1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include "i915_drv.h" 7 #include "intel_gt.h" 8 #include "intel_gt_mcr.h" 9 #include "intel_gt_print.h" 10 #include "intel_gt_regs.h" 11 12 /** 13 * DOC: GT Multicast/Replicated (MCR) Register Support 14 * 15 * Some GT registers are designed as "multicast" or "replicated" registers: 16 * multiple instances of the same register share a single MMIO offset. MCR 17 * registers are generally used when the hardware needs to potentially track 18 * independent values of a register per hardware unit (e.g., per-subslice, 19 * per-L3bank, etc.). The specific types of replication that exist vary 20 * per-platform. 21 * 22 * MMIO accesses to MCR registers are controlled according to the settings 23 * programmed in the platform's MCR_SELECTOR register(s). MMIO writes to MCR 24 * registers can be done in either a (i.e., a single write updates all 25 * instances of the register to the same value) or unicast (a write updates only 26 * one specific instance). Reads of MCR registers always operate in a unicast 27 * manner regardless of how the multicast/unicast bit is set in MCR_SELECTOR. 28 * Selection of a specific MCR instance for unicast operations is referred to 29 * as "steering." 30 * 31 * If MCR register operations are steered toward a hardware unit that is 32 * fused off or currently powered down due to power gating, the MMIO operation 33 * is "terminated" by the hardware. Terminated read operations will return a 34 * value of zero and terminated unicast write operations will be silently 35 * ignored. 36 */ 37 38 #define HAS_MSLICE_STEERING(i915) (INTEL_INFO(i915)->has_mslice_steering) 39 40 static const char * const intel_steering_types[] = { 41 "L3BANK", 42 "MSLICE", 43 "LNCF", 44 "GAM", 45 "DSS", 46 "OADDRM", 47 "INSTANCE 0", 48 }; 49 50 static const struct intel_mmio_range icl_l3bank_steering_table[] = { 51 { 0x00B100, 0x00B3FF }, 52 {}, 53 }; 54 55 /* 56 * Although the bspec lists more "MSLICE" ranges than shown here, some of those 57 * are of a "GAM" subclass that has special rules. Thus we use a separate 58 * GAM table farther down for those. 59 */ 60 static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = { 61 { 0x00DD00, 0x00DDFF }, 62 { 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */ 63 {}, 64 }; 65 66 static const struct intel_mmio_range xehpsdv_gam_steering_table[] = { 67 { 0x004000, 0x004AFF }, 68 { 0x00C800, 0x00CFFF }, 69 {}, 70 }; 71 72 static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = { 73 { 0x00B000, 0x00B0FF }, 74 { 0x00D800, 0x00D8FF }, 75 {}, 76 }; 77 78 static const struct intel_mmio_range dg2_lncf_steering_table[] = { 79 { 0x00B000, 0x00B0FF }, 80 { 0x00D880, 0x00D8FF }, 81 {}, 82 }; 83 84 /* 85 * We have several types of MCR registers on PVC where steering to (0,0) 86 * will always provide us with a non-terminated value. We'll stick them 87 * all in the same table for simplicity. 88 */ 89 static const struct intel_mmio_range pvc_instance0_steering_table[] = { 90 { 0x004000, 0x004AFF }, /* HALF-BSLICE */ 91 { 0x008800, 0x00887F }, /* CC */ 92 { 0x008A80, 0x008AFF }, /* TILEPSMI */ 93 { 0x00B000, 0x00B0FF }, /* HALF-BSLICE */ 94 { 0x00B100, 0x00B3FF }, /* L3BANK */ 95 { 0x00C800, 0x00CFFF }, /* HALF-BSLICE */ 96 { 0x00D800, 0x00D8FF }, /* HALF-BSLICE */ 97 { 0x00DD00, 0x00DDFF }, /* BSLICE */ 98 { 0x00E900, 0x00E9FF }, /* HALF-BSLICE */ 99 { 0x00EC00, 0x00EEFF }, /* HALF-BSLICE */ 100 { 0x00F000, 0x00FFFF }, /* HALF-BSLICE */ 101 { 0x024180, 0x0241FF }, /* HALF-BSLICE */ 102 {}, 103 }; 104 105 static const struct intel_mmio_range xelpg_instance0_steering_table[] = { 106 { 0x000B00, 0x000BFF }, /* SQIDI */ 107 { 0x001000, 0x001FFF }, /* SQIDI */ 108 { 0x004000, 0x0048FF }, /* GAM */ 109 { 0x008700, 0x0087FF }, /* SQIDI */ 110 { 0x00B000, 0x00B0FF }, /* NODE */ 111 { 0x00C800, 0x00CFFF }, /* GAM */ 112 { 0x00D880, 0x00D8FF }, /* NODE */ 113 { 0x00DD00, 