1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2019 Intel Corporation 4 */ 5 6 #include <drm/drm_managed.h> 7 #include <drm/intel/intel-gtt.h> 8 9 #include "gem/i915_gem_internal.h" 10 #include "gem/i915_gem_lmem.h" 11 12 #include "i915_drv.h" 13 #include "i915_perf_oa_regs.h" 14 #include "i915_reg.h" 15 #include "intel_context.h" 16 #include "intel_engine_pm.h" 17 #include "intel_engine_regs.h" 18 #include "intel_ggtt_gmch.h" 19 #include "intel_gt.h" 20 #include "intel_gt_buffer_pool.h" 21 #include "intel_gt_clock_utils.h" 22 #include "intel_gt_debugfs.h" 23 #include "intel_gt_mcr.h" 24 #include "intel_gt_pm.h" 25 #include "intel_gt_print.h" 26 #include "intel_gt_regs.h" 27 #include "intel_gt_requests.h" 28 #include "intel_migrate.h" 29 #include "intel_mocs.h" 30 #include "intel_pci_config.h" 31 #include "intel_rc6.h" 32 #include "intel_renderstate.h" 33 #include "intel_rps.h" 34 #include "intel_sa_media.h" 35 #include "intel_gt_sysfs.h" 36 #include "intel_tlb.h" 37 #include "intel_uncore.h" 38 #include "shmem_utils.h" 39 40 void intel_gt_common_init_early(struct intel_gt *gt) 41 { 42 spin_lock_init(gt->irq_lock); 43 44 INIT_LIST_HEAD(>->closed_vma); 45 spin_lock_init(>->closed_lock); 46 47 init_llist_head(>->watchdog.list); 48 INIT_WORK(>->watchdog.work, intel_gt_watchdog_work); 49 50 intel_gt_init_buffer_pool(gt); 51 intel_gt_init_reset(gt); 52 intel_gt_init_requests(gt); 53 intel_gt_init_timelines(gt); 54 intel_gt_init_tlb(gt); 55 intel_gt_pm_init_early(gt); 56 57 intel_wopcm_init_early(>->wopcm); 58 intel_uc_init_early(>->uc); 59 intel_rps_init_early(>->rps); 60 } 61 62 /* Preliminary initialization of Tile 0 */ 63 int intel_root_gt_init_early(struct drm_i915_private *i915) 64 { 65 struct intel_gt *gt; 66 67 gt = drmm_kzalloc(&i915->drm, sizeof(*gt), GFP_KERNEL); 68 if (!gt) 69 return -ENOMEM; 70 71 i915->gt[0] = gt; 72 73 gt->i915 = i915; 74 gt->uncore = &i915->uncore; 75 gt->irq_lock = drmm_kzalloc(&i915->drm, sizeof(*gt->irq_lock), GFP_KERNEL); 76 if (!gt->irq_lock) 77 return -ENOMEM; 78 79 intel_gt_common_init_early(gt); 80 81 return 0; 82 } 83 84 static int intel_gt_probe_lmem(struct intel_gt *gt) 85 { 86 struct drm_i915_private *i915 = gt->i915; 87 unsigned int instance = gt->info.id; 88 int id = INTEL_REGION_LMEM_0 + instance; 89 struct intel_memory_region *mem; 90 int err; 91 92 mem = intel_gt_setup_lmem(gt); 93 if (IS_ERR(mem)) { 94 err = PTR_ERR(mem); 95 if (err == -ENODEV) 96 return 0; 97 98 gt_err(gt, "Failed to setup region(%d) type=%d\n", 99 err, INTEL_MEMORY_LOCAL); 100 return err; 101 } 102 103 mem->id = id; 104 mem->instance = instance; 105 106 intel_memory_region_set_name(mem, "local%u", mem->instance); 107 108 GEM_BUG_ON(!HAS_REGION(i915, id)); 109 GEM_BUG_ON(i915->mm.regions[id]); 110 i915->mm.regions[id] = mem; 111 112 return 0; 113 } 114 115 int intel_gt_assign_ggtt(struct intel_gt *gt) 116 { 117 /* Media GT shares primary GT's GGTT */ 118 if (gt->type == GT_MEDIA) { 119 gt->ggtt = to_gt(gt->i915)->ggtt; 120 } else { 121 gt->ggtt = i915_ggtt_create(gt->i915); 122 if (IS_ERR(gt->ggtt)) 123 return PTR_ERR(gt->ggtt); 124 } 125 126 list_add_tail(>->ggtt_link, >->ggtt->gt_list); 127 128 return 0; 129 } 130 131 int intel_gt_init_mmio(struct intel_gt *gt) 132 { 133 intel_gt_init_clock_frequency(gt); 134 135 intel_uc_init_mmio(>->uc); 136 intel_sseu_info_init(gt); 137 intel_gt_mcr_init(gt); 138 139 return intel_engines_init_mmio(gt); 140 } 141 142 static void init_unused_ring(struct intel_gt *gt, u32 base) 143 { 144 struct intel_uncore *uncore = gt->uncore; 145 146 intel_uncore_write(uncore, RING_CTL(base), 0); 147 intel_uncore_write(uncore, RING_HEAD(base), 0); 148 