xref: /linux/drivers/gpu/drm/i915/gt/intel_gt_mcr.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 #include "intel_gt.h"
8 #include "intel_gt_mcr.h"
9 #include "intel_gt_print.h"
10 #include "intel_gt_regs.h"
11 
12 /**
13  * DOC: GT Multicast/Replicated (MCR) Register Support
14  *
15  * Some GT registers are designed as "multicast" or "replicated" registers:
16  * multiple instances of the same register share a single MMIO offset.  MCR
17  * registers are generally used when the hardware needs to potentially track
18  * independent values of a register per hardware unit (e.g., per-subslice,
19  * per-L3bank, etc.).  The specific types of replication that exist vary
20  * per-platform.
21  *
22  * MMIO accesses to MCR registers are controlled according to the settings
23  * programmed in the platform's MCR_SELECTOR register(s).  MMIO writes to MCR
24  * registers can be done in either a (i.e., a single write updates all
25  * instances of the register to the same value) or unicast (a write updates only
26  * one specific instance).  Reads of MCR registers always operate in a unicast
27  * manner regardless of how the multicast/unicast bit is set in MCR_SELECTOR.
28  * Selection of a specific MCR instance for unicast operations is referred to
29  * as "steering."
30  *
31  * If MCR register operations are steered toward a hardware unit that is
32  * fused off or currently powered down due to power gating, the MMIO operation
33  * is "terminated" by the hardware.  Terminated read operations will return a
34  * value of zero and terminated unicast write operations will be silently
35  * ignored.
36  */
37 
38 #define HAS_MSLICE_STEERING(i915)	(INTEL_INFO(i915)->has_mslice_steering)
39 
40 static const char * const intel_steering_types[] = {
41 	"L3BANK",
42 	"MSLICE",
43 	"LNCF",
44 	"GAM",
45 	"DSS",
46 	"OADDRM",
47 	"INSTANCE 0",
48 };
49 
50 static const struct intel_mmio_range icl_l3bank_steering_table[] = {
51 	{ 0x00B100, 0x00B3FF },
52 	{},
53 };
54 
55 /*
56  * Although the bspec lists more "MSLICE" ranges than shown here, some of those
57  * are of a "GAM" subclass that has special rules.  Thus we use a separate
58  * GAM table farther down for those.
59  */
60 static const struct intel_mmio_range dg2_mslice_steering_table[] = {
61 	{ 0x00DD00, 0x00DDFF },
62 	{ 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
63 	{},
64 };
65 
66 static const struct intel_mmio_range dg2_lncf_steering_table[] = {
67 	{ 0x00B000, 0x00B0FF },
68 	{ 0x00D880, 0x00D8FF },
69 	{},
70 };
71 
72 static const struct intel_mmio_range xelpg_instance0_steering_table[] = {
73 	{ 0x000B00, 0x000BFF },         /* SQIDI */
74 	{ 0x001000, 0x001FFF },         /* SQIDI */
75 	{ 0x004000, 0x0048FF },         /* GAM */
76 	{ 0x008700, 0x0087FF },         /* SQIDI */
77 	{ 0x00B000, 0x00B0FF },         /* NODE */
78 	{ 0x00C800, 0x00CFFF },         /* GAM */
79 	{ 0x00D880, 0x00D8FF },         /* NODE */
80 	{ 0x00DD00, 0x00DDFF },         /* OAAL2 */
81 	{},
82 };
83 
84 static const struct intel_mmio_range xelpg_l3bank_steering_table[] = {
85 	{ 0x00B100, 0x00B3FF },
86 	{},
87 };
88 
89 /* DSS steering is used for SLICE ranges as well */
90 static const struct intel_mmio_range xelpg_dss_steering_table[] = {
91 	{ 0x005200, 0x0052FF },		/* SLICE */
92 	{ 0x005500, 0x007FFF },		/* SLICE */
93 	{ 0x008140, 0x00815F },		/* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
94 	{ 0x0094D0, 0x00955F },		/* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
95 	{ 0x009680, 0x0096FF },		/* DSS */
96 	{ 0x00D800, 0x00D87F },		/* SLICE */
97 	{ 0x00DC00, 0x00DCFF },		/* SLICE */
98 	{ 0x00DE80, 0x00E8FF },		/* DSS (0xE000-0xE0FF reserved) */
99 	{},
100 };
101 
102 static const struct intel_mmio_range xelpmp_oaddrm_steering_table[] = {
103 	{ 0x393200, 0x39323F },
104 	{ 0x393400, 0x3934FF },
105 	{},
106 };
107 
108 void intel_gt_mcr_init(struct intel_gt *gt)
109 {
110 	struct drm_i915_private *i915 = gt->i915;
111 	unsigned long fuse;
112 	int i;
113 
114 	spin_lock_init(&gt->mcr_lock);
115 
116 	/*
117 	 * An mslice is unavailable only if both the meml3 for the slice is
118 	 * disabled *and* all of the DSS in the slice (quadrant) are disabled.