0x00DDFF }, /* OAAL2 */ 114 {}, 115 }; 116 117 static const struct intel_mmio_range xelpg_l3bank_steering_table[] = { 118 { 0x00B100, 0x00B3FF }, 119 {}, 120 }; 121 122 /* DSS steering is used for SLICE ranges as well */ 123 static const struct intel_mmio_range xelpg_dss_steering_table[] = { 124 { 0x005200, 0x0052FF }, /* SLICE */ 125 { 0x005500, 0x007FFF }, /* SLICE */ 126 { 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ 127 { 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ 128 { 0x009680, 0x0096FF }, /* DSS */ 129 { 0x00D800, 0x00D87F }, /* SLICE */ 130 { 0x00DC00, 0x00DCFF }, /* SLICE */ 131 { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */ 132 {}, 133 }; 134 135 static const struct intel_mmio_range xelpmp_oaddrm_steering_table[] = { 136 { 0x393200, 0x39323F }, 137 { 0x393400, 0x3934FF }, 138 {}, 139 }; 140 141 void intel_gt_mcr_init(struct intel_gt *gt) 142 { 143 struct drm_i915_private *i915 = gt->i915; 144 unsigned long fuse; 145 int i; 146 147 spin_lock_init(>->mcr_lock); 148 149 /* 150 * An mslice is unavailable only if both the meml3 for the slice is 151 * disabled *and* all of the DSS in the slice (quadrant) are disabled. 152 */ 153 if (HAS_MSLICE_STEERING(i915)) { 154 gt->info.mslice_mask = 155 intel_slicemask_from_xehp_dssmask(gt->info.sseu.subslice_mask, 156 GEN_DSS_PER_MSLICE); 157 gt->info.mslice_mask |= 158 (intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & 159 GEN12_MEML3_EN_MASK); 160 161 if (!gt->info.mslice_mask) /* should be impossible! */ 162 gt_warn(gt, "mslice mask all zero!\n"); 163 } 164 165 if (MEDIA_VER(i915) >= 13 && gt->type == GT_MEDIA) { 166 gt->steering_table[OADDRM] = xelpmp_oaddrm_steering_table; 167 } else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) { 168 /* Wa_14016747170 */ 169 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 170 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) 171 fuse = REG_FIELD_GET(MTL_GT_L3_EXC_MASK, 172 intel_uncore_read(gt->uncore, 173 MTL_GT_ACTIVITY_FACTOR)); 174 else 175 fuse = REG_FIELD_GET(GT_L3_EXC_MASK, 176 intel_uncore_read(gt->uncore, XEHP_FUSE4)); 177 178 /* 179 * Despite the register field being named "exclude mask" the 180 * bits actually represent enabled banks (two banks per bit). 181 */ 182 for_each_set_bit(i, &fuse, 3) 183 gt->info.l3bank_mask |= 0x3 << 2 * i; 184 185 gt->steering_table[INSTANCE0] = xelpg_instance0_steering_table; 186 gt->steering_table[L3BANK] = xelpg_l3bank_steering_table; 187 gt->steering_table[DSS] = xelpg_dss_steering_table; 188 } else if (IS_PONTEVECCHIO(i915)) { 189 gt->steering_table[INSTANCE0] = pvc_instance0_steering_table; 190 } else if (IS_DG2(i915)) { 191 gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; 192 gt->steering_table[LNCF] = dg2_lncf_steering_table; 193 /* 194 * No need to hook up the GAM table since it has a dedicated 195 * steering control register on DG2 and can use implicit 196 * steering. 197 */ 198 } else if (IS_XEHPSDV(i915)) { 199 gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; 200 gt->steering_table[LNCF] = xehpsdv_lncf_steering_table; 201 gt->steering_table[GAM] = xehpsdv_gam_steering_table; 202 } else if (GRAPHICS_VER(i915) >= 11 && 203 GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) { 204 gt->steering_table[L3BANK] = icl_l3bank_steering_table; 205 gt->info.l3bank_mask = 206 ~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & 207 GEN10_L3BANK_MASK; 208 if (!gt->info.l3bank_mask) /* should be impossible! */ 209 gt_warn(gt, "L3 bank mask is all zero!\n"); 210 } else if (GRAPHICS_VER(i915) >= 11) { 211 /* 212 * We expect all modern platforms to have at least some 213 * type of steering that needs to be initialized. 