intel_uncore_write(uncore, RING_TAIL(base), 0); 149 intel_uncore_write(uncore, RING_START(base), 0); 150 } 151 152 static void init_unused_rings(struct intel_gt *gt) 153 { 154 struct drm_i915_private *i915 = gt->i915; 155 156 if (IS_I830(i915)) { 157 init_unused_ring(gt, PRB1_BASE); 158 init_unused_ring(gt, SRB0_BASE); 159 init_unused_ring(gt, SRB1_BASE); 160 init_unused_ring(gt, SRB2_BASE); 161 init_unused_ring(gt, SRB3_BASE); 162 } else if (GRAPHICS_VER(i915) == 2) { 163 init_unused_ring(gt, SRB0_BASE); 164 init_unused_ring(gt, SRB1_BASE); 165 } else if (GRAPHICS_VER(i915) == 3) { 166 init_unused_ring(gt, PRB1_BASE); 167 init_unused_ring(gt, PRB2_BASE); 168 } 169 } 170 171 int intel_gt_init_hw(struct intel_gt *gt) 172 { 173 struct drm_i915_private *i915 = gt->i915; 174 struct intel_uncore *uncore = gt->uncore; 175 int ret; 176 177 gt->last_init_time = ktime_get(); 178 179 /* Double layer security blanket, see i915_gem_init() */ 180 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); 181 182 if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9) 183 intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf)); 184 185 if (IS_HASWELL(i915)) 186 intel_uncore_write(uncore, 187 HSW_MI_PREDICATE_RESULT_2, 188 INTEL_INFO(i915)->gt == 3 ? 189 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 190 191 /* Apply the GT workarounds... */ 192 intel_gt_apply_workarounds(gt); 193 /* ...and determine whether they are sticking. */ 194 intel_gt_verify_workarounds(gt, "init"); 195 196 intel_gt_init_swizzling(gt); 197 198 /* 199 * At least 830 can leave some of the unused rings 200 * "active" (ie. head != tail) after resume which 201 * will prevent c3 entry. Makes sure all unused rings 202 * are totally idle. 203 */ 204 init_unused_rings(gt); 205 206 ret = i915_ppgtt_init_hw(gt); 207 if (ret) { 208 gt_err(gt, "Enabling PPGTT failed (%d)\n", ret); 209 goto out; 210 } 211 212 /* We can't enable contexts until all firmware is loaded */ 213 ret = intel_uc_init_hw(>->uc); 214 if (ret) { 215 gt_probe_error(gt, "Enabling uc failed (%d)\n", ret); 216 goto out; 217 } 218 219 intel_mocs_init(gt); 220 221 out: 222 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); 223 return ret; 224 } 225 226 static void gen6_clear_engine_error_register(struct intel_engine_cs *engine) 227 { 228 GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0); 229 GEN6_RING_FAULT_REG_POSTING_READ(engine); 230 } 231 232 i915_reg_t intel_gt_perf_limit_reasons_reg(struct intel_gt *gt) 233 { 234 /* GT0_PERF_LIMIT_REASONS is available only for Gen11+ */ 235 if (GRAPHICS_VER(gt->i915) < 11) 236 return INVALID_MMIO_REG; 237 238 return gt->type == GT_MEDIA ? 239 MTL_MEDIA_PERF_LIMIT_REASONS : GT0_PERF_LIMIT_REASONS; 240 } 241 242 void 243 intel_gt_clear_error_registers(struct intel_gt *gt, 244 intel_engine_mask_t engine_mask) 245 { 246 struct drm_i915_private *i915 = gt->i915; 247 struct intel_uncore *uncore = gt->uncore; 248 u32 eir; 249 250 if (GRAPHICS_VER(i915) != 2) 251 intel_uncore_write(uncore, PGTBL_ER, 0); 252 253 if (GRAPHICS_VER(i915) < 4) 254 intel_uncore_write(uncore, IPEIR(RENDER_RING_BASE), 0); 255 else 256 intel_uncore_write(uncore, IPEIR_I965, 0); 257 258 intel_uncore_write(uncore, EIR, 0); 259 eir = intel_uncore_read(uncore, EIR); 260 if (eir) { 261 /* 262 * some errors might have become stuck, 263 * mask them. 264 */ 265 gt_dbg(gt, "EIR stuck: 0x%08x, masking\n", eir); 266 intel_uncore_rmw(uncore, EMR, 0, eir); 267 intel_uncore_write(uncore, GEN2_IIR, 268 I915_MASTER_ERROR_INTERRUPT); 269 } 270 271 /* 272 * For the media GT, this ring fault register is not replicated, 273 * so don't do multicast/replicated register