1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include <linux/slab.h> /* fault-inject.h is not standalone! */ 7 8 #include <linux/fault-inject.h> 9 10 #include "gem/i915_gem_lmem.h" 11 #include "i915_trace.h" 12 #include "intel_gt.h" 13 #include "intel_gtt.h" 14 15 struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz) 16 { 17 struct drm_i915_gem_object *obj; 18 19 obj = i915_gem_object_create_lmem(vm->i915, sz, 0); 20 /* 21 * Ensure all paging structures for this vm share the same dma-resv 22 * object underneath, with the idea that one object_lock() will lock 23 * them all at once. 24 */ 25 if (!IS_ERR(obj)) { 26 obj->base.resv = i915_vm_resv_get(vm); 27 obj->shares_resv_from = vm; 28 } 29 30 return obj; 31 } 32 33 struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz) 34 { 35 struct drm_i915_gem_object *obj; 36 37 if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1))) 38 i915_gem_shrink_all(vm->i915); 39 40 obj = i915_gem_object_create_internal(vm->i915, sz); 41 /* 42 * Ensure all paging structures for this vm share the same dma-resv 43 * object underneath, with the idea that one object_lock() will lock 44 * them all at once. 45 */ 46 if (!IS_ERR(obj)) { 47 obj->base.resv = i915_vm_resv_get(vm); 48 obj->shares_resv_from = vm; 49 } 50 51 return obj; 52 } 53 54 int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj) 55 { 56 enum i915_map_type type; 57 void *vaddr; 58 59 type = i915_coherent_map_type(vm->i915, obj, true); 60 vaddr = i915_gem_object_pin_map_unlocked(obj, type); 61 if (IS_ERR(vaddr)) 62 return PTR_ERR(vaddr); 63 64 i915_gem_object_make_unshrinkable(obj); 65 return 0; 66 } 67 68 int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj) 69 { 70 enum i915_map_type type; 71 void *vaddr; 72 73 type = i915_coherent_map_type(vm->i915, obj, true); 74 vaddr = i915_gem_object_pin_map(obj, type); 75 if (IS_ERR(vaddr)) 76 return PTR_ERR(vaddr); 77 78 i915_gem_object_make_unshrinkable(obj); 79 return 0; 80 } 81 82 void __i915_vm_close(struct i915_address_space *vm) 83 { 84 struct i915_vma *vma, *vn; 85 86 if (!atomic_dec_and_mutex_lock(&vm->open, &vm->mutex)) 87 return; 88 89 list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) { 90 struct drm_i915_gem_object *obj = vma->obj; 91 92 /* Keep the obj (and hence the vma) alive as _we_ destroy it */ 93 if (!kref_get_unless_zero(&obj->base.refcount)) 94 continue; 95 96 atomic_and(~I915_VMA_PIN_MASK, &vma->flags); 97 WARN_ON(__i915_vma_unbind(vma)); 98 __i915_vma_put(vma); 99 100 i915_gem_object_put(obj); 101 } 102 GEM_BUG_ON(!list_empty(&vm->bound_list)); 103 104 mutex_unlock(&vm->mutex); 105 } 106 107 /* lock the vm into the current ww, if we lock one, we lock all */ 108 int i915_vm_lock_objects(struct i915_address_space *vm, 109 struct i915_gem_ww_ctx *ww) 110 { 111 if (vm->scratch[0]->base.resv == &vm->_resv) { 112 return i915_gem_object_lock(vm->scratch[0], ww); 113 } else { 114 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 115 116 /* We borrowed the scratch page from ggtt, take the top level object */ 117 return i915_gem_object_lock(ppgtt->pd->pt.base, ww); 118 } 119 } 120 121 void i915_address_space_fini(struct i915_address_space *vm) 122 { 123 drm_mm_takedown(&vm->mm); 124 mutex_destroy(&vm->mutex); 125 } 126 127 /** 128 * i915_vm_resv_release - Final struct i915_address_space destructor 129 * @kref: Pointer to the &i915_address_space.resv_ref member. 130 * 131 * This function is called when the last lock sharer no longer shares the 132 * &i915_address_space._resv lock. 133 */ 134 void i915_vm_resv_release(struct kref *kref) 135 { 136 struct i915_address_space *vm = 137 container_of(kref, typeof(*vm), resv_ref); 138 139 dma_resv_fini(&vm->_resv); 140 kfree(vm); 141 } 142 143 static void __i915_vm_release(struct work_struct *work) 144 { 145 struct i915_address_space *vm = 146 container_of(work, struct i915_address_space, rcu.work); 147 148 vm->cleanup(vm); 149 i915_address_space_fini(vm); 150 151 i915_vm_resv_put(vm); 152 } 153 154 void i915_vm_release(struct kref *kref) 155 { 156 struct i915_address_space *vm = 157 container_of(kref, struct i915_address_space, ref); 158 159 GEM_BUG_ON(i915_is_ggtt(vm)); 160 trace_i915_ppgtt_release(vm); 161 162 queue_rcu_work(vm->i915->wq, &vm->rcu); 163 } 164 165 void i915_address_space_init(struct i915_address_space *vm, int subclass) 166 { 167 kref_init(&vm->ref); 168 169 /* 170 * Special case for GGTT that has already done an early 171 * kref_init here. 172 */ 173 if (!kref_read(&vm->resv_ref)) 174 kref_init(&vm->resv_ref); 175 176 INIT_RCU_WORK(&vm->rcu, __i915_vm_release); 177 atomic_set(&vm->open, 1); 178 179 /* 180 * The vm->mutex must be reclaim safe (for use in the shrinker). 