214 */ 215 MISSING_CASE(INTEL_INFO(i915)->platform); 216 } 217 } 218 219 /* 220 * Although the rest of the driver should use MCR-specific functions to 221 * read/write MCR registers, we still use the regular intel_uncore_* functions 222 * internally to implement those, so we need a way for the functions in this 223 * file to "cast" an i915_mcr_reg_t into an i915_reg_t. 224 */ 225 static i915_reg_t mcr_reg_cast(const i915_mcr_reg_t mcr) 226 { 227 i915_reg_t r = { .reg = mcr.reg }; 228 229 return r; 230 } 231 232 /* 233 * rw_with_mcr_steering_fw - Access a register with specific MCR steering 234 * @gt: GT to read register from 235 * @reg: register being accessed 236 * @rw_flag: FW_REG_READ for read access or FW_REG_WRITE for write access 237 * @group: group number (documented as "sliceid" on older platforms) 238 * @instance: instance number (documented as "subsliceid" on older platforms) 239 * @value: register value to be written (ignored for read) 240 * 241 * Context: The caller must hold the MCR lock 242 * Return: 0 for write access. register value for read access. 243 * 244 * Caller needs to make sure the relevant forcewake wells are up. 245 */ 246 static u32 rw_with_mcr_steering_fw(struct intel_gt *gt, 247 i915_mcr_reg_t reg, u8 rw_flag, 248 int group, int instance, u32 value) 249 { 250 struct intel_uncore *uncore = gt->uncore; 251 u32 mcr_mask, mcr_ss, mcr, old_mcr, val = 0; 252 253 lockdep_assert_held(>->mcr_lock); 254 255 if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70)) { 256 /* 257 * Always leave the hardware in multicast mode when doing reads 258 * (see comment about Wa_22013088509 below) and only change it 259 * to unicast mode when doing writes of a specific instance. 260 * 261 * No need to save old steering reg value. 262 */ 263 intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR, 264 REG_FIELD_PREP(MTL_MCR_GROUPID, group) | 265 REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance) | 266 (rw_flag == FW_REG_READ ? GEN11_MCR_MULTICAST : 0)); 267 } else if (GRAPHICS_VER(uncore->i915) >= 11) { 268 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK; 269 mcr_ss = GEN11_MCR_SLICE(group) | GEN11_MCR_SUBSLICE(instance); 270 271 /* 272 * Wa_22013088509 273 * 274 * The setting of the multicast/unicast bit usually wouldn't 275 * matter for read operations (which always return the value 276 * from a single register instance regardless of how that bit 277 * is set), but some platforms have a workaround requiring us 278 * to remain in multicast mode for reads. There's no real 279 * downside to this, so we'll just go ahead and do so on all 280 * platforms; we'll only clear the multicast bit from the mask 281 * when exlicitly doing a write operation. 282 */ 283 if (rw_flag == FW_REG_WRITE) 284 mcr_mask |= GEN11_MCR_MULTICAST; 285 286 mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR); 287 old_mcr = mcr; 288 289 mcr &= ~mcr_mask; 290 mcr |= mcr_ss; 291 intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr); 292 } else { 293 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK; 294 mcr_ss = GEN8_MCR_SLICE(group) | GEN8_MCR_SUBSLICE(instance); 295 296 mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR); 297 old_mcr = mcr; 298 299 mcr &= ~mcr_mask; 300 mcr |= mcr_ss; 301 intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr); 302 } 303 304 if (rw_flag == FW_REG_READ) 305 val = intel_uncore_read_fw(uncore, mcr_reg_cast(reg)); 306 else 307 intel_uncore_write_fw(uncore, mcr_reg_cast(reg), value); 308 309 /* 310 * For pre-MTL platforms, we need to restore the old value of the 311 * steering control register to ensure that implicit steering continues 312 * to behave as expected. For MTL and beyond, we need only reinstate 313 * the 'multicast' bit (and only if we did a write that cleared it). 