119 	 */
120 	if (HAS_MSLICE_STEERING(i915)) {
121 		gt->info.mslice_mask =
122 			intel_slicemask_from_xehp_dssmask(gt->info.sseu.subslice_mask,
123 							  GEN_DSS_PER_MSLICE);
124 		gt->info.mslice_mask |=
125 			(intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
126 			 GEN12_MEML3_EN_MASK);
127 
128 		if (!gt->info.mslice_mask) /* should be impossible! */
129 			gt_warn(gt, "mslice mask all zero!\n");
130 	}
131 
132 	if (MEDIA_VER(i915) >= 13 && gt->type == GT_MEDIA) {
133 		gt->steering_table[OADDRM] = xelpmp_oaddrm_steering_table;
134 	} else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) {
135 		/* Wa_14016747170 */
136 		if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
137 		    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
138 			fuse = REG_FIELD_GET(MTL_GT_L3_EXC_MASK,
139 					     intel_uncore_read(gt->uncore,
140 							       MTL_GT_ACTIVITY_FACTOR));
141 		else
142 			fuse = REG_FIELD_GET(GT_L3_EXC_MASK,
143 					     intel_uncore_read(gt->uncore, XEHP_FUSE4));
144 
145 		/*
146 		 * Despite the register field being named "exclude mask" the
147 		 * bits actually represent enabled banks (two banks per bit).
148 		 */
149 		for_each_set_bit(i, &fuse, 3)
150 			gt->info.l3bank_mask |= 0x3 << 2 * i;
151 
152 		gt->steering_table[INSTANCE0] = xelpg_instance0_steering_table;
153 		gt->steering_table[L3BANK] = xelpg_l3bank_steering_table;
154 		gt->steering_table[DSS] = xelpg_dss_steering_table;
155 	} else if (IS_DG2(i915)) {
156 		gt->steering_table[MSLICE] = dg2_mslice_steering_table;
157 		gt->steering_table[LNCF] = dg2_lncf_steering_table;
158 		/*
159 		 * No need to hook up the GAM table since it has a dedicated
160 		 * steering control register on DG2 and can use implicit
161 		 * steering.
162 		 */
163 	} else if (GRAPHICS_VER(i915) >= 11 &&
164 		   GRAPHICS_VER_FULL(i915) < IP_VER(12, 55)) {
165 		gt->steering_table[L3BANK] = icl_l3bank_steering_table;
166 		gt->info.l3bank_mask =
167 			~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
168 			GEN10_L3BANK_MASK;
169 		if (!gt->info.l3bank_mask) /* should be impossible! */
170 			gt_warn(gt, "L3 bank mask is all zero!\n");
171 	} else if (GRAPHICS_VER(i915) >= 11) {
172 		/*
173 		 * We expect all modern platforms to have at least some
174 		 * type of steering that needs to be initialized.
175 		 */
176 		MISSING_CASE(INTEL_INFO(i915)->platform);
177 	}
178 }
179 
180 /*
181  * Although the rest of the driver should use MCR-specific functions to
182  * read/write MCR registers, we still use the regular intel_uncore_* functions
183  * internally to implement those, so we need a way for the functions in this
184  * file to "cast" an i915_mcr_reg_t into an i915_reg_t.
185  */
186 static i915_reg_t mcr_reg_cast(const i915_mcr_reg_t mcr)
187 {
188 	i915_reg_t r = { .reg = mcr.reg };
189 
190 	return r;
191 }
192 
193 /*
194  * rw_with_mcr_steering_fw - Access a register with specific MCR steering
195  * @gt: GT to read register from
196  * @reg: register being accessed
197  * @rw_flag: FW_REG_READ for read access or FW_REG_WRITE for write access
198  * @group: group number (documented as "sliceid" on older platforms)
199  * @instance: instance number (documented as "subsliceid" on older platforms)
200  * @value: register value to be written (ignored for read)
201  *
202  * Context: The caller must hold the MCR lock
203  * Return: 0 for write access. register value for read access.