read/write operation on it. 274 */ 275 if (MEDIA_VER(i915) >= 13 && gt->type == GT_MEDIA) { 276 intel_uncore_rmw(uncore, XELPMP_RING_FAULT_REG, 277 RING_FAULT_VALID, 0); 278 intel_uncore_posting_read(uncore, 279 XELPMP_RING_FAULT_REG); 280 281 } else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) { 282 intel_gt_mcr_multicast_rmw(gt, XEHP_RING_FAULT_REG, 283 RING_FAULT_VALID, 0); 284 intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG); 285 286 } else if (GRAPHICS_VER(i915) >= 12) { 287 intel_uncore_rmw(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID, 0); 288 intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG); 289 } else if (GRAPHICS_VER(i915) >= 8) { 290 intel_uncore_rmw(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID, 0); 291 intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG); 292 } else if (GRAPHICS_VER(i915) >= 6) { 293 struct intel_engine_cs *engine; 294 enum intel_engine_id id; 295 296 for_each_engine_masked(engine, gt, engine_mask, id) 297 gen6_clear_engine_error_register(engine); 298 } 299 } 300 301 static void gen6_check_faults(struct intel_gt *gt) 302 { 303 struct intel_engine_cs *engine; 304 enum intel_engine_id id; 305 306 for_each_engine(engine, gt, id) { 307 u32 fault; 308 309 fault = GEN6_RING_FAULT_REG_READ(engine); 310 311 if (fault & RING_FAULT_VALID) { 312 gt_dbg(gt, "Unexpected fault\n" 313 "\tAddr: 0x%08x\n" 314 "\tAddress space: %s\n" 315 "\tSource ID: %d\n" 316 "\tType: %d\n", 317 fault & RING_FAULT_VADDR_MASK, 318 fault & RING_FAULT_GTTSEL_MASK ? 319 "GGTT" : "PPGTT", 320 REG_FIELD_GET(RING_FAULT_SRCID_MASK, fault), 321 REG_FIELD_GET(RING_FAULT_FAULT_TYPE_MASK, fault)); 322 } 323 } 324 } 325 326 static void gen8_report_fault(struct intel_gt *gt, u32 fault, 327 u32 fault_data0, u32 fault_data1) 328 { 329 u64 fault_addr; 330 331 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) | 332 ((u64)fault_data0 << 12); 333 334 gt_dbg(gt, "Unexpected fault\n" 335 "\tAddr: 0x%08x_%08x\n" 336 "\tAddress space: %s\n" 337 "\tEngine ID: %d\n" 338 "\tSource ID: %d\n" 339 "\tType: %d\n", 340 upper_32_bits(fault_addr), lower_32_bits(fault_addr), 341 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT", 342 REG_FIELD_GET(RING_FAULT_ENGINE_ID_MASK, fault), 343 REG_FIELD_GET(RING_FAULT_SRCID_MASK, fault), 344 REG_FIELD_GET(RING_FAULT_FAULT_TYPE_MASK, fault)); 345 } 346 347 static void xehp_check_faults(struct intel_gt *gt) 348 { 349 u32 fault; 350 351 /* 352 * Although the fault register now lives in an MCR register range, 353 * the GAM registers are special and we only truly need to read 354 * the "primary" GAM instance rather than handling each instance 355 * individually. intel_gt_mcr_read_any() will automatically steer 356 * toward the primary instance. 357 */ 358 fault = intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG); 359 if (fault & RING_FAULT_VALID) 360 gen8_report_fault(gt, fault, 361 intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA0), 362 intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA1)); 363 } 364 365 static void gen8_check_faults(struct intel_gt *gt) 366 { 367 struct intel_uncore *uncore = gt->uncore; 368 i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg; 369 u32 fault; 370 371 if (GRAPHICS_VER(gt->i915) >= 12) { 372 fault_reg = GEN12_RING_FAULT_REG; 373 fault_data0_reg = GEN12_FAULT_TLB_DATA0; 374 fault_data1_reg = GEN12_FAULT_TLB_DATA1; 375 } else { 376 fault_reg = GEN8_RING_FAULT_REG; 377 fault_data0_reg = GEN8_FAULT_TLB_DATA0; 378 fault_data1_reg = GEN8_FAULT_TLB_DATA1; 379 } 380 381 fault = intel_uncore_read(uncore, fault_reg); 382 if (fault & RING_FAULT_VALID) 383 gen8_report_fault(gt, fault, 