1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include <linux/slab.h> /* fault-inject.h is not standalone! */ 7 8 #include <linux/fault-inject.h> 9 #include <linux/sched/mm.h> 10 11 #include <drm/drm_cache.h> 12 13 #include "gem/i915_gem_internal.h" 14 #include "gem/i915_gem_lmem.h" 15 #include "i915_trace.h" 16 #include "i915_utils.h" 17 #include "intel_gt.h" 18 #include "intel_gt_regs.h" 19 #include "intel_gtt.h" 20 21 22 static bool intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *i915) 23 { 24 return IS_BROXTON(i915) && i915_vtd_active(i915); 25 } 26 27 bool intel_vm_no_concurrent_access_wa(struct drm_i915_private *i915) 28 { 29 return IS_CHERRYVIEW(i915) || intel_ggtt_update_needs_vtd_wa(i915); 30 } 31 32 struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz) 33 { 34 struct drm_i915_gem_object *obj; 35 36 /* 37 * To avoid severe over-allocation when dealing with min_page_size 38 * restrictions, we override that behaviour here by allowing an object 39 * size and page layout which can be smaller. In practice this should be 40 * totally fine, since GTT paging structures are not typically inserted 41 * into the GTT. 42 * 43 * Note that we also hit this path for the scratch page, and for this 44 * case it might need to be 64K, but that should work fine here since we 45 * used the passed in size for the page size, which should ensure it 46 * also has the same alignment. 47 */ 48 obj = __i915_gem_object_create_lmem_with_ps(vm->i915, sz, sz, 49 vm->lmem_pt_obj_flags); 50 /* 51 * Ensure all paging structures for this vm share the same dma-resv 52 * object underneath, with the idea that one object_lock() will lock 53 * them all at once. 54 */ 55 if (!IS_ERR(obj)) { 56 obj->base.resv = i915_vm_resv_get(vm); 57 obj->shares_resv_from = vm; 58 } 59 60 return obj; 61 } 62 63 struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz) 64 { 65 struct drm_i915_gem_object *obj; 66 67 if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1))) 68 i915_gem_shrink_all(vm->i915); 69 70 obj = i915_gem_object_create_internal(vm->i915, sz); 71 /* 72 * Ensure all paging structures for this vm share the same dma-resv 73 * object underneath, with the idea that one object_lock() will lock 74 * them all at once. 75 */ 76 if (!IS_ERR(obj)) { 77 obj->base.resv = i915_vm_resv_get(vm); 78 obj->shares_resv_from = vm; 79 } 80 81 return obj; 82 } 83 84 int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj) 85 { 86 enum i915_map_type type; 87 void *vaddr; 88 89 type = i915_coherent_map_type(vm->i915, obj, true); 90 vaddr = i915_gem_object_pin_map_unlocked(obj, type); 91 if (IS_ERR(vaddr)) 92 return PTR_ERR(vaddr); 93 94 i915_gem_object_make_unshrinkable(obj); 95 return 0; 96 } 97 98 int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj) 99 { 100 enum i915_map_type type; 101 void *vaddr; 102 103 type = i915_coherent_map_type(vm->i915, obj, true); 104 vaddr = i915_gem_object_pin_map(obj, type); 105 if (IS_ERR(vaddr)) 106 return PTR_ERR(vaddr); 107 108 i915_gem_object_make_unshrinkable(obj); 109 return 0; 110 } 111 112 static void clear_vm_list(struct list_head *list) 113 { 114 struct i915_vma *vma, *vn; 115 116 list_for_each_entry_safe(vma, vn, list, vm_link) { 117 struct drm_i915_gem_object *obj = vma->obj; 118 119 if (!i915_gem_object_get_rcu(obj)) { 120 /* 121 * Object is dying, but has not yet cleared its 122 * vma list. 123 * Unbind the dying vma to ensure our list 124 * is completely drained. We leave the destruction to 125 * the object destructor to avoid the vma 126 * disappearing under it. 127 */ 128 atomic_and(~I915_VMA_PIN_MASK, &vma->flags); 129 WARN_ON(__i915_vma_unbind(vma)); 130 131 /* Remove from the unbound list */ 132 list_del_init(&vma->vm_link); 133 134 /* 135 * Delay the vm and vm mutex freeing until the 136 * object is done with destruction. 