chv_setup_private_ppat(struct intel_uncore *uncore) 374 { 375 u64 pat; 376 377 /* 378 * Map WB on BDW to snooped on CHV. 379 * 380 * Only the snoop bit has meaning for CHV, the rest is 381 * ignored. 382 * 383 * The hardware will never snoop for certain types of accesses: 384 * - CPU GTT (GMADR->GGTT->no snoop->memory) 385 * - PPGTT page tables 386 * - some other special cycles 387 * 388 * As with BDW, we also need to consider the following for GT accesses: 389 * "For GGTT, there is NO pat_sel[2:0] from the entry, 390 * so RTL will always use the value corresponding to 391 * pat_sel = 000". 392 * Which means we must set the snoop bit in PAT entry 0 393 * in order to keep the global status page working. 394 */ 395 396 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) | 397 GEN8_PPAT(1, 0) | 398 GEN8_PPAT(2, 0) | 399 GEN8_PPAT(3, 0) | 400 GEN8_PPAT(4, CHV_PPAT_SNOOP) | 401 GEN8_PPAT(5, CHV_PPAT_SNOOP) | 402 GEN8_PPAT(6, CHV_PPAT_SNOOP) | 403 GEN8_PPAT(7, CHV_PPAT_SNOOP); 404 405 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); 406 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); 407 } 408 409 void setup_private_pat(struct intel_uncore *uncore) 410 { 411 struct drm_i915_private *i915 = uncore->i915; 412 413 GEM_BUG_ON(INTEL_GEN(i915) < 8); 414 415 if (INTEL_GEN(i915) >= 12) 416 tgl_setup_private_ppat(uncore); 417 else if (INTEL_GEN(i915) >= 10) 418 cnl_setup_private_ppat(uncore); 419 else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915)) 420 chv_setup_private_ppat(uncore); 421 else 422 bdw_setup_private_ppat(uncore); 423 } 424 425 struct i915_vma * 426 __vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size) 427 { 428 struct drm_i915_gem_object *obj; 429 struct i915_vma *vma; 430 int err; 431 432 obj = i915_gem_object_create_internal(vm->i915, PAGE_ALIGN(size)); 433 if (IS_ERR(obj)) 434 return ERR_CAST(obj); 435 436 i915_gem_object_set_cache_coherency(obj, I915_CACHING_CACHED); 437 438 vma = i915_vma_instance(obj, vm, NULL); 439 if (IS_ERR(vma)) { 440 i915_gem_object_put(obj); 441 return vma; 442 } 443 444 err = i915_vma_pin(vma, 0, 0, 445 i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER); 446 if (err) { 447 i915_vma_put(vma); 448 return ERR_PTR(err); 449 } 450 451 return vma; 452 } 453 454 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 455 #include "selftests/mock_gtt.c" 456 #endif 457