204  *
205  * Caller needs to make sure the relevant forcewake wells are up.
206  */
207 static u32 rw_with_mcr_steering_fw(struct intel_gt *gt,
208 				   i915_mcr_reg_t reg, u8 rw_flag,
209 				   int group, int instance, u32 value)
210 {
211 	struct intel_uncore *uncore = gt->uncore;
212 	u32 mcr_mask, mcr_ss, mcr, old_mcr, val = 0;
213 
214 	lockdep_assert_held(&gt->mcr_lock);
215 
216 	if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70)) {
217 		/*
218 		 * Always leave the hardware in multicast mode when doing reads
219 		 * (see comment about Wa_22013088509 below) and only change it
220 		 * to unicast mode when doing writes of a specific instance.
221 		 *
222 		 * No need to save old steering reg value.
223 		 */
224 		intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR,
225 				      REG_FIELD_PREP(MTL_MCR_GROUPID, group) |
226 				      REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance) |
227 				      (rw_flag == FW_REG_READ ? GEN11_MCR_MULTICAST : 0));
228 	} else if (GRAPHICS_VER(uncore->i915) >= 11) {
229 		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
230 		mcr_ss = GEN11_MCR_SLICE(group) | GEN11_MCR_SUBSLICE(instance);
231 
232 		/*
233 		 * Wa_22013088509
234 		 *
235 		 * The setting of the multicast/unicast bit usually wouldn't
236 		 * matter for read operations (which always return the value
237 		 * from a single register instance regardless of how that bit
238 		 * is set), but some platforms have a workaround requiring us
239 		 * to remain in multicast mode for reads.  There's no real
240 		 * downside to this, so we'll just go ahead and do so on all
241 		 * platforms; we'll only clear the multicast bit from the mask
242 		 * when exlicitly doing a write operation.
243 		 */
244 		if (rw_flag == FW_REG_WRITE)
245 			mcr_mask |= GEN11_MCR_MULTICAST;
246 
247 		mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
248 		old_mcr = mcr;
249 
250 		mcr &= ~mcr_mask;
251 		mcr |= mcr_ss;
252 		intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
253 	} else {
254 		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
255 		mcr_ss = GEN8_MCR_SLICE(group) | GEN8_MCR_SUBSLICE(instance);
256 
257 		mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
258 		old_mcr = mcr;
259 
260 		mcr &= ~mcr_mask;
261 		mcr |= mcr_ss;
262 		intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
263 	}
264 
265 	if (rw_flag == FW_REG_READ)
266 		val = intel_uncore_read_fw(uncore, mcr_reg_cast(reg));
267 	else
268 		intel_uncore_write_fw(uncore, mcr_reg_cast(reg), value);
269 
270 	/*
271 	 * For pre-MTL platforms, we need to restore the old value of the
272 	 * steering control register to ensure that implicit steering continues
273 	 * to behave as expected.  For MTL and beyond, we need only reinstate
274 	 * the 'multicast' bit (and only if we did a write that cleared it).
275 	 */
276 	if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70) && rw_flag == FW_REG_WRITE)
277 		intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
278 	else if (GRAPHICS_VER_FULL(uncore->i915) < IP_VER(12, 70))
279 		intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, old_mcr);
280 
281 	return val;
282 }
283 
284 static u32 rw_with_mcr_steering(struct intel_gt *gt,
285 				i915_mcr_reg_t reg, u8 rw_flag,
286 				int group, int instance,
287 				u32 value)
288 {
289 	struct intel_uncore *uncore = gt->uncore;
290 	enum forcewake_domains fw_domains;
291 	unsigned long flags;
292 	u32 val;
293 
294 	fw_domains = intel_uncore_forcewake_for_reg(uncore, mcr_reg_cast(reg),
295 						    rw_flag);
296 	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
297 						     GEN8_MCR_SELECTOR,
298 						     FW_REG_READ | FW_REG_WRITE);
299 
300 	intel_gt_mcr_lock(gt, &flags);
301 	spin_lock(&uncore->lock);
302 	intel_uncore_forcewake_get__locked(uncore, fw_domains);
303 
304 	val = rw_with_mcr_steering_fw(gt, reg, rw_flag, group, instance, value);
305 
306 	intel_uncore_forcewake_put__locked(uncore, fw_domains);
307 	spin_unlock(&uncore->lock);
308 	intel_gt_mcr_unlock(gt, flags);
309 
310 	return val;
311 }
312 
313 /**
314  * intel_gt_mcr_lock - Acquire MCR steering lock
315  * @gt: GT structure
316  * @flags: storage to save IRQ flags to
317  *
318  * Performs locking to protect the steering for the duration of an MCR
319  * operation.  On MTL and beyond, a hardware lock will also be taken to
320  * serialize access not only for the driver, but also for external hardware and
321  * firmware agents.