314 */ 315 if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70) && rw_flag == FW_REG_WRITE) 316 intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST); 317 else if (GRAPHICS_VER_FULL(uncore->i915) < IP_VER(12, 70)) 318 intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, old_mcr); 319 320 return val; 321 } 322 323 static u32 rw_with_mcr_steering(struct intel_gt *gt, 324 i915_mcr_reg_t reg, u8 rw_flag, 325 int group, int instance, 326 u32 value) 327 { 328 struct intel_uncore *uncore = gt->uncore; 329 enum forcewake_domains fw_domains; 330 unsigned long flags; 331 u32 val; 332 333 fw_domains = intel_uncore_forcewake_for_reg(uncore, mcr_reg_cast(reg), 334 rw_flag); 335 fw_domains |= intel_uncore_forcewake_for_reg(uncore, 336 GEN8_MCR_SELECTOR, 337 FW_REG_READ | FW_REG_WRITE); 338 339 intel_gt_mcr_lock(gt, &flags); 340 spin_lock(&uncore->lock); 341 intel_uncore_forcewake_get__locked(uncore, fw_domains); 342 343 val = rw_with_mcr_steering_fw(gt, reg, rw_flag, group, instance, value); 344 345 intel_uncore_forcewake_put__locked(uncore, fw_domains); 346 spin_unlock(&uncore->lock); 347 intel_gt_mcr_unlock(gt, flags); 348 349 return val; 350 } 351 352 /** 353 * intel_gt_mcr_lock - Acquire MCR steering lock 354 * @gt: GT structure 355 * @flags: storage to save IRQ flags to 356 * 357 * Performs locking to protect the steering for the duration of an MCR 358 * operation. On MTL and beyond, a hardware lock will also be taken to 359 * serialize access not only for the driver, but also for external hardware and 360 * firmware agents. 361 * 362 * Context: Takes gt->mcr_lock. uncore->lock should *not* be held when this 363 * function is called, although it may be acquired after this 364 * function call. 365 */ 366 void intel_gt_mcr_lock(struct intel_gt *gt, unsigned long *flags) 367 __acquires(>->mcr_lock) 368 { 369 unsigned long __flags; 370 int err = 0; 371 372 lockdep_assert_not_held(>->uncore->lock); 373 374 /* 375 * Starting with MTL, we need to coordinate not only with other 376 * driver threads, but also with hardware/firmware agents. A dedicated 377 * locking register is used. 378 */ 379 if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) { 380 /* 381 * The steering control and semaphore registers are inside an 382 * "always on" power domain with respect to RC6. However there 383 * are some issues if higher-level platform sleep states are 384 * entering/exiting at the same time these registers are 385 * accessed. Grabbing GT forcewake and holding it over the 386 * entire lock/steer/unlock cycle ensures that those sleep 387 * states have been fully exited before we access these 388 * registers. This wakeref will be released in the unlock 389 * routine. 390 * 391 * Wa_22018931422 392 */ 393 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_GT); 394 395 err = wait_for(intel_uncore_read_fw(gt->uncore, 396 MTL_STEER_SEMAPHORE) == 0x1, 100); 397 } 398 399 /* 400 * Even on platforms with a hardware lock, we'll continue to grab 401 * a software spinlock too for lockdep purposes. If the hardware lock 402 * was already acquired, there should never be contention on the 403 * software lock. 404 */ 405 spin_lock_irqsave(>->mcr_lock, __flags); 406 407 *flags = __flags; 408 409 /* 410 * In theory we should never fail to acquire the HW semaphore; this 411 * would indicate some hardware/firmware is misbehaving and not 412 * releasing it properly. 413 */ 414 if (err == -ETIMEDOUT) { 415 gt_err_ratelimited(gt, "hardware MCR steering semaphore timed out"); 416 add_taint_for_CI(gt->i915, TAINT_WARN); /* CI is now unreliable */ 417 } 418 } 419 420 /** 421 * intel_gt_mcr_unlock - Release MCR steering lock 422 * @gt: GT structure 423 * @flags: IRQ flags to restore 424 * 425 * Releases the lock acquired by intel_gt_mcr_lock(). 426 * 427 * Context: Releases gt->mcr_lock 428 */ 429 void intel_gt_mcr_unlock(struct intel_gt *gt, unsigned long flags) 430 __releases(>->mcr_lock) 431 { 432 spin_unlock_irqrestore(>->mcr_lock, flags); 433 434 if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) { 435 intel_uncore_write_fw(gt->uncore, MTL_STEER_SEMAPHORE, 0x1); 436 437 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_GT); 438 } 439 } 440 441 /** 442 * intel_gt_mcr_lock_sanitize - Sanitize MCR steering lock 443 * @gt: GT structure 444 * 445 * This will be used to sanitize the initial status of the hardware lock 446 * during driver load and resume since there won't be any concurrent access 447 * from other agents at those times, but it's possible that boot firmware 448 * may have left the lock in a bad state. 