137 */ 138 i915_vm_resv_get(vma->vm); 139 vma->vm_ddestroy = true; 140 } else { 141 i915_vma_destroy_locked(vma); 142 i915_gem_object_put(obj); 143 } 144 145 } 146 } 147 148 static void __i915_vm_close(struct i915_address_space *vm) 149 { 150 mutex_lock(&vm->mutex); 151 152 clear_vm_list(&vm->bound_list); 153 clear_vm_list(&vm->unbound_list); 154 155 /* Check for must-fix unanticipated side-effects */ 156 GEM_BUG_ON(!list_empty(&vm->bound_list)); 157 GEM_BUG_ON(!list_empty(&vm->unbound_list)); 158 159 mutex_unlock(&vm->mutex); 160 } 161 162 /* lock the vm into the current ww, if we lock one, we lock all */ 163 int i915_vm_lock_objects(struct i915_address_space *vm, 164 struct i915_gem_ww_ctx *ww) 165 { 166 if (vm->scratch[0]->base.resv == &vm->_resv) { 167 return i915_gem_object_lock(vm->scratch[0], ww); 168 } else { 169 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 170 171 /* We borrowed the scratch page from ggtt, take the top level object */ 172 return i915_gem_object_lock(ppgtt->pd->pt.base, ww); 173 } 174 } 175 176 void i915_address_space_fini(struct i915_address_space *vm) 177 { 178 drm_mm_takedown(&vm->mm); 179 } 180 181 /** 182 * i915_vm_resv_release - Final struct i915_address_space destructor 183 * @kref: Pointer to the &i915_address_space.resv_ref member. 184 * 185 * This function is called when the last lock sharer no longer shares the 186 * &i915_address_space._resv lock, and also if we raced when 187 * destroying a vma by the vma destruction 188 */ 189 void i915_vm_resv_release(struct kref *kref) 190 { 191 struct i915_address_space *vm = 192 container_of(kref, typeof(*vm), resv_ref); 193 194 dma_resv_fini(&vm->_resv); 195 mutex_destroy(&vm->mutex); 196 197 kfree(vm); 198 } 199 200 static void __i915_vm_release(struct work_struct *work) 201 { 202 struct i915_address_space *vm = 203 container_of(work, struct i915_address_space, release_work); 204 205 __i915_vm_close(vm); 206 207 /* Synchronize async unbinds. */ 208 i915_vma_resource_bind_dep_sync_all(vm); 209 210 vm->cleanup(vm); 211 i915_address_space_fini(vm); 212 213 i915_vm_resv_put(vm); 214 } 215 216 void i915_vm_release(struct kref *kref) 217 { 218 struct i915_address_space *vm = 219 container_of(kref, struct i915_address_space, ref); 220 221 GEM_BUG_ON(i915_is_ggtt(vm)); 222 trace_i915_ppgtt_release(vm); 223 224 queue_work(vm->i915->wq, &vm->release_work); 225 } 226 227 void i915_address_space_init(struct i915_address_space *vm, int subclass) 228 { 229 kref_init(&vm->ref); 230 231 /* 232 * Special case for GGTT that has already done an early 233 * kref_init here. 234 */ 235 if (!kref_read(&vm->resv_ref)) 236 kref_init(&vm->resv_ref); 237 238 vm->pending_unbind = RB_ROOT_CACHED; 239 INIT_WORK(&vm->release_work, __i915_vm_release); 240 241 /* 242 * The vm->mutex must be reclaim safe (for use in the shrinker). 243 * Do a dummy acquire now under fs_reclaim so that any allocation 244 * attempt holding the lock is immediately reported by lockdep. 245 */ 246 mutex_init(&vm->mutex); 247 lockdep_set_subclass(&vm->mutex, subclass); 248 249 if (!intel_vm_no_concurrent_access_wa(vm->i915)) { 250 i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex); 251 } else { 252 /* 253 * CHV + BXT VTD workaround use stop_machine(), 254 * which is allowed to allocate memory. This means &vm->mutex 255 * is the outer lock, and in theory we can allocate memory inside 256 * it through stop_machine(). 257 * 258 * Add the annotation for this, we use trylock in shrinker. 