384 intel_uncore_read(uncore, fault_data0_reg), 385 intel_uncore_read(uncore, fault_data1_reg)); 386 } 387 388 void intel_gt_check_and_clear_faults(struct intel_gt *gt) 389 { 390 struct drm_i915_private *i915 = gt->i915; 391 392 /* From GEN8 onwards we only have one 'All Engine Fault Register' */ 393 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) 394 xehp_check_faults(gt); 395 else if (GRAPHICS_VER(i915) >= 8) 396 gen8_check_faults(gt); 397 else if (GRAPHICS_VER(i915) >= 6) 398 gen6_check_faults(gt); 399 else 400 return; 401 402 intel_gt_clear_error_registers(gt, ALL_ENGINES); 403 } 404 405 void intel_gt_flush_ggtt_writes(struct intel_gt *gt) 406 { 407 struct intel_uncore *uncore = gt->uncore; 408 intel_wakeref_t wakeref; 409 410 /* 411 * No actual flushing is required for the GTT write domain for reads 412 * from the GTT domain. Writes to it "immediately" go to main memory 413 * as far as we know, so there's no chipset flush. It also doesn't 414 * land in the GPU render cache. 415 * 416 * However, we do have to enforce the order so that all writes through 417 * the GTT land before any writes to the device, such as updates to 418 * the GATT itself. 419 * 420 * We also have to wait a bit for the writes to land from the GTT. 421 * An uncached read (i.e. mmio) seems to be ideal for the round-trip 422 * timing. This issue has only been observed when switching quickly 423 * between GTT writes and CPU reads from inside the kernel on recent hw, 424 * and it appears to only affect discrete GTT blocks (i.e. on LLC 425 * system agents we cannot reproduce this behaviour, until Cannonlake 426 * that was!). 427 */ 428 429 wmb(); 430 431 if (INTEL_INFO(gt->i915)->has_coherent_ggtt) 432 return; 433 434 intel_gt_chipset_flush(gt); 435 436 with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) { 437 unsigned long flags; 438 439 spin_lock_irqsave(&uncore->lock, flags); 440 intel_uncore_posting_read_fw(uncore, 441 RING_TAIL(RENDER_RING_BASE)); 442 spin_unlock_irqrestore(&uncore->lock, flags); 443 } 444 } 445 446 void intel_gt_chipset_flush(struct intel_gt *gt) 447 { 448 wmb(); 449 if (GRAPHICS_VER(gt->i915) < 6) 450 intel_ggtt_gmch_flush(); 451 } 452 453 void intel_gt_driver_register(struct intel_gt *gt) 454 { 455 intel_gsc_init(>->gsc, gt->i915); 456 457 intel_rps_driver_register(>->rps); 458 459 intel_gt_debugfs_register(gt); 460 intel_gt_sysfs_register(gt); 461 } 462 463 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size) 464 { 465 struct drm_i915_private *i915 = gt->i915; 466 struct drm_i915_gem_object *obj; 467 struct i915_vma *vma; 468 int ret; 469 470 obj = i915_gem_object_create_lmem(i915, size, 471 I915_BO_ALLOC_VOLATILE | 472 I915_BO_ALLOC_GPU_ONLY); 473 if (IS_ERR(obj) && !IS_METEORLAKE(i915)) /* Wa_22018444074 */ 474 obj = i915_gem_object_create_stolen(i915, size); 475 if (IS_ERR(obj)) 476 obj = i915_gem_object_create_internal(i915, size); 477 if (IS_ERR(obj)) { 478 gt_err(gt, "Failed to allocate scratch page\n"); 479 return PTR_ERR(obj); 480 } 481 482 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 483 if (IS_ERR(vma)) { 484 ret = PTR_ERR(vma); 485 goto err_unref; 486 } 487 488 ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH); 489 if (ret) 490 goto err_unref; 491 492 gt->scratch = i915_vma_make_unshrinkable(vma); 493 494 return 0; 495 496 err_unref: 497 i915_gem_object_put(obj); 498 return ret; 499 } 500 501 static void intel_gt_fini_scratch(struct intel_gt *gt) 502 { 503 i915_vma_unpin_and_release(>->scratch, 0); 504 } 505 506 static struct i915_address_space *kernel_vm(struct intel_gt *gt) 507 { 508 if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING) 509 return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm; 510 else 511 return i915_vm_get(>->ggtt->vm); 512 } 513 514 static int __engines_record_defaults(struct intel_gt *gt) 515 { 516 struct i915_request *requests[I915_NUM_ENGINES] = {}; 517 struct intel_engine_cs *engine; 518 enum intel_engine_id id; 519 int err = 0; 520 521 /* 522 * As we reset the gpu during very early sanitisation, the current 523 * register state on the GPU should reflect its defaults values. 