322  *
323  * Context: Takes gt->mcr_lock.  uncore->lock should *not* be held when this
324  *          function is called, although it may be acquired after this
325  *          function call.
326  */
327 void intel_gt_mcr_lock(struct intel_gt *gt, unsigned long *flags)
328 	__acquires(&gt->mcr_lock)
329 {
330 	unsigned long __flags;
331 	int err = 0;
332 
333 	lockdep_assert_not_held(&gt->uncore->lock);
334 
335 	/*
336 	 * Starting with MTL, we need to coordinate not only with other
337 	 * driver threads, but also with hardware/firmware agents.  A dedicated
338 	 * locking register is used.
339 	 */
340 	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
341 		/*
342 		 * The steering control and semaphore registers are inside an
343 		 * "always on" power domain with respect to RC6.  However there
344 		 * are some issues if higher-level platform sleep states are
345 		 * entering/exiting at the same time these registers are
346 		 * accessed.  Grabbing GT forcewake and holding it over the
347 		 * entire lock/steer/unlock cycle ensures that those sleep
348 		 * states have been fully exited before we access these
349 		 * registers.  This wakeref will be released in the unlock
350 		 * routine.
351 		 *
352 		 * Wa_22018931422
353 		 */
354 		intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_GT);
355 
356 		err = wait_for(intel_uncore_read_fw(gt->uncore,
357 						    MTL_STEER_SEMAPHORE) == 0x1, 100);
358 	}
359 
360 	/*
361 	 * Even on platforms with a hardware lock, we'll continue to grab
362 	 * a software spinlock too for lockdep purposes.  If the hardware lock
363 	 * was already acquired, there should never be contention on the
364 	 * software lock.
365 	 */
366 	spin_lock_irqsave(&gt->mcr_lock, __flags);
367 
368 	*flags = __flags;
369 
370 	/*
371 	 * In theory we should never fail to acquire the HW semaphore; this
372 	 * would indicate some hardware/firmware is misbehaving and not
373 	 * releasing it properly.
374 	 */
375 	if (err == -ETIMEDOUT) {
376 		gt_err_ratelimited(gt, "hardware MCR steering semaphore timed out");
377 		add_taint_for_CI(gt->i915, TAINT_WARN);  /* CI is now unreliable */
378 	}
379 }
380 
381 /**
382  * intel_gt_mcr_unlock - Release MCR steering lock
383  * @gt: GT structure
384  * @flags: IRQ flags to restore
385  *
386  * Releases the lock acquired by intel_gt_mcr_lock().
387  *
388  * Context: Releases gt->mcr_lock
389  */
390 void intel_gt_mcr_unlock(struct intel_gt *gt, unsigned long flags)
391 	__releases(&gt->mcr_lock)
392 {
393 	spin_unlock_irqrestore(&gt->mcr_lock, flags);
394 
395 	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
396 		intel_uncore_write_fw(gt->uncore, MTL_STEER_SEMAPHORE, 0x1);
397 
398 		intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_GT);
399 	}
400 }
401 
402 /**
403  * intel_gt_mcr_lock_sanitize - Sanitize MCR steering lock
404  * @gt: GT structure
405  *
406  * This will be used to sanitize the initial status of the hardware lock
407  * during driver load and resume since there won't be any concurrent access
408  * from other agents at those times, but it's possible that boot firmware
409  * may have left the lock in a bad state.