181 * Do a dummy acquire now under fs_reclaim so that any allocation 182 * attempt holding the lock is immediately reported by lockdep. 183 */ 184 mutex_init(&vm->mutex); 185 lockdep_set_subclass(&vm->mutex, subclass); 186 187 if (!intel_vm_no_concurrent_access_wa(vm->i915)) { 188 i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex); 189 } else { 190 /* 191 * CHV + BXT VTD workaround use stop_machine(), 192 * which is allowed to allocate memory. This means &vm->mutex 193 * is the outer lock, and in theory we can allocate memory inside 194 * it through stop_machine(). 195 * 196 * Add the annotation for this, we use trylock in shrinker. 197 */ 198 mutex_acquire(&vm->mutex.dep_map, 0, 0, _THIS_IP_); 199 might_alloc(GFP_KERNEL); 200 mutex_release(&vm->mutex.dep_map, _THIS_IP_); 201 } 202 dma_resv_init(&vm->_resv); 203 204 GEM_BUG_ON(!vm->total); 205 drm_mm_init(&vm->mm, 0, vm->total); 206 vm->mm.head_node.color = I915_COLOR_UNEVICTABLE; 207 208 INIT_LIST_HEAD(&vm->bound_list); 209 } 210 211 void clear_pages(struct i915_vma *vma) 212 { 213 GEM_BUG_ON(!vma->pages); 214 215 if (vma->pages != vma->obj->mm.pages) { 216 sg_free_table(vma->pages); 217 kfree(vma->pages); 218 } 219 vma->pages = NULL; 220 221 memset(&vma->page_sizes, 0, sizeof(vma->page_sizes)); 222 } 223 224 void *__px_vaddr(struct drm_i915_gem_object *p) 225 { 226 enum i915_map_type type; 227 228 GEM_BUG_ON(!i915_gem_object_has_pages(p)); 229 return page_unpack_bits(p->mm.mapping, &type); 230 } 231 232 dma_addr_t __px_dma(struct drm_i915_gem_object *p) 233 { 234 GEM_BUG_ON(!i915_gem_object_has_pages(p)); 235 return sg_dma_address(p->mm.pages->sgl); 236 } 237 238 struct page *__px_page(struct drm_i915_gem_object *p) 239 { 240 GEM_BUG_ON(!i915_gem_object_has_pages(p)); 241 return sg_page(p->mm.pages->sgl); 242 } 243 244 void 245 fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count) 246 { 247 void *vaddr = __px_vaddr(p); 248 249 memset64(vaddr, val, count); 250 clflush_cache_range(vaddr, PAGE_SIZE); 251 } 252 253 static void poison_scratch_page(struct drm_i915_gem_object *scratch) 254 { 255 void *vaddr = __px_vaddr(scratch); 256 u8 val; 257 258 val = 0; 259 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 260 val = POISON_FREE; 261 262 memset(vaddr, val, scratch->base.size); 263 } 264 265 int setup_scratch_page(struct i915_address_space *vm) 266 { 267 unsigned long size; 268 269 /* 270 * In order to utilize 64K pages for an object with a size < 2M, we will 271 * need to support a 64K scratch page, given that every 16th entry for a 272 * page-table operating in 64K mode must point to a properly aligned 64K 273 * region, including any PTEs which happen to point to scratch. 274 * 275 * This is only relevant for the 48b PPGTT where we support 276 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the 277 * scratch (read-only) between all vm, we create one 64k scratch page 278 * for all. 279 */ 280 size = I915_GTT_PAGE_SIZE_4K; 281 if (i915_vm_is_4lvl(vm) && 282 HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) 283 size = I915_GTT_PAGE_SIZE_64K; 284 285 do { 286 struct drm_i915_gem_object *obj; 287 288 obj = vm->alloc_pt_dma(vm, size); 289 if (IS_ERR(obj)) 290 goto skip; 291 292 if (map_pt_dma(vm, obj)) 293 goto skip_obj; 294 295 /* We need a single contiguous page for our scratch */ 296 if (obj->mm.page_sizes.sg < size) 297 goto skip_obj; 298 299 /* And it needs to be correspondingly aligned */ 300 if (__px_dma(obj) & (size - 1)) 301 goto skip_obj; 302 303 /* 304 * Use a non-zero scratch page for debugging. 305 * 306 * We want a value that should be reasonably obvious 307 * to spot in the error state, while also causing a GPU hang 308 * if executed. We prefer using a clear page in production, so 309 * should it ever be accidentally used, the effect should be 310 * fairly benign. 