524 * We load a context onto the hw (with restore-inhibit), then switch 525 * over to a second context to save that default register state. We 526 * can then prime every new context with that state so they all start 527 * from the same default HW values. 528 */ 529 530 for_each_engine(engine, gt, id) { 531 struct intel_renderstate so; 532 struct intel_context *ce; 533 struct i915_request *rq; 534 535 /* We must be able to switch to something! */ 536 GEM_BUG_ON(!engine->kernel_context); 537 538 ce = intel_context_create(engine); 539 if (IS_ERR(ce)) { 540 err = PTR_ERR(ce); 541 goto out; 542 } 543 544 err = intel_renderstate_init(&so, ce); 545 if (err) 546 goto err; 547 548 rq = i915_request_create(ce); 549 if (IS_ERR(rq)) { 550 err = PTR_ERR(rq); 551 goto err_fini; 552 } 553 554 err = intel_engine_emit_ctx_wa(rq); 555 if (err) 556 goto err_rq; 557 558 err = intel_renderstate_emit(&so, rq); 559 if (err) 560 goto err_rq; 561 562 err_rq: 563 requests[id] = i915_request_get(rq); 564 i915_request_add(rq); 565 err_fini: 566 intel_renderstate_fini(&so, ce); 567 err: 568 if (err) { 569 intel_context_put(ce); 570 goto out; 571 } 572 } 573 574 /* Flush the default context image to memory, and enable powersaving. */ 575 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) { 576 err = -EIO; 577 goto out; 578 } 579 580 for (id = 0; id < ARRAY_SIZE(requests); id++) { 581 struct i915_request *rq; 582 struct file *state; 583 584 rq = requests[id]; 585 if (!rq) 586 continue; 587 588 if (rq->fence.error) { 589 err = -EIO; 590 goto out; 591 } 592 593 GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags)); 594 if (!rq->context->state) 595 continue; 596 597 /* Keep a copy of the state's backing pages; free the obj */ 598 state = shmem_create_from_object(rq->context->state->obj); 599 if (IS_ERR(state)) { 600 err = PTR_ERR(state); 601 goto out; 602 } 603 rq->engine->default_state = state; 604 } 605 606 out: 607 /* 608 * If we have to abandon now, we expect the engines to be idle 609 * and ready to be torn-down. The quickest way we can accomplish 610 * this is by declaring ourselves wedged. 611 */ 612 if (err) 613 intel_gt_set_wedged(gt); 614 615 for (id = 0; id < ARRAY_SIZE(requests); id++) { 616 struct intel_context *ce; 617 struct i915_request *rq; 618 619 rq = requests[id]; 620 if (!rq) 621 continue; 622 623 ce = rq->context; 624 i915_request_put(rq); 625 intel_context_put(ce); 626 } 627 return err; 628 } 629 630 static int __engines_verify_workarounds(struct intel_gt *gt) 631 { 632 struct intel_engine_cs *engine; 633 enum intel_engine_id id; 634 int err = 0; 635 636 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 637 return 0; 638 639 for_each_engine(engine, gt, id) { 640 if (intel_engine_verify_workarounds(engine, "load")) 641 err = -EIO; 642 } 643 644 /* Flush and restore the kernel context for safety */ 645 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) 646 err = -EIO; 647 648 return err; 649 } 650 651 static void __intel_gt_disable(struct intel_gt *gt) 652 { 653 intel_gt_set_wedged_on_fini(gt); 654 655 intel_gt_suspend_prepare(gt); 656 intel_gt_suspend_late(gt); 657 658 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 