410  *
411  */
412 void intel_gt_mcr_lock_sanitize(struct intel_gt *gt)
413 {
414 	/*
415 	 * This gets called at load/resume time, so we shouldn't be
416 	 * racing with other driver threads grabbing the mcr lock.
417 	 */
418 	lockdep_assert_not_held(&gt->mcr_lock);
419 
420 	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70))
421 		intel_uncore_write_fw(gt->uncore, MTL_STEER_SEMAPHORE, 0x1);
422 }
423 
424 /**
425  * intel_gt_mcr_read - read a specific instance of an MCR register
426  * @gt: GT structure
427  * @reg: the MCR register to read
428  * @group: the MCR group
429  * @instance: the MCR instance
430  *
431  * Context: Takes and releases gt->mcr_lock
432  *
433  * Returns the value read from an MCR register after steering toward a specific
434  * group/instance.
435  */
436 u32 intel_gt_mcr_read(struct intel_gt *gt,
437 		      i915_mcr_reg_t reg,
438 		      int group, int instance)
439 {
440 	return rw_with_mcr_steering(gt, reg, FW_REG_READ, group, instance, 0);
441 }
442 
443 /**
444  * intel_gt_mcr_unicast_write - write a specific instance of an MCR register
445  * @gt: GT structure
446  * @reg: the MCR register to write
447  * @value: value to write
448  * @group: the MCR group
449  * @instance: the MCR instance
450  *
451  * Write an MCR register in unicast mode after steering toward a specific
452  * group/instance.
453  *
454  * Context: Calls a function that takes and releases gt->mcr_lock
455  */
456 void intel_gt_mcr_unicast_write(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value,
457 				int group, int instance)
458 {
459 	rw_with_mcr_steering(gt, reg, FW_REG_WRITE, group, instance, value);
460 }
461 
462 /**
463  * intel_gt_mcr_multicast_write - write a value to all instances of an MCR register
464  * @gt: GT structure
465  * @reg: the MCR register to write
466  * @value: value to write
467  *
468  * Write an MCR register in multicast mode to update all instances.
469  *
470  * Context: Takes and releases gt->mcr_lock
471  */
472 void intel_gt_mcr_multicast_write(struct intel_gt *gt,
473 				  i915_mcr_reg_t reg, u32 value)
474 {
475 	unsigned long flags;
476 
477 	intel_gt_mcr_lock(gt, &flags);
478 
479 	/*
480 	 * Ensure we have multicast behavior, just in case some non-i915 agent
481 	 * left the hardware in unicast mode.
482 	 */
483 	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70))
484 		intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
485 
486 	intel_uncore_write(gt->uncore, mcr_reg_cast(reg), value);
487 
488 	intel_gt_mcr_unlock(gt, flags);
489 }
490 
491 /**
492  * intel_gt_mcr_multicast_write_fw - write a value to all instances of an MCR register
493  * @gt: GT structure
494  * @reg: the MCR register to write
495  * @value: value to write
496  *
497  * Write an MCR register in multicast mode to update all instances.  This
498  * function assumes the caller is already holding any necessary forcewake
499  * domains; use intel_gt_mcr_multicast_write() in cases where forcewake should
500  * be obtained automatically.
501  *
502  * Context: The caller must hold gt->mcr_lock.
503  */
504 void intel_gt_mcr_multicast_write_fw(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value)
505 {
506 	lockdep_assert_held(&gt->mcr_lock);
507 
508 	/*
509 	 * Ensure we have multicast behavior, just in case some non-i915 agent
510 	 * left the hardware in unicast mode.
511 	 */
512 	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70))
513 		intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
514 
515 	intel_uncore_write_fw(gt->uncore, mcr_reg_cast(reg), value);
516 }
517 
518 /**
519  * intel_gt_mcr_multicast_rmw - Performs a multicast RMW operations
520  * @gt: GT structure
521  * @reg: the MCR register to read and write
522  * @clear: bits to clear during RMW
523  * @set: bits to set during RMW
524  *
525  * Performs a read-modify-write on an MCR register in a multicast manner.
526  * This operation only makes sense on MCR registers where all instances are
527  * expected to have the same value.  The read will target any non-terminated
528  * instance and the write will be applied to all instances.
529  *
530  * This function assumes the caller is already holding any necessary forcewake
531  * domains; use intel_gt_mcr_multicast_rmw() in cases where forcewake should
532  * be obtained automatically.