449 * 450 */ 451 void intel_gt_mcr_lock_sanitize(struct intel_gt *gt) 452 { 453 /* 454 * This gets called at load/resume time, so we shouldn't be 455 * racing with other driver threads grabbing the mcr lock. 456 */ 457 lockdep_assert_not_held(>->mcr_lock); 458 459 if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) 460 intel_uncore_write_fw(gt->uncore, MTL_STEER_SEMAPHORE, 0x1); 461 } 462 463 /** 464 * intel_gt_mcr_read - read a specific instance of an MCR register 465 * @gt: GT structure 466 * @reg: the MCR register to read 467 * @group: the MCR group 468 * @instance: the MCR instance 469 * 470 * Context: Takes and releases gt->mcr_lock 471 * 472 * Returns the value read from an MCR register after steering toward a specific 473 * group/instance. 474 */ 475 u32 intel_gt_mcr_read(struct intel_gt *gt, 476 i915_mcr_reg_t reg, 477 int group, int instance) 478 { 479 return rw_with_mcr_steering(gt, reg, FW_REG_READ, group, instance, 0); 480 } 481 482 /** 483 * intel_gt_mcr_unicast_write - write a specific instance of an MCR register 484 * @gt: GT structure 485 * @reg: the MCR register to write 486 * @value: value to write 487 * @group: the MCR group 488 * @instance: the MCR instance 489 * 490 * Write an MCR register in unicast mode after steering toward a specific 491 * group/instance. 492 * 493 * Context: Calls a function that takes and releases gt->mcr_lock 494 */ 495 void intel_gt_mcr_unicast_write(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value, 496 int group, int instance) 497 { 498 rw_with_mcr_steering(gt, reg, FW_REG_WRITE, group, instance, value); 499 } 500 501 /** 502 * intel_gt_mcr_multicast_write - write a value to all instances of an MCR register 503 * @gt: GT structure 504 * @reg: the MCR register to write 505 * @value: value to write 506 * 507 * Write an MCR register in multicast mode to update all instances. 508 * 509 * Context: Takes and releases gt->mcr_lock 510 */ 511 void intel_gt_mcr_multicast_write(struct intel_gt *gt, 512 i915_mcr_reg_t reg, u32 value) 513 { 514 unsigned long flags; 515 516 intel_gt_mcr_lock(gt, &flags); 517 518 /* 519 * Ensure we have multicast behavior, just in case some non-i915 agent 520 * left the hardware in unicast mode. 521 */ 522 if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) 523 intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST); 524 525 intel_uncore_write(gt->uncore, mcr_reg_cast(reg), value); 526 527 intel_gt_mcr_unlock(gt, flags); 528 } 529 530 /** 531 * intel_gt_mcr_multicast_write_fw - write a value to all instances of an MCR register 532 * @gt: GT structure 533 * @reg: the MCR register to write 534 * @value: value to write 535 * 536 * Write an MCR register in multicast mode to update all instances. This 537 * function assumes the caller is already holding any necessary forcewake 538 * domains; use intel_gt_mcr_multicast_write() in cases where forcewake should 539 * be obtained automatically. 540 * 541 * Context: The caller must hold gt->mcr_lock. 542 */ 543 void intel_gt_mcr_multicast_write_fw(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value) 544 { 545 lockdep_assert_held(>->mcr_lock); 546 547 /* 548 * Ensure we have multicast behavior, just in case some non-i915 agent 549 * left the hardware in unicast mode. 550 */ 551 if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) 552 intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST); 553 554 intel_uncore_write_fw(gt->uncore, mcr_reg_cast(reg), value); 555 } 556 557 /** 558 * intel_gt_mcr_multicast_rmw - Performs a multicast RMW operations 559 * @gt: GT structure 560 * @reg: the MCR register to read and write 561 * @clear: bits to clear during RMW 562 * @set: bits to set during RMW 563 * 564 * Performs a read-modify-write on an MCR register in a multicast manner. 