311 */ 312 poison_scratch_page(obj); 313 314 vm->scratch[0] = obj; 315 vm->scratch_order = get_order(size); 316 return 0; 317 318 skip_obj: 319 i915_gem_object_put(obj); 320 skip: 321 if (size == I915_GTT_PAGE_SIZE_4K) 322 return -ENOMEM; 323 324 size = I915_GTT_PAGE_SIZE_4K; 325 } while (1); 326 } 327 328 void free_scratch(struct i915_address_space *vm) 329 { 330 int i; 331 332 for (i = 0; i <= vm->top; i++) 333 i915_gem_object_put(vm->scratch[i]); 334 } 335 336 void gtt_write_workarounds(struct intel_gt *gt) 337 { 338 struct drm_i915_private *i915 = gt->i915; 339 struct intel_uncore *uncore = gt->uncore; 340 341 /* 342 * This function is for gtt related workarounds. This function is 343 * called on driver load and after a GPU reset, so you can place 344 * workarounds here even if they get overwritten by GPU reset. 345 */ 346 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */ 347 if (IS_BROADWELL(i915)) 348 intel_uncore_write(uncore, 349 GEN8_L3_LRA_1_GPGPU, 350 GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW); 351 else if (IS_CHERRYVIEW(i915)) 352 intel_uncore_write(uncore, 353 GEN8_L3_LRA_1_GPGPU, 354 GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV); 355 else if (IS_GEN9_LP(i915)) 356 intel_uncore_write(uncore, 357 GEN8_L3_LRA_1_GPGPU, 358 GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT); 359 else if (GRAPHICS_VER(i915) >= 9 && GRAPHICS_VER(i915) <= 11) 360 intel_uncore_write(uncore, 361 GEN8_L3_LRA_1_GPGPU, 362 GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL); 363 364 /* 365 * To support 64K PTEs we need to first enable the use of the 366 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical 367 * mmio, otherwise the page-walker will simply ignore the IPS bit. This 368 * shouldn't be needed after GEN10. 369 * 370 * 64K pages were first introduced from BDW+, although technically they 371 * only *work* from gen9+. For pre-BDW we instead have the option for 372 * 32K pages, but we don't currently have any support for it in our 373 * driver. 374 */ 375 if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) && 376 GRAPHICS_VER(i915) <= 10) 377 intel_uncore_rmw(uncore, 378 GEN8_GAMW_ECO_DEV_RW_IA, 379 0, 380 GAMW_ECO_ENABLE_64K_IPS_FIELD); 381 382 if (IS_GRAPHICS_VER(i915, 8, 11)) { 383 bool can_use_gtt_cache = true; 384 385 /* 386 * According to the BSpec if we use 2M/1G pages then we also 387 * need to disable the GTT cache. At least on BDW we can see 388 * visual corruption when using 2M pages, and not disabling the 389 * GTT cache. 390 */ 391 if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M)) 392 can_use_gtt_cache = false; 393 394 /* WaGttCachingOffByDefault */ 395 intel_uncore_write(uncore, 396 HSW_GTT_CACHE_EN, 397 can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0); 398 drm_WARN_ON_ONCE(&i915->drm, can_use_gtt_cache && 399 intel_uncore_read(uncore, 400 HSW_GTT_CACHE_EN) == 0); 401 } 402 } 403 404 static void tgl_setup_private_ppat(struct intel_uncore *uncore) 405 { 406 /* TGL doesn't support LLC or AGE settings */ 407 intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB); 408 intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC); 409 intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT); 410 intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC); 411 intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB); 412 intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB); 413 intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB); 414 intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB); 415 } 416 417 static void cnl_setup_private_ppat(struct intel_uncore *uncore) 418 { 419 intel_uncore_write(uncore, 420 GEN10_PAT_INDEX(0), 421 GEN8_PPAT_WB | GEN8_PPAT_LLC); 422 intel_uncore_write(uncore, 423 GEN10_PAT_INDEX(1), 424 GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); 425 intel_uncore_write(uncore, 426 GEN10_PAT_INDEX(2), 427 GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE); 428 intel_uncore_write(uncore, 429 GEN10_PAT_INDEX(3), 430 GEN8_PPAT_UC); 431 intel_uncore_write(uncore, 432 GEN10_PAT_INDEX(4), 433 