533  *
534  * Context: Calls functions that take and release gt->mcr_lock
535  *
536  * Returns the old (unmodified) value read.
537  */
538 u32 intel_gt_mcr_multicast_rmw(struct intel_gt *gt, i915_mcr_reg_t reg,
539 			       u32 clear, u32 set)
540 {
541 	u32 val = intel_gt_mcr_read_any(gt, reg);
542 
543 	intel_gt_mcr_multicast_write(gt, reg, (val & ~clear) | set);
544 
545 	return val;
546 }
547 
548 /*
549  * reg_needs_read_steering - determine whether a register read requires
550  *     explicit steering
551  * @gt: GT structure
552  * @reg: the register to check steering requirements for
553  * @type: type of multicast steering to check
554  *
555  * Determines whether @reg needs explicit steering of a specific type for
556  * reads.
557  *
558  * Returns false if @reg does not belong to a register range of the given
559  * steering type, or if the default (subslice-based) steering IDs are suitable
560  * for @type steering too.
561  */
562 static bool reg_needs_read_steering(struct intel_gt *gt,
563 				    i915_mcr_reg_t reg,
564 				    enum intel_steering_type type)
565 {
566 	u32 offset = i915_mmio_reg_offset(reg);
567 	const struct intel_mmio_range *entry;
568 
569 	if (likely(!gt->steering_table[type]))
570 		return false;
571 
572 	if (IS_GSI_REG(offset))
573 		offset += gt->uncore->gsi_offset;
574 
575 	for (entry = gt->steering_table[type]; entry->end; entry++) {
576 		if (offset >= entry->start && offset <= entry->end)
577 			return true;
578 	}
579 
580 	return false;
581 }
582 
583 /*
584  * get_nonterminated_steering - determines valid IDs for a class of MCR steering
585  * @gt: GT structure
586  * @type: multicast register type
587  * @group: Group ID returned
588  * @instance: Instance ID returned
589  *
590  * Determines group and instance values that will steer reads of the specified
591  * MCR class to a non-terminated instance.
592  */
593 static void get_nonterminated_steering(struct intel_gt *gt,
594 				       enum intel_steering_type type,
595 				       u8 *group, u8 *instance)
596 {
597 	u32 dss;
598 
599 	switch (type) {
600 	case L3BANK:
601 		*group = 0;		/* unused */
602 		*instance = __ffs(gt->info.l3bank_mask);
603 		break;
604 	case MSLICE:
605 		GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915));
606 		*group = __ffs(gt->info.mslice_mask);
607 		*instance = 0;	/* unused */
608 		break;
609 	case LNCF:
610 		/*
611 		 * An LNCF is always present if its mslice is present, so we
612 		 * can safely just steer to LNCF 0 in all cases.
613 		 */
614 		GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915));
615 		*group = __ffs(gt->info.mslice_mask) << 1;
616 		*instance = 0;	/* unused */
617 		break;
618 	case GAM:
619 		*group = IS_DG2(gt->i915) ? 1 : 0;
620 		*instance = 0;
621 		break;
622 	case DSS:
623 		dss = intel_sseu_find_first_xehp_dss(&gt->info.sseu, 0, 0);
624 		*group = dss / GEN_DSS_PER_GSLICE;
625 		*instance = dss % GEN_DSS_PER_GSLICE;
626 		break;
627 	case INSTANCE0:
628 		/*
629 		 * There are a lot of MCR types for which instance (0, 0)
630 		 * will always provide a non-terminated value.
631 		 */
632 		*group = 0;
633 		*instance = 0;
634 		break;
635 	case OADDRM:
636 		if ((VDBOX_MASK(gt) | VEBOX_MASK(gt) | gt->info.sfc_mask) & BIT(0))
637 			*group = 0;
638 		else
639 			*group = 1;
640 		*instance = 0;
641 		break;
642 	default:
643 		MISSING_CASE(type);
644 		*group = 0;
645 		*instance = 0;
646 	}
647 }
648 
649 /**
650  * intel_gt_mcr_get_nonterminated_steering - find group/instance values that
651  *    will steer a register to a non-terminated instance
652  * @gt: GT structure
653  * @reg: register for which the steering is required
654  * @group: return variable for group steering
655  * @instance: return variable for instance steering
656  *
657  * This function returns a group/instance pair that is guaranteed to work for
658  * read steering of the given register. Note that a value will be returned even
659  * if the register is not replicated and therefore does not actually require
660  * steering.