565 * This operation only makes sense on MCR registers where all instances are 566 * expected to have the same value. The read will target any non-terminated 567 * instance and the write will be applied to all instances. 568 * 569 * This function assumes the caller is already holding any necessary forcewake 570 * domains; use intel_gt_mcr_multicast_rmw() in cases where forcewake should 571 * be obtained automatically. 572 * 573 * Context: Calls functions that take and release gt->mcr_lock 574 * 575 * Returns the old (unmodified) value read. 576 */ 577 u32 intel_gt_mcr_multicast_rmw(struct intel_gt *gt, i915_mcr_reg_t reg, 578 u32 clear, u32 set) 579 { 580 u32 val = intel_gt_mcr_read_any(gt, reg); 581 582 intel_gt_mcr_multicast_write(gt, reg, (val & ~clear) | set); 583 584 return val; 585 } 586 587 /* 588 * reg_needs_read_steering - determine whether a register read requires 589 * explicit steering 590 * @gt: GT structure 591 * @reg: the register to check steering requirements for 592 * @type: type of multicast steering to check 593 * 594 * Determines whether @reg needs explicit steering of a specific type for 595 * reads. 596 * 597 * Returns false if @reg does not belong to a register range of the given 598 * steering type, or if the default (subslice-based) steering IDs are suitable 599 * for @type steering too. 600 */ 601 static bool reg_needs_read_steering(struct intel_gt *gt, 602 i915_mcr_reg_t reg, 603 enum intel_steering_type type) 604 { 605 u32 offset = i915_mmio_reg_offset(reg); 606 const struct intel_mmio_range *entry; 607 608 if (likely(!gt->steering_table[type])) 609 return false; 610 611 if (IS_GSI_REG(offset)) 612 offset += gt->uncore->gsi_offset; 613 614 for (entry = gt->steering_table[type]; entry->end; entry++) { 615 if (offset >= entry->start && offset <= entry->end) 616 return true; 617 } 618 619 return false; 620 } 621 622 /* 623 * get_nonterminated_steering - determines valid IDs for a class of MCR steering 624 * @gt: GT structure 625 * @type: multicast register type 626 * @group: Group ID returned 627 * @instance: Instance ID returned 628 * 629 * Determines group and instance values that will steer reads of the specified 630 * MCR class to a non-terminated instance. 631 */ 632 static void get_nonterminated_steering(struct intel_gt *gt, 633 enum intel_steering_type type, 634 u8 *group, u8 *instance) 635 { 636 u32 dss; 637 638 switch (type) { 639 case L3BANK: 640 *group = 0; /* unused */ 641 *instance = __ffs(gt->info.l3bank_mask); 642 break; 643 case MSLICE: 644 GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915)); 645 *group = __ffs(gt->info.mslice_mask); 646 *instance = 0; /* unused */ 647 break; 648 case LNCF: 649 /* 650 * An LNCF is always present if its mslice is present, so we 651 * can safely just steer to LNCF 0 in all cases. 652 */ 653 GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915)); 654 *group = __ffs(gt->info.mslice_mask) << 1; 655 *instance = 0; /* unused */ 656 break; 657 case GAM: 658 *group = IS_DG2(gt->i915) ? 1 : 0; 659 *instance = 0; 660 break; 661 case DSS: 662 dss = intel_sseu_find_first_xehp_dss(>->info.sseu, 0, 0); 663 *group = dss / GEN_DSS_PER_GSLICE; 664 *instance = dss % GEN_DSS_PER_GSLICE; 665 break; 666 case INSTANCE0: 667 /* 668 * There are a lot of MCR types for which instance (0, 0) 669 * will always provide a non-terminated value. 