xref: /linux/drivers/gpu/drm/i915/gt/intel_gt_clock_utils.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "intel_gt.h"
9 #include "intel_gt_clock_utils.h"
10 #include "intel_gt_print.h"
11 #include "intel_gt_regs.h"
12 #include "soc/intel_dram.h"
13 
14 static u32 read_reference_ts_freq(struct intel_uncore *uncore)
15 {
16 	u32 ts_override = intel_uncore_read(uncore, GEN9_TIMESTAMP_OVERRIDE);
17 	u32 base_freq, frac_freq;
18 
19 	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
20 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
21 	base_freq *= 1000000;
22 
23 	frac_freq = ((ts_override &
24 		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
25 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
26 	frac_freq = 1000000 / (frac_freq + 1);
27 
28 	return base_freq + frac_freq;
29 }
30 
31 static u32 gen11_get_crystal_clock_freq(struct intel_uncore *uncore,
32 					u32 rpm_config_reg)
33 {
34 	u32 f19_2_mhz = 19200000;
35 	u32 f24_mhz = 24000000;
36 	u32 f25_mhz = 25000000;
37 	u32 f38_4_mhz = 38400000;
38 	u32 crystal_clock =
39 		(rpm_config_reg & GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
40 		GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
41 
42 	switch (crystal_clock) {
43 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
44 		return f24_mhz;
45 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
46 		return f19_2_mhz;
47 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
48 		return f38_4_mhz;
49 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
50 		return f25_mhz;
51 	default:
52 		MISSING_CASE(crystal_clock);
53 		return 0;
54 	}
55 }
56 
57 static u32 gen11_read_clock_frequency(struct intel_uncore *uncore)
58 {
59 	u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
60 	u32 freq = 0;
61 
62 	/*
63 	 * Note that on gen11+, the clock frequency may be reconfigured.
64 	 * We do not, and we assume nobody else does.
65 	 *
66 	 * First figure out the reference frequency. There are 2 ways
67 	 * we can compute the frequency, either through the
68 	 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
69 	 * tells us which one we should use.
70 	 */
71 	if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
72 		freq = read_reference_ts_freq(uncore);
73 	} else {
74 		u32 c0 = intel_uncore_read(uncore, RPM_CONFIG0);
75 
76 		freq = gen11_get_crystal_clock_freq(uncore, c0);
77 
78 		/*
79 		 * Now figure out how the command stream's timestamp
80 		 * register increments from this frequency (it might
81 		 * increment only every few clock cycle).
82 		 */
83 		freq >>= 3 - ((c0 & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
84 			      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
85 	}
86 
87 	return freq;
88 }
89 
90 static u32 gen9_read_clock_frequency(struct intel_uncore *uncore)
91 {
92 	u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
93 	u32 freq = 0;
94 
95 	if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
96 		freq = read_reference_ts_freq(uncore);
97 	} else {
98 		freq = IS_GEN9_LP(uncore->i915) ? 19200000 : 24000000;
99 
100 		/*
101 		 * Now figure out how the command stream's timestamp
102 		 * register increments from this frequency (it might
103 		 * increment only every few clock cycle).
104 		 */
105 		freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
106 			      CTC_SHIFT_PARAMETER_SHIFT);
107 	}
108 
109 	return freq;
110 }
111 
112 static u32 gen6_read_clock_frequency(struct intel_uncore *uncore)
113 {
114 	/*
115 	 * PRMs say:
116 	 *
117 	 *     "The PCU TSC counts 10ns increments; this timestamp
118 	 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
119 	 *      rolling over every 1.5 hours).
120 	 */
121 	return 12500000;
122 }
123 
124 static u32 gen5_read_clock_frequency(struct intel_uncore *uncore)
125 {
126 	/*
127 	 * 63:32 increments every 1000 ns
128 	 * 31:0 mbz
129 	 */
130 	return 1000000000 / 1000;
131 }
132 
133 static u32 g4x_read_clock_frequency(struct intel_uncore *uncore)
134 {
135 	/*
136 	 * 63:20 increments every 1/4 ns
137 	 * 19:0 mbz
138 	 *
139 	 * -> 63:32 increments every 1024 ns
140 	 */
141 	return 1000000000 / 1024;
142 }
143 
144 static u32 gen4_read_clock_frequency(struct intel_uncore *uncore)
145 {
146 	/*
147 	 * PRMs say:
148 	 *
149 	 *     "The value in this register increments once every 16
150 	 *      hclks." (through the “Clocking Configuration”
151 	 *      (“CLKCFG”) MCHBAR register)
152 	 *
153 	 * Testing on actual hardware has shown there is no /16.