661  */
662 void intel_gt_mcr_get_nonterminated_steering(struct intel_gt *gt,
663 					     i915_mcr_reg_t reg,
664 					     u8 *group, u8 *instance)
665 {
666 	int type;
667 
668 	for (type = 0; type < NUM_STEERING_TYPES; type++) {
669 		if (reg_needs_read_steering(gt, reg, type)) {
670 			get_nonterminated_steering(gt, type, group, instance);
671 			return;
672 		}
673 	}
674 
675 	*group = gt->default_steering.groupid;
676 	*instance = gt->default_steering.instanceid;
677 }
678 
679 /**
680  * intel_gt_mcr_read_any_fw - reads one instance of an MCR register
681  * @gt: GT structure
682  * @reg: register to read
683  *
684  * Reads a GT MCR register.  The read will be steered to a non-terminated
685  * instance (i.e., one that isn't fused off or powered down by power gating).
686  * This function assumes the caller is already holding any necessary forcewake
687  * domains; use intel_gt_mcr_read_any() in cases where forcewake should be
688  * obtained automatically.
689  *
690  * Context: The caller must hold gt->mcr_lock.
691  *
692  * Returns the value from a non-terminated instance of @reg.
693  */
694 u32 intel_gt_mcr_read_any_fw(struct intel_gt *gt, i915_mcr_reg_t reg)
695 {
696 	int type;
697 	u8 group, instance;
698 
699 	lockdep_assert_held(&gt->mcr_lock);
700 
701 	for (type = 0; type < NUM_STEERING_TYPES; type++) {
702 		if (reg_needs_read_steering(gt, reg, type)) {
703 			get_nonterminated_steering(gt, type, &group, &instance);
704 			return rw_with_mcr_steering_fw(gt, reg,
705 						       FW_REG_READ,
706 						       group, instance, 0);
707 		}
708 	}
709 
710 	return intel_uncore_read_fw(gt->uncore, mcr_reg_cast(reg));
711 }
712 
713 /**
714  * intel_gt_mcr_read_any - reads one instance of an MCR register
715  * @gt: GT structure
716  * @reg: register to read
717  *
718  * Reads a GT MCR register.  The read will be steered to a non-terminated
719  * instance (i.e., one that isn't fused off or powered down by power gating).
720  *
721  * Context: Calls a function that takes and releases gt->mcr_lock.
722  *
723  * Returns the value from a non-terminated instance of @reg.
724  */
725 u32 intel_gt_mcr_read_any(struct intel_gt *gt, i915_mcr_reg_t reg)
726 {
727 	int type;
728 	u8 group, instance;
729 
730 	for (type = 0; type < NUM_STEERING_TYPES; type++) {
731 		if (reg_needs_read_steering(gt, reg, type)) {
732 			get_nonterminated_steering(gt, type, &group, &instance);
733 			return rw_with_mcr_steering(gt, reg,
734 						    FW_REG_READ,
735 						    group, instance, 0);
736 		}
737 	}
738 
739 	return intel_uncore_read(gt->uncore, mcr_reg_cast(reg));
740 }
741 
742 static void report_steering_type(struct drm_printer *p,
743 				 struct intel_gt *gt,
744 				 enum intel_steering_type type,
745 				 bool dump_table)
746 {
747 	const struct intel_mmio_range *entry;
748 	u8 group, instance;
749 
750 	BUILD_BUG_ON(ARRAY_SIZE(intel_steering_types) != NUM_STEERING_TYPES);
751 
752 	if (!gt->steering_table[type]) {
753 		drm_printf(p, "%s steering: uses default steering\n",
754 			   intel_steering_types[type]);
755 		return;
756 	}
757 
758 	get_nonterminated_steering(gt, type, &group, &instance);
759 	drm_printf(p, "%s steering: group=0x%x, instance=0x%x\n",
760 		   intel_steering_types[type], group, instance);
761 
762 	if (!dump_table)
763 		return;
764 
765 	for (entry = gt->steering_table[type]; entry->end; entry++)
766 		drm_printf(p, "\t0x%06x - 0x%06x\n", entry->start, entry->end);
767 }
768 
769 void intel_gt_mcr_report_steering(struct drm_printer *p, struct intel_gt *gt,
770 				  bool dump_table)
771 {
772 	/*
773 	 * Starting with MTL we no longer have default steering;
774 	 * all ranges are explicitly steered.