659 } 660 661 int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout) 662 { 663 long remaining_timeout; 664 665 /* If the device is asleep, we have no requests outstanding */ 666 if (!intel_gt_pm_is_awake(gt)) 667 return 0; 668 669 while ((timeout = intel_gt_retire_requests_timeout(gt, timeout, 670 &remaining_timeout)) > 0) { 671 cond_resched(); 672 if (signal_pending(current)) 673 return -EINTR; 674 } 675 676 if (timeout) 677 return timeout; 678 679 if (remaining_timeout < 0) 680 remaining_timeout = 0; 681 682 return intel_uc_wait_for_idle(>->uc, remaining_timeout); 683 } 684 685 int intel_gt_init(struct intel_gt *gt) 686 { 687 int err; 688 689 err = i915_inject_probe_error(gt->i915, -ENODEV); 690 if (err) 691 return err; 692 693 intel_gt_init_workarounds(gt); 694 695 /* 696 * This is just a security blanket to placate dragons. 697 * On some systems, we very sporadically observe that the first TLBs 698 * used by the CS may be stale, despite us poking the TLB reset. If 699 * we hold the forcewake during initialisation these problems 700 * just magically go away. 701 */ 702 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 703 704 err = intel_gt_init_scratch(gt, 705 GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K); 706 if (err) 707 goto out_fw; 708 709 intel_gt_pm_init(gt); 710 711 gt->vm = kernel_vm(gt); 712 if (!gt->vm) { 713 err = -ENOMEM; 714 goto err_pm; 715 } 716 717 intel_set_mocs_index(gt); 718 719 err = intel_engines_init(gt); 720 if (err) 721 goto err_engines; 722 723 err = intel_uc_init(>->uc); 724 if (err) 725 goto err_engines; 726 727 err = intel_gt_resume(gt); 728 if (err) 729 goto err_uc_init; 730 731 err = intel_gt_init_hwconfig(gt); 732 if (err) 733 gt_err(gt, "Failed to retrieve hwconfig table: %pe\n", ERR_PTR(err)); 734 735 err = __engines_record_defaults(gt); 736 if (err) 737 goto err_gt; 738 739 err = __engines_verify_workarounds(gt); 740 if (err) 741 goto err_gt; 742 743 err = i915_inject_probe_error(gt->i915, -EIO); 744 if (err) 745 goto err_gt; 746 747 intel_uc_init_late(>->uc); 748 749 intel_migrate_init(>->migrate, gt); 750 751 goto out_fw; 752 err_gt: 753 __intel_gt_disable(gt); 754 intel_uc_fini_hw(>->uc); 755 err_uc_init: 756 intel_uc_fini(>->uc); 757 err_engines: 758 intel_engines_release(gt); 759 i915_vm_put(fetch_and_zero(>->vm)); 760 err_pm: 761 intel_gt_pm_fini(gt); 762 intel_gt_fini_scratch(gt); 763 out_fw: 764 if (err) 765 intel_gt_set_wedged_on_init(gt); 766 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 767 return err; 768 } 769 770 void intel_gt_driver_remove(struct intel_gt *gt) 771 { 772 __intel_gt_disable(gt); 773 774 intel_migrate_fini(>->migrate); 775 intel_uc_driver_remove(>->uc); 776 777 intel_engines_release(gt); 778 779 intel_gt_flush_buffer_pool(gt); 780 } 781 782 void intel_gt_driver_unregister(struct intel_gt *gt) 783 { 784 intel_wakeref_t wakeref; 785 786 intel_gt_sysfs_unregister(gt); 787 intel_rps_driver_unregister(>->rps); 788 intel_gsc_fini(>->gsc); 789 790 /* 791 * If we unload the driver and wedge before the GSC worker is complete, 792 * the worker will hit an error on its submission to the GSC engine and 793 * then exit. This is hard to hit for a user, but it is reproducible 794 * with skipping selftests. The error is handled gracefully by the 795 * worker, so there are no functional issues, but we still end up with 796 * an error message in dmesg, which is something we want to avoid as 797 * this is a supported scenario. We could modify the worker to better 798 * handle a wedging occurring during its execution, but that gets 799 * complicated for a couple of reasons: 800 * - We do want the error on runtime wedging, because there are 801 * implications for subsystems outside of GT (i.e., PXP, HDCP), it's 802 * only the error on driver unload that we want to silence. 