154 	 */
155 	return DIV_ROUND_CLOSEST(i9xx_fsb_freq(uncore->i915), 4) * 1000;
156 }
157 
158 static u32 read_clock_frequency(struct intel_uncore *uncore)
159 {
160 	if (GRAPHICS_VER(uncore->i915) >= 11)
161 		return gen11_read_clock_frequency(uncore);
162 	else if (GRAPHICS_VER(uncore->i915) >= 9)
163 		return gen9_read_clock_frequency(uncore);
164 	else if (GRAPHICS_VER(uncore->i915) >= 6)
165 		return gen6_read_clock_frequency(uncore);
166 	else if (GRAPHICS_VER(uncore->i915) == 5)
167 		return gen5_read_clock_frequency(uncore);
168 	else if (IS_G4X(uncore->i915))
169 		return g4x_read_clock_frequency(uncore);
170 	else if (GRAPHICS_VER(uncore->i915) == 4)
171 		return gen4_read_clock_frequency(uncore);
172 	else
173 		return 0;
174 }
175 
176 void intel_gt_init_clock_frequency(struct intel_gt *gt)
177 {
178 	gt->clock_frequency = read_clock_frequency(gt->uncore);
179 
180 	/* Icelake appears to use another fixed frequency for CTX_TIMESTAMP */
181 	if (GRAPHICS_VER(gt->i915) == 11)
182 		gt->clock_period_ns = NSEC_PER_SEC / 13750000;
183 	else if (gt->clock_frequency)
184 		gt->clock_period_ns = intel_gt_clock_interval_to_ns(gt, 1);
185 
186 	GT_TRACE(gt,
187 		 "Using clock frequency: %dkHz, period: %dns, wrap: %lldms\n",
188 		 gt->clock_frequency / 1000,
189 		 gt->clock_period_ns,
190 		 div_u64(mul_u32_u32(gt->clock_period_ns, S32_MAX),
191 			 USEC_PER_SEC));
192 }
193 
194 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
195 void intel_gt_check_clock_frequency(const struct intel_gt *gt)
196 {
197 	if (gt->clock_frequency != read_clock_frequency(gt->uncore)) {
198 		gt_err(gt, "GT clock frequency changed, was %uHz, now %uHz!\n",
199 		       gt->clock_frequency,
200 		       read_clock_frequency(gt->uncore));
201 	}
202 }
203 #endif
204 
205 static u64 div_u64_roundup(u64 nom, u32 den)
206 {
207 	return div_u64(nom + den - 1, den);
208 }
209 
210 u64 intel_gt_clock_interval_to_ns(const struct intel_gt *gt, u64 count)
211 {
212 	return div_u64_roundup(count * NSEC_PER_SEC, gt->clock_frequency);
213 }
214 
215 u64 intel_gt_pm_interval_to_ns(const struct intel_gt *gt, u64 count)
216 {
217 	return intel_gt_clock_interval_to_ns(gt, 16 * count);
218 }
219 
220 u64 intel_gt_ns_to_clock_interval(const struct intel_gt *gt, u64 ns)
221 {
222 	return div_u64_roundup(gt->clock_frequency * ns, NSEC_PER_SEC);
223 }
224 
225 u64 intel_gt_ns_to_pm_interval(const struct intel_gt *gt, u64 ns)
226 {
227 	u64 val;
228 
229 	/*
230 	 * Make these a multiple of magic 25 to avoid SNB (eg. Dell XPS
231 	 * 8300) freezing up around GPU hangs. Looks as if even
232 	 * scheduling/timer interrupts start misbehaving if the RPS
233 	 * EI/thresholds are "bad", leading to a very sluggish or even
234 	 * frozen machine.
235 	 */
236 	val = div_u64_roundup(intel_gt_ns_to_clock_interval(gt, ns), 16);
237 	if (GRAPHICS_VER(gt->i915) == 6)
238 		val = div_u64_roundup(val, 25) * 25;
239 
240 	return val;
241 }
242