775 	 */
776 	if (GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70))
777 		drm_printf(p, "Default steering: group=0x%x, instance=0x%x\n",
778 			   gt->default_steering.groupid,
779 			   gt->default_steering.instanceid);
780 
781 	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
782 		for (int i = 0; i < NUM_STEERING_TYPES; i++)
783 			if (gt->steering_table[i])
784 				report_steering_type(p, gt, i, dump_table);
785 	} else if (HAS_MSLICE_STEERING(gt->i915)) {
786 		report_steering_type(p, gt, MSLICE, dump_table);
787 		report_steering_type(p, gt, LNCF, dump_table);
788 	}
789 }
790 
791 /**
792  * intel_gt_mcr_get_ss_steering - returns the group/instance steering for a SS
793  * @gt: GT structure
794  * @dss: DSS ID to obtain steering for
795  * @group: pointer to storage for steering group ID
796  * @instance: pointer to storage for steering instance ID
797  *
798  * Returns the steering IDs (via the @group and @instance parameters) that
799  * correspond to a specific subslice/DSS ID.
800  */
801 void intel_gt_mcr_get_ss_steering(struct intel_gt *gt, unsigned int dss,
802 				   unsigned int *group, unsigned int *instance)
803 {
804 	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 55)) {
805 		*group = dss / GEN_DSS_PER_GSLICE;
806 		*instance = dss % GEN_DSS_PER_GSLICE;
807 	} else {
808 		*group = dss / GEN_MAX_SS_PER_HSW_SLICE;
809 		*instance = dss % GEN_MAX_SS_PER_HSW_SLICE;
810 		return;
811 	}
812 }
813 
814 /**
815  * intel_gt_mcr_wait_for_reg - wait until MCR register matches expected state
816  * @gt: GT structure
817  * @reg: the register to read
818  * @mask: mask to apply to register value
819  * @value: value to wait for
820  * @fast_timeout_us: fast timeout in microsecond for atomic/tight wait
821  * @slow_timeout_ms: slow timeout in millisecond
822  *
823  * This routine waits until the target register @reg contains the expected
824  * @value after applying the @mask, i.e. it waits until ::
825  *
826  *     (intel_gt_mcr_read_any_fw(gt, reg) & mask) == value
827  *
828  * Otherwise, the wait will timeout after @slow_timeout_ms milliseconds.
829  * For atomic context @slow_timeout_ms must be zero and @fast_timeout_us
830  * must be not larger than 20,0000 microseconds.
831  *
832  * This function is basically an MCR-friendly version of
833  * __intel_wait_for_register_fw().  Generally this function will only be used
834  * on GAM registers which are a bit special --- although they're MCR registers,
835  * reads (e.g., waiting for status updates) are always directed to the primary
836  * instance.
837  *
838  * Note that this routine assumes the caller holds forcewake asserted, it is
839  * not suitable for very long waits.
840  *
841  * Context: Calls a function that takes and releases gt->mcr_lock
842  * Return: 0 if the register matches the desired condition, or -ETIMEDOUT.
843  */
844 int intel_gt_mcr_wait_for_reg(struct intel_gt *gt,
845 			      i915_mcr_reg_t reg,
846 			      u32 mask,
847 			      u32 value,
848 			      unsigned int fast_timeout_us,
849 			      unsigned int slow_timeout_ms)
850 {
851 	int ret;
852 
853 	lockdep_assert_not_held(&gt->mcr_lock);
854 
855 #define done ((intel_gt_mcr_read_any(gt, reg) & mask) == value)
856 
857 	/* Catch any overuse of this function */
858 	might_sleep_if(slow_timeout_ms);
859 	GEM_BUG_ON(fast_timeout_us > 20000);
860 	GEM_BUG_ON(!fast_timeout_us && !slow_timeout_ms);
861 
862 	ret = -ETIMEDOUT;
863 	if (fast_timeout_us && fast_timeout_us <= 20000)
864 		ret = _wait_for_atomic(done, fast_timeout_us, 0);
865 	if (ret && slow_timeout_ms)
866 		ret = wait_for(done, slow_timeout_ms);
867 
868 	return ret;
869 #undef done
870 }
871