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)); 434 intel_uncore_write(uncore, 435 GEN10_PAT_INDEX(5), 436 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)); 437 intel_uncore_write(uncore, 438 GEN10_PAT_INDEX(6), 439 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)); 440 intel_uncore_write(uncore, 441 GEN10_PAT_INDEX(7), 442 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); 443 } 444 445 /* 446 * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability 447 * bits. When using advanced contexts each context stores its own PAT, but 448 * writing this data shouldn't be harmful even in those cases. 449 */ 450 static void bdw_setup_private_ppat(struct intel_uncore *uncore) 451 { 452 struct drm_i915_private *i915 = uncore->i915; 453 u64 pat; 454 455 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */ 456 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */ 457 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */ 458 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) | 459 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) | 460 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) | 461 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); 462 463 /* for scanout with eLLC */ 464 if (GRAPHICS_VER(i915) >= 9) 465 pat |= GEN8_PPAT(2, GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE); 466 else 467 pat |= GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); 468 469 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); 470 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); 471 } 472 473 static void chv_setup_private_ppat(struct intel_uncore *uncore) 474 { 475 u64 pat; 476 477 /* 478 * Map WB on BDW to snooped on CHV. 479 * 480 * Only the snoop bit has meaning for CHV, the rest is 481 * ignored. 482 * 483 * The hardware will never snoop for certain types of accesses: 484 * - CPU GTT (GMADR->GGTT->no snoop->memory) 485 * - PPGTT page tables 486 * - some other special cycles 487 * 488 * As with BDW, we also need to consider the following for GT accesses: 489 * "For GGTT, there is NO pat_sel[2:0] from the entry, 490 * so RTL will always use the value corresponding to 491 * pat_sel = 000". 492 * Which means we must set the snoop bit in PAT entry 0 493 * in order to keep the global status page working. 494 */ 495 496 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) | 497 GEN8_PPAT(1, 0) | 498 GEN8_PPAT(2, 0) | 499 GEN8_PPAT(3, 0) | 500 GEN8_PPAT(4, CHV_PPAT_SNOOP) | 501 GEN8_PPAT(5, CHV_PPAT_SNOOP) | 502 GEN8_PPAT(6, CHV_PPAT_SNOOP) | 503 GEN8_PPAT(7, CHV_PPAT_SNOOP); 504 505 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); 506 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); 507 } 508 509 void setup_private_pat(struct intel_uncore *uncore) 510 { 511 struct drm_i915_private *i915 = uncore->i915; 512 513 GEM_BUG_ON(GRAPHICS_VER(i915) < 8); 514 515 if (GRAPHICS_VER(i915) >= 12) 516 tgl_setup_private_ppat(uncore); 517 else if (GRAPHICS_VER(i915) >= 10) 518 cnl_setup_private_ppat(uncore); 519 else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915)) 520 chv_setup_private_ppat(uncore); 521 else 522 bdw_setup_private_ppat(uncore); 523 } 524 525 struct i915_vma * 526 __vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size) 527 { 528 struct drm_i915_gem_object *obj; 529 struct i915_vma *vma; 530 531 obj = i915_gem_object_create_internal(vm->i915, PAGE_ALIGN(size)); 532 if (IS_ERR(obj)) 533 return ERR_CAST(obj); 534 535 i915_gem_object_set_cache_coherency(obj, I915_CACHING_CACHED); 536 537 vma = i915_vma_instance(obj, vm, NULL); 538 if (IS_ERR(vma)) { 539 i915_gem_object_put(obj); 540 return vma; 541 } 542 543 return vma; 544 } 545 546 struct i915_vma * 547 __vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size) 548 { 549 struct i915_vma *vma; 550 int err; 551 552 vma = __vm_create_scratch_for_read(vm, size); 553 if (IS_ERR(vma)) 554 return vma; 555 556 err = i915_vma_pin(vma, 0, 0, 557 i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER); 558 if (err) { 559 i915_vma_put(vma); 560 return ERR_PTR(err); 561 } 562 563 return vma; 564 } 565 566 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 567 #include "selftests/mock_gtt.c" 568 #endif 569