803 * - The worker is responsible for multiple submissions (GSC FW load, 804 * HuC auth, SW proxy), so all of those will have to be adapted to 805 * handle the wedged_on_fini scenario. 806 * Therefore, it's much simpler to just wait for the worker to be done 807 * before wedging on driver removal, also considering that the worker 808 * will likely already be idle in the great majority of non-selftest 809 * scenarios. 810 */ 811 intel_gsc_uc_flush_work(>->uc.gsc); 812 813 /* 814 * Upon unregistering the device to prevent any new users, cancel 815 * all in-flight requests so that we can quickly unbind the active 816 * resources. 817 */ 818 intel_gt_set_wedged_on_fini(gt); 819 820 /* Scrub all HW state upon release */ 821 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 822 intel_gt_reset_all_engines(gt); 823 } 824 825 void intel_gt_driver_release(struct intel_gt *gt) 826 { 827 struct i915_address_space *vm; 828 829 vm = fetch_and_zero(>->vm); 830 if (vm) /* FIXME being called twice on error paths :( */ 831 i915_vm_put(vm); 832 833 intel_wa_list_free(>->wa_list); 834 intel_gt_pm_fini(gt); 835 intel_gt_fini_scratch(gt); 836 intel_gt_fini_buffer_pool(gt); 837 intel_gt_fini_hwconfig(gt); 838 } 839 840 void intel_gt_driver_late_release_all(struct drm_i915_private *i915) 841 { 842 struct intel_gt *gt; 843 unsigned int id; 844 845 /* We need to wait for inflight RCU frees to release their grip */ 846 rcu_barrier(); 847 848 for_each_gt(gt, i915, id) { 849 intel_uc_driver_late_release(>->uc); 850 intel_gt_fini_requests(gt); 851 intel_gt_fini_reset(gt); 852 intel_gt_fini_timelines(gt); 853 intel_gt_fini_tlb(gt); 854 intel_engines_free(gt); 855 } 856 } 857 858 static int intel_gt_tile_setup(struct intel_gt *gt, phys_addr_t phys_addr) 859 { 860 int ret; 861 862 if (!gt_is_root(gt)) { 863 struct intel_uncore *uncore; 864 spinlock_t *irq_lock; 865 866 uncore = drmm_kzalloc(>->i915->drm, sizeof(*uncore), GFP_KERNEL); 867 if (!uncore) 868 return -ENOMEM; 869 870 irq_lock = drmm_kzalloc(>->i915->drm, sizeof(*irq_lock), GFP_KERNEL); 871 if (!irq_lock) 872 return -ENOMEM; 873 874 gt->uncore = uncore; 875 gt->irq_lock = irq_lock; 876 877 intel_gt_common_init_early(gt); 878 } 879 880 intel_uncore_init_early(gt->uncore, gt); 881 882 ret = intel_uncore_setup_mmio(gt->uncore, phys_addr); 883 if (ret) 884 return ret; 885 886 gt->phys_addr = phys_addr; 887 888 return 0; 889 } 890 891 int intel_gt_probe_all(struct drm_i915_private *i915) 892 { 893 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 894 struct intel_gt *gt = to_gt(i915); 895 const struct intel_gt_definition *gtdef; 896 phys_addr_t phys_addr; 897 unsigned int mmio_bar; 898 unsigned int i; 899 int ret; 900 901 mmio_bar = intel_mmio_bar(GRAPHICS_VER(i915)); 902 phys_addr = pci_resource_start(pdev, mmio_bar); 903 904 /* 905 * We always have at least one primary GT on any device 906 * and it has been already initialized early during probe 907 * in i915_driver_probe() 908 */ 909 gt->i915 = i915; 910 gt->name = "Primary GT"; 911 gt->info.engine_mask = INTEL_INFO(i915)->platform_engine_mask; 912 913 gt_dbg(gt, "Setting up %s\n", gt->name); 914 ret = intel_gt_tile_setup(gt, phys_addr); 915 if (ret) 916 return ret; 917 918 if (!HAS_EXTRA_GT_LIST(i915)) 919 return 0; 920 921 for (i = 1, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1]; 922 gtdef->name != NULL; 923 i++, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1]) { 924 gt = drmm_kzalloc(&i915->drm, sizeof(*gt), GFP_KERNEL); 925 if (!gt) { 926 ret = -ENOMEM; 927 goto err; 928 } 929 930 gt->i915 = i915; 931 gt->name = gtdef->name; 932 gt->type = gtdef->type; 933 gt->info.engine_mask = gtdef->engine_mask; 934 gt->info.id = i; 935 936 gt_dbg(gt, "Setting up %s\n", gt->name); 937 if (GEM_WARN_ON(range_overflows_t(resource_size_t, 938 gtdef->mapping_base, 939 SZ_16M, 940 pci_resource_len(pdev, mmio_bar)))) { 941 ret = -ENODEV; 942 goto err; 943 } 944 945 switch (gtdef->type) { 946 case GT_TILE: 947 ret = intel_gt_tile_setup(gt, phys_addr + gtdef->mapping_base); 948 break; 949 950 case GT_MEDIA: 951 ret = intel_sa_mediagt_setup(gt, phys_addr + gtdef->mapping_base, 952 gtdef->gsi_offset); 953 break; 954 955 case GT_PRIMARY: 956 /* Primary GT should not appear in extra GT list */ 957 default: 958 MISSING_CASE(gtdef->type); 959 ret = -ENODEV; 960 } 961 962 if (ret) 963 goto err; 964 965 i915->gt[i] = gt; 966 } 967 968 return 0; 969 970 err: 971 i915_probe_error(i915, "Failed to initialize %s! (%d)\n", gtdef->name, ret); 972 return ret; 973 } 974 975 int intel_gt_tiles_init(struct drm_i915_private *i915) 976 { 977 struct intel_gt *gt; 978 unsigned int id; 979 int ret; 980 981 for_each_gt(gt, i915, id) { 982 ret = intel_gt_probe_lmem(gt); 983 if (ret) 984 return ret; 985 } 986 987 return 0; 988 } 989 990 void intel_gt_info_print(const struct intel_gt_info *info, 991 struct drm_printer *p) 992 { 993 drm_printf(p, "available engines: %x\n", info->engine_mask); 994 995 intel_sseu_dump(&info->sseu, p); 996 } 997 998 enum i915_map_type intel_gt_coherent_map_type(struct intel_gt *gt, 999 struct drm_i915_gem_object *obj, 1000 bool always_coherent) 1001 { 1002 /* 1003 * Wa_22016122933: always return I915_MAP_WC for Media 1004 * version 13.0 when the object is on the Media GT 1005 */ 1006 if (i915_gem_object_is_lmem(obj) || intel_gt_needs_wa_22016122933(gt)) 1007 return I915_MAP_WC; 1008 if (HAS_LLC(gt->i915) || always_coherent) 1009 return I915_MAP_WB; 1010 else 1011 return I915_MAP_WC; 1012 } 1013 1014 bool intel_gt_needs_wa_16018031267(struct intel_gt *gt) 1015 { 1016 /* Wa_16018031267, Wa_16018063123 */ 1017 return IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 55), IP_VER(12, 71)); 1018 } 1019 1020 bool intel_gt_needs_wa_22016122933(struct intel_gt *gt) 1021 { 1022 return MEDIA_VER_FULL(gt->i915) == IP_VER(13, 0) && gt->type == GT_MEDIA; 1023 } 1024 1025 static void __intel_gt_bind_context_set_ready(struct intel_gt *gt, bool ready) 1026 { 1027 struct intel_engine_cs *engine = gt->engine[BCS0]; 1028 1029 if (engine && engine->bind_context) 1030 engine->bind_context_ready = ready; 1031 } 1032 1033 /** 1034 * intel_gt_bind_context_set_ready - Set the context binding as ready 1035 * 1036 * @gt: GT structure 1037 * 1038 * This function marks the binder context as ready. 1039 */ 1040 void intel_gt_bind_context_set_ready(struct intel_gt *gt) 1041 { 1042 __intel_gt_bind_context_set_ready(gt, true); 1043 } 1044 1045 /** 1046 * intel_gt_bind_context_set_unready - Set the context binding as ready 1047 * @gt: GT structure 1048 * 1049 * This function marks the binder context as not ready. 1050 */ 1051 1052 void intel_gt_bind_context_set_unready(struct intel_gt *gt) 1053 { 1054 __intel_gt_bind_context_set_ready(gt, false); 1055 } 1056 1057 /** 1058 * intel_gt_is_bind_context_ready - Check if context binding is ready 1059 * 1060 * @gt: GT structure 1061 * 1062 * This function returns binder context's ready status. 1063 */ 1064 bool intel_gt_is_bind_context_ready(struct intel_gt *gt) 1065 { 1066 struct intel_engine_cs *engine = gt->engine[BCS0]; 1067 1068 if (engine) 1069 return engine->bind_context_ready; 1070 1071 return false; 1072 } 1073