670 */ 671 *group = 0; 672 *instance = 0; 673 break; 674 case OADDRM: 675 if ((VDBOX_MASK(gt) | VEBOX_MASK(gt) | gt->info.sfc_mask) & BIT(0)) 676 *group = 0; 677 else 678 *group = 1; 679 *instance = 0; 680 break; 681 default: 682 MISSING_CASE(type); 683 *group = 0; 684 *instance = 0; 685 } 686 } 687 688 /** 689 * intel_gt_mcr_get_nonterminated_steering - find group/instance values that 690 * will steer a register to a non-terminated instance 691 * @gt: GT structure 692 * @reg: register for which the steering is required 693 * @group: return variable for group steering 694 * @instance: return variable for instance steering 695 * 696 * This function returns a group/instance pair that is guaranteed to work for 697 * read steering of the given register. Note that a value will be returned even 698 * if the register is not replicated and therefore does not actually require 699 * steering. 700 */ 701 void intel_gt_mcr_get_nonterminated_steering(struct intel_gt *gt, 702 i915_mcr_reg_t reg, 703 u8 *group, u8 *instance) 704 { 705 int type; 706 707 for (type = 0; type < NUM_STEERING_TYPES; type++) { 708 if (reg_needs_read_steering(gt, reg, type)) { 709 get_nonterminated_steering(gt, type, group, instance); 710 return; 711 } 712 } 713 714 *group = gt->default_steering.groupid; 715 *instance = gt->default_steering.instanceid; 716 } 717 718 /** 719 * intel_gt_mcr_read_any_fw - reads one instance of an MCR register 720 * @gt: GT structure 721 * @reg: register to read 722 * 723 * Reads a GT MCR register. The read will be steered to a non-terminated 724 * instance (i.e., one that isn't fused off or powered down by power gating). 725 * This function assumes the caller is already holding any necessary forcewake 726 * domains; use intel_gt_mcr_read_any() in cases where forcewake should be 727 * obtained automatically. 728 * 729 * Context: The caller must hold gt->mcr_lock. 730 * 731 * Returns the value from a non-terminated instance of @reg. 732 */ 733 u32 intel_gt_mcr_read_any_fw(struct intel_gt *gt, i915_mcr_reg_t reg) 734 { 735 int type; 736 u8 group, instance; 737 738 lockdep_assert_held(>->mcr_lock); 739 740 for (type = 0; type < NUM_STEERING_TYPES; type++) { 741 if (reg_needs_read_steering(gt, reg, type)) { 742 get_nonterminated_steering(gt, type, &group, &instance); 743 return rw_with_mcr_steering_fw(gt, reg, 744 FW_REG_READ, 745 group, instance, 0); 746 } 747 } 748 749 return intel_uncore_read_fw(gt->uncore, mcr_reg_cast(reg)); 750 } 751 752 /** 753 * intel_gt_mcr_read_any - reads one instance of an MCR register 754 * @gt: GT structure 755 * @reg: register to read 756 * 757 * Reads a GT MCR register. The read will be steered to a non-terminated 758 * instance (i.e., one that isn't fused off or powered down by power gating). 759 * 760 * Context: Calls a function that takes and releases gt->mcr_lock. 761 * 762 * Returns the value from a non-terminated instance of @reg. 763 */ 764 u32 intel_gt_mcr_read_any(struct intel_gt *gt, i915_mcr_reg_t reg) 765 { 766 int type; 767 u8 group, instance; 768 769 for (type = 0; type < NUM_STEERING_TYPES; type++) { 770 if (reg_needs_read_steering(gt, reg, type)) { 771 get_nonterminated_steering(gt, type, &group, &instance); 772 return rw_with_mcr_steering(gt, reg, 773 FW_REG_READ, 774 group, instance, 0); 775 } 776 } 777 778 return intel_uncore_read(gt->uncore, mcr_reg_cast(reg)); 779 } 780 781 static void report_steering_type(struct drm_printer *p, 782 struct intel_gt *gt, 783 enum intel_steering_type type, 784 bool dump_table) 785 { 786 const struct intel_mmio_range *entry; 787 u8 group, instance; 788 789 BUILD_BUG_ON(ARRAY_SIZE(intel_steering_types) != NUM_STEERING_TYPES); 790 791 if (!gt->steering_table[type]) { 792 drm_printf(p, "%s steering: uses default steering\n", 793 intel_steering_types[type]); 794 return; 795 } 796 797 get_nonterminated_steering(gt, type, &group, &instance); 798 drm_printf(p, "%s steering: group=0x%x, instance=0x%x\n", 799 intel_steering_types[type], group, instance); 800 801 if (!dump_table) 802 return; 803 804 for (entry = gt->steering_table[type]; entry->end; entry++) 805 drm_printf(p, "\t0x%06x - 0x%06x\n", entry->start, entry->end); 806 } 807 808 void intel_gt_mcr_report_steering(struct drm_printer *p, struct intel_gt *gt, 809 bool dump_table) 810 { 811 /* 812 * Starting with MTL we no longer have default steering; 813 * all ranges are explicitly steered. 