259 */ 260 mutex_acquire(&vm->mutex.dep_map, 0, 0, _THIS_IP_); 261 might_alloc(GFP_KERNEL); 262 mutex_release(&vm->mutex.dep_map, _THIS_IP_); 263 } 264 dma_resv_init(&vm->_resv); 265 266 GEM_BUG_ON(!vm->total); 267 drm_mm_init(&vm->mm, 0, vm->total); 268 269 memset64(vm->min_alignment, I915_GTT_MIN_ALIGNMENT, 270 ARRAY_SIZE(vm->min_alignment)); 271 272 if (HAS_64K_PAGES(vm->i915) && NEEDS_COMPACT_PT(vm->i915) && 273 subclass == VM_CLASS_PPGTT) { 274 vm->min_alignment[INTEL_MEMORY_LOCAL] = I915_GTT_PAGE_SIZE_2M; 275 vm->min_alignment[INTEL_MEMORY_STOLEN_LOCAL] = I915_GTT_PAGE_SIZE_2M; 276 } else if (HAS_64K_PAGES(vm->i915)) { 277 vm->min_alignment[INTEL_MEMORY_LOCAL] = I915_GTT_PAGE_SIZE_64K; 278 vm->min_alignment[INTEL_MEMORY_STOLEN_LOCAL] = I915_GTT_PAGE_SIZE_64K; 279 } 280 281 vm->mm.head_node.color = I915_COLOR_UNEVICTABLE; 282 283 INIT_LIST_HEAD(&vm->bound_list); 284 INIT_LIST_HEAD(&vm->unbound_list); 285 } 286 287 void *__px_vaddr(struct drm_i915_gem_object *p) 288 { 289 enum i915_map_type type; 290 291 GEM_BUG_ON(!i915_gem_object_has_pages(p)); 292 return page_unpack_bits(p->mm.mapping, &type); 293 } 294 295 dma_addr_t __px_dma(struct drm_i915_gem_object *p) 296 { 297 GEM_BUG_ON(!i915_gem_object_has_pages(p)); 298 return sg_dma_address(p->mm.pages->sgl); 299 } 300 301 struct page *__px_page(struct drm_i915_gem_object *p) 302 { 303 GEM_BUG_ON(!i915_gem_object_has_pages(p)); 304 return sg_page(p->mm.pages->sgl); 305 } 306 307 void 308 fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count) 309 { 310 void *vaddr = __px_vaddr(p); 311 312 memset64(vaddr, val, count); 313 drm_clflush_virt_range(vaddr, PAGE_SIZE); 314 } 315 316 static void poison_scratch_page(struct drm_i915_gem_object *scratch) 317 { 318 void *vaddr = __px_vaddr(scratch); 319 u8 val; 320 321 val = 0; 322 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 323 val = POISON_FREE; 324 325 memset(vaddr, val, scratch->base.size); 326 drm_clflush_virt_range(vaddr, scratch->base.size); 327 } 328 329 int setup_scratch_page(struct i915_address_space *vm) 330 { 331 unsigned long size; 332 333 /* 334 * In order to utilize 64K pages for an object with a size < 2M, we will 335 * need to support a 64K scratch page, given that every 16th entry for a 336 * page-table operating in 64K mode must point to a properly aligned 64K 337 * region, including any PTEs which happen to point to scratch. 338 * 339 * This is only relevant for the 48b PPGTT where we support 340 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the 341 * scratch (read-only) between all vm, we create one 64k scratch page 342 * for all. 343 */ 344 size = I915_GTT_PAGE_SIZE_4K; 345 if (i915_vm_is_4lvl(vm) && 346 HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) 347 size = I915_GTT_PAGE_SIZE_64K; 348 349 do { 350 struct drm_i915_gem_object *obj; 351 352 obj = vm->alloc_scratch_dma(vm, size); 353 if (IS_ERR(obj)) 354 goto skip; 355 356 if (map_pt_dma(vm, obj)) 357 goto skip_obj; 358 359 /* We need a single contiguous page for our scratch */ 360 if (obj->mm.page_sizes.sg < size) 361 goto skip_obj; 362 363 /* And it needs to be correspondingly aligned */ 364 if (__px_dma(obj) & (size - 1)) 365 goto skip_obj; 366 367 /* 368 * Use a non-zero scratch page for debugging. 369 * 370 * We want a value that should be reasonably obvious 371 * to spot in the error state, while also causing a GPU hang 372 * if executed. We prefer using a clear page in production, so 373 * should it ever be accidentally used, the effect should be 374 * fairly benign. 375 */ 376 poison_scratch_page(obj); 377 378 vm->scratch[0] = obj; 379 vm->scratch_order = get_order(size); 380 return 0; 381 382 skip_obj: 383 i915_gem_object_put(obj); 384 skip: 385 if (size == I915_GTT_PAGE_SIZE_4K) 386 return -ENOMEM; 387 388 /* 389 * If we need 64K minimum GTT pages for device local-memory, 390 * like on XEHPSDV, then we need to fail the allocation here, 391 * otherwise we can't safely support the insertion of 392 * local-memory pages for this vm, since the HW expects the 393 * correct physical alignment and size when the page-table is 394 * operating in 64K GTT mode, which includes any scratch PTEs, 395 * since userspace can still touch them. 396 */ 397 if (HAS_64K_PAGES(vm->i915)) 398 return -ENOMEM; 399 400 size = I915_GTT_PAGE_SIZE_4K; 401 } while (1); 402 } 403 404 void free_scratch(struct i915_address_space *vm) 405 { 406 int i; 407 408 if (!vm->scratch[0]) 409 return; 410 411 for (i = 0; i <= vm->top; i++) 412 i915_gem_object_put(vm->scratch[i]); 413 } 414 415 void gtt_write_workarounds(struct intel_gt *gt) 416 { 417 struct drm_i915_private *i915 = gt->i915; 418 struct intel_uncore *uncore = gt->uncore; 419 420 /* 421 * This function is for gtt related workarounds. This function is 422 * called on driver load and after a GPU reset, so you can place 423 * workarounds here even if they get overwritten by GPU reset. 424 */ 425 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */ 426 if (IS_BROADWELL(i915)) 427 intel_uncore_write(uncore, 428 GEN8_L3_LRA_1_GPGPU, 429 GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW); 430 else if (IS_CHERRYVIEW(i915)) 431 intel_uncore_write(uncore, 432 GEN8_L3_LRA_1_GPGPU, 433 GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV); 434 else if (IS_GEN9_LP(i915)) 435 intel_uncore_write(uncore, 436 GEN8_L3_LRA_1_GPGPU, 437 GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT); 438 else if (GRAPHICS_VER(i915) >= 9 && GRAPHICS_VER(i915) <= 11) 439 intel_uncore_write(uncore, 440 GEN8_L3_LRA_1_GPGPU, 441 GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL); 442 443 /* 444 * To support 64K PTEs we need to first enable the use of the 445 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical 446 * mmio, otherwise the page-walker will simply ignore the IPS bit. This 447 * shouldn't be needed after GEN10. 448 * 449 * 64K pages were first introduced from BDW+, although technically they 450 * only *work* from gen9+. For pre-BDW we instead have the option for 451 * 32K pages, but we don't currently have any support for it in our 452 * driver. 453 */ 454 if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) && 455 GRAPHICS_VER(i915) <= 10) 456 intel_uncore_rmw(uncore, 457 GEN8_GAMW_ECO_DEV_RW_IA, 458 0, 459 GAMW_ECO_ENABLE_64K_IPS_FIELD); 460 461 if (IS_GRAPHICS_VER(i915, 8, 11)) { 462 bool can_use_gtt_cache = true; 463 464 /* 465 * According to the BSpec if we use 2M/1G pages then we also 466 * need to disable the GTT cache. At least on BDW we can see 467 * visual corruption when using 2M pages, and not disabling the 468 * GTT cache. 469 */ 470 if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M)) 471 can_use_gtt_cache = false; 472 473 /* WaGttCachingOffByDefault */ 474 intel_uncore_write(uncore, 475 HSW_GTT_CACHE_EN, 476 can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0); 477 drm_WARN_ON_ONCE(&i915->drm, can_use_gtt_cache && 478 intel_uncore_read(uncore, 479 HSW_GTT_CACHE_EN) == 0); 480 } 481 } 482 483 static void tgl_setup_private_ppat(struct intel_uncore *uncore) 484 { 485 /* TGL doesn't support LLC or AGE settings */ 486 intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB); 487 intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC); 488 intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT); 489 intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC); 490 intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB); 491 intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB); 492 intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB); 493 intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB); 494 } 495 496 static void icl_setup_private_ppat(struct intel_uncore *uncore) 497 { 498 intel_uncore_write(uncore, 499 GEN10_PAT_INDEX(0), 500 GEN8_PPAT_WB | GEN8_PPAT_LLC); 501 intel_uncore_write(uncore, 502 GEN10_PAT_INDEX(1), 503 GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); 504 intel_uncore_write(uncore, 505 GEN10_PAT_INDEX(2), 506 GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE); 507 intel_uncore_write(uncore, 508 GEN10_PAT_INDEX(3), 509 GEN8_PPAT_UC); 510 intel_uncore_write(uncore, 511 GEN10_PAT_INDEX(4), 512 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)); 513 intel_uncore_write(uncore, 514 GEN10_PAT_INDEX(5), 515 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)); 516 intel_uncore_write(uncore, 517 GEN10_PAT_INDEX(6), 518 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)); 519 intel_uncore_write(uncore, 520 GEN10_PAT_INDEX(7), 521 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); 522 } 523 524 /* 525 * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability 526 * bits. When using advanced contexts each context stores its own PAT, but 527 * writing this data shouldn't be harmful even in those cases. 