814 */ 815 if (GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70)) 816 drm_printf(p, "Default steering: group=0x%x, instance=0x%x\n", 817 gt->default_steering.groupid, 818 gt->default_steering.instanceid); 819 820 if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) { 821 for (int i = 0; i < NUM_STEERING_TYPES; i++) 822 if (gt->steering_table[i]) 823 report_steering_type(p, gt, i, dump_table); 824 } else if (IS_PONTEVECCHIO(gt->i915)) { 825 report_steering_type(p, gt, INSTANCE0, dump_table); 826 } else if (HAS_MSLICE_STEERING(gt->i915)) { 827 report_steering_type(p, gt, MSLICE, dump_table); 828 report_steering_type(p, gt, LNCF, dump_table); 829 } 830 } 831 832 /** 833 * intel_gt_mcr_get_ss_steering - returns the group/instance steering for a SS 834 * @gt: GT structure 835 * @dss: DSS ID to obtain steering for 836 * @group: pointer to storage for steering group ID 837 * @instance: pointer to storage for steering instance ID 838 * 839 * Returns the steering IDs (via the @group and @instance parameters) that 840 * correspond to a specific subslice/DSS ID. 841 */ 842 void intel_gt_mcr_get_ss_steering(struct intel_gt *gt, unsigned int dss, 843 unsigned int *group, unsigned int *instance) 844 { 845 if (IS_PONTEVECCHIO(gt->i915)) { 846 *group = dss / GEN_DSS_PER_CSLICE; 847 *instance = dss % GEN_DSS_PER_CSLICE; 848 } else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50)) { 849 *group = dss / GEN_DSS_PER_GSLICE; 850 *instance = dss % GEN_DSS_PER_GSLICE; 851 } else { 852 *group = dss / GEN_MAX_SS_PER_HSW_SLICE; 853 *instance = dss % GEN_MAX_SS_PER_HSW_SLICE; 854 return; 855 } 856 } 857 858 /** 859 * intel_gt_mcr_wait_for_reg - wait until MCR register matches expected state 860 * @gt: GT structure 861 * @reg: the register to read 862 * @mask: mask to apply to register value 863 * @value: value to wait for 864 * @fast_timeout_us: fast timeout in microsecond for atomic/tight wait 865 * @slow_timeout_ms: slow timeout in millisecond 866 * 867 * This routine waits until the target register @reg contains the expected 868 * @value after applying the @mask, i.e. it waits until :: 869 * 870 * (intel_gt_mcr_read_any_fw(gt, reg) & mask) == value 871 * 872 * Otherwise, the wait will timeout after @slow_timeout_ms milliseconds. 873 * For atomic context @slow_timeout_ms must be zero and @fast_timeout_us 874 * must be not larger than 20,0000 microseconds. 875 * 876 * This function is basically an MCR-friendly version of 877 * __intel_wait_for_register_fw(). Generally this function will only be used 878 * on GAM registers which are a bit special --- although they're MCR registers, 879 * reads (e.g., waiting for status updates) are always directed to the primary 880 * instance. 881 * 882 * Note that this routine assumes the caller holds forcewake asserted, it is 883 * not suitable for very long waits. 884 * 885 * Context: Calls a function that takes and releases gt->mcr_lock 886 * Return: 0 if the register matches the desired condition, or -ETIMEDOUT. 887 */ 888 int intel_gt_mcr_wait_for_reg(struct intel_gt *gt, 889 i915_mcr_reg_t reg, 890 u32 mask, 891 u32 value, 892 unsigned int fast_timeout_us, 893 unsigned int slow_timeout_ms) 894 { 895 int ret; 896 897 lockdep_assert_not_held(>->mcr_lock); 898 899 #define done ((intel_gt_mcr_read_any(gt, reg) & mask) == value) 900 901 /* Catch any overuse of this function */ 902 might_sleep_if(slow_timeout_ms); 903 GEM_BUG_ON(fast_timeout_us > 20000); 904 GEM_BUG_ON(!fast_timeout_us && !slow_timeout_ms); 905 906 ret = -ETIMEDOUT; 907 if (fast_timeout_us && fast_timeout_us <= 20000) 908 ret = _wait_for_atomic(done, fast_timeout_us, 0); 909 if (ret && slow_timeout_ms) 910 ret = wait_for(done, slow_timeout_ms); 911 912 return ret; 913 #undef done 914 } 915