528 */ 529 static void bdw_setup_private_ppat(struct intel_uncore *uncore) 530 { 531 struct drm_i915_private *i915 = uncore->i915; 532 u64 pat; 533 534 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */ 535 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */ 536 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */ 537 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) | 538 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) | 539 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) | 540 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); 541 542 /* for scanout with eLLC */ 543 if (GRAPHICS_VER(i915) >= 9) 544 pat |= GEN8_PPAT(2, GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE); 545 else 546 pat |= GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); 547 548 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); 549 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); 550 } 551 552 static void chv_setup_private_ppat(struct intel_uncore *uncore) 553 { 554 u64 pat; 555 556 /* 557 * Map WB on BDW to snooped on CHV. 558 * 559 * Only the snoop bit has meaning for CHV, the rest is 560 * ignored. 561 * 562 * The hardware will never snoop for certain types of accesses: 563 * - CPU GTT (GMADR->GGTT->no snoop->memory) 564 * - PPGTT page tables 565 * - some other special cycles 566 * 567 * As with BDW, we also need to consider the following for GT accesses: 568 * "For GGTT, there is NO pat_sel[2:0] from the entry, 569 * so RTL will always use the value corresponding to 570 * pat_sel = 000". 571 * Which means we must set the snoop bit in PAT entry 0 572 * in order to keep the global status page working. 573 */ 574 575 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) | 576 GEN8_PPAT(1, 0) | 577 GEN8_PPAT(2, 0) | 578 GEN8_PPAT(3, 0) | 579 GEN8_PPAT(4, CHV_PPAT_SNOOP) | 580 GEN8_PPAT(5, CHV_PPAT_SNOOP) | 581 GEN8_PPAT(6, CHV_PPAT_SNOOP) | 582 GEN8_PPAT(7, CHV_PPAT_SNOOP); 583 584 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); 585 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); 586 } 587 588 void setup_private_pat(struct intel_uncore *uncore) 589 { 590 struct drm_i915_private *i915 = uncore->i915; 591 592 GEM_BUG_ON(GRAPHICS_VER(i915) < 8); 593 594 if (GRAPHICS_VER(i915) >= 12) 595 tgl_setup_private_ppat(uncore); 596 else if (GRAPHICS_VER(i915) >= 11) 597 icl_setup_private_ppat(uncore); 598 else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915)) 599 chv_setup_private_ppat(uncore); 600 else 601 bdw_setup_private_ppat(uncore); 602 } 603 604 struct i915_vma * 605 __vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size) 606 { 607 struct drm_i915_gem_object *obj; 608 struct i915_vma *vma; 609 610 obj = i915_gem_object_create_internal(vm->i915, PAGE_ALIGN(size)); 611 if (IS_ERR(obj)) 612 return ERR_CAST(obj); 613 614 i915_gem_object_set_cache_coherency(obj, I915_CACHING_CACHED); 615 616 vma = i915_vma_instance(obj, vm, NULL); 617 if (IS_ERR(vma)) { 618 i915_gem_object_put(obj); 619 return vma; 620 } 621 622 return vma; 623 } 624 625 struct i915_vma * 626 __vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size) 627 { 628 struct i915_vma *vma; 629 int err; 630 631 vma = __vm_create_scratch_for_read(vm, size); 632 if (IS_ERR(vma)) 633 return vma; 634 635 err = i915_vma_pin(vma, 0, 0, 636 i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER); 637 if (err) { 638 i915_vma_put(vma); 639 return ERR_PTR(err); 640 } 641 642 return vma; 643 } 644 645 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 646 #include "selftests/mock_gtt.c" 647 #endif 648