xref: /linux/drivers/gpu/drm/i915/gt/intel_gt.c (revision c9d23f9657cabfd2836a096bf6eddf8df2cf1434)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <drm/drm_managed.h>
7 #include <drm/intel-gtt.h>
8 
9 #include "gem/i915_gem_internal.h"
10 #include "gem/i915_gem_lmem.h"
11 
12 #include "i915_drv.h"
13 #include "i915_perf_oa_regs.h"
14 #include "i915_reg.h"
15 #include "intel_context.h"
16 #include "intel_engine_pm.h"
17 #include "intel_engine_regs.h"
18 #include "intel_ggtt_gmch.h"
19 #include "intel_gt.h"
20 #include "intel_gt_buffer_pool.h"
21 #include "intel_gt_clock_utils.h"
22 #include "intel_gt_debugfs.h"
23 #include "intel_gt_mcr.h"
24 #include "intel_gt_pm.h"
25 #include "intel_gt_print.h"
26 #include "intel_gt_regs.h"
27 #include "intel_gt_requests.h"
28 #include "intel_migrate.h"
29 #include "intel_mocs.h"
30 #include "intel_pci_config.h"
31 #include "intel_pm.h"
32 #include "intel_rc6.h"
33 #include "intel_renderstate.h"
34 #include "intel_rps.h"
35 #include "intel_sa_media.h"
36 #include "intel_gt_sysfs.h"
37 #include "intel_uncore.h"
38 #include "shmem_utils.h"
39 
40 void intel_gt_common_init_early(struct intel_gt *gt)
41 {
42 	spin_lock_init(gt->irq_lock);
43 
44 	INIT_LIST_HEAD(&gt->closed_vma);
45 	spin_lock_init(&gt->closed_lock);
46 
47 	init_llist_head(&gt->watchdog.list);
48 	INIT_WORK(&gt->watchdog.work, intel_gt_watchdog_work);
49 
50 	intel_gt_init_buffer_pool(gt);
51 	intel_gt_init_reset(gt);
52 	intel_gt_init_requests(gt);
53 	intel_gt_init_timelines(gt);
54 	mutex_init(&gt->tlb.invalidate_lock);
55 	seqcount_mutex_init(&gt->tlb.seqno, &gt->tlb.invalidate_lock);
56 	intel_gt_pm_init_early(gt);
57 
58 	intel_wopcm_init_early(&gt->wopcm);
59 	intel_uc_init_early(&gt->uc);
60 	intel_rps_init_early(&gt->rps);
61 }
62 
63 /* Preliminary initialization of Tile 0 */
64 int intel_root_gt_init_early(struct drm_i915_private *i915)
65 {
66 	struct intel_gt *gt = to_gt(i915);
67 
68 	gt->i915 = i915;
69 	gt->uncore = &i915->uncore;
70 	gt->irq_lock = drmm_kzalloc(&i915->drm, sizeof(*gt->irq_lock), GFP_KERNEL);
71 	if (!gt->irq_lock)
72 		return -ENOMEM;
73 
74 	intel_gt_common_init_early(gt);
75 
76 	return 0;
77 }
78 
79 static int intel_gt_probe_lmem(struct intel_gt *gt)
80 {
81 	struct drm_i915_private *i915 = gt->i915;
82 	unsigned int instance = gt->info.id;
83 	int id = INTEL_REGION_LMEM_0 + instance;
84 	struct intel_memory_region *mem;
85 	int err;
86 
87 	mem = intel_gt_setup_lmem(gt);
88 	if (IS_ERR(mem)) {
89 		err = PTR_ERR(mem);
90 		if (err == -ENODEV)
91 			return 0;
92 
93 		gt_err(gt, "Failed to setup region(%d) type=%d\n",
94 		       err, INTEL_MEMORY_LOCAL);
95 		return err;
96 	}
97 
98 	mem->id = id;
99 	mem->instance = instance;
100 
101 	intel_memory_region_set_name(mem, "local%u", mem->instance);
102 
103 	GEM_BUG_ON(!HAS_REGION(i915, id));
104 	GEM_BUG_ON(i915->mm.regions[id]);
105 	i915->mm.regions[id] = mem;
106 
107 	return 0;
108 }
109 
110 int intel_gt_assign_ggtt(struct intel_gt *gt)
111 {
112 	/* Media GT shares primary GT's GGTT */
113 	if (gt->type == GT_MEDIA) {
114 		gt->ggtt = to_gt(gt->i915)->ggtt;
115 	} else {
116 		gt->ggtt = i915_ggtt_create(gt->i915);
117 		if (IS_ERR(gt->ggtt))
118 			return PTR_ERR(gt->ggtt);
119 	}
120 
121 	list_add_tail(&gt->ggtt_link, &gt->ggtt->gt_list);
122 
123 	return 0;
124 }
125 
126 int intel_gt_init_mmio(struct intel_gt *gt)
127 {
128 	intel_gt_init_clock_frequency(gt);
129 
130 	intel_uc_init_mmio(&gt->uc);
131 	intel_sseu_info_init(gt);
132 	intel_gt_mcr_init(gt);
133 
134 	return intel_engines_init_mmio(gt);
135 }
136 
137 static void init_unused_ring(struct intel_gt *gt, u32 base)
138 {
139 	struct intel_uncore *uncore = gt->uncore;
140 
141 	intel_uncore_write(uncore, RING_CTL(base), 0);
142 	intel_uncore_write(uncore, RING_HEAD(base), 0);
143 	intel_uncore_write(uncore, RING_TAIL(base), 0);
144 	intel_uncore_write(uncore, RING_START(base), 0);
145 }
146 
147 static void init_unused_rings(struct intel_gt *gt)
148 {
149 	struct drm_i915_private *i915 = gt->i915;
150 
151 	if (IS_I830(i915)) {
152 		init_unused_ring(gt, PRB1_BASE);
153 		init_unused_ring(gt, SRB0_BASE);
154 		init_unused_ring(gt, SRB1_BASE);
155 		init_unused_ring(gt, SRB2_BASE);
156 		init_unused_ring(gt, SRB3_BASE);
157 	} else if (GRAPHICS_VER(i915) == 2) {
158 		init_unused_ring(gt, SRB0_BASE);
159 		init_unused_ring(gt, SRB1_BASE);
160 	} else if (GRAPHICS_VER(i915) == 3) {
161 		init_unused_ring(gt, PRB1_BASE);
162 		init_unused_ring(gt, PRB2_BASE);
163 	}
164 }
165 
166 int intel_gt_init_hw(struct intel_gt *gt)
167 {
168 	struct drm_i915_private *i915 = gt->i915;
169 	struct intel_uncore *uncore = gt->uncore;
170 	int ret;
171 
172 	gt->last_init_time = ktime_get();
173 
174 	/* Double layer security blanket, see i915_gem_init() */
175 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
176 
177 	if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9)
178 		intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
179 
180 	if (IS_HASWELL(i915))
181 		intel_uncore_write(uncore,
182 				   HSW_MI_PREDICATE_RESULT_2,
183 				   IS_HSW_GT3(i915) ?
184 				   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
185 
186 	/* Apply the GT workarounds... */
187 	intel_gt_apply_workarounds(gt);
188 	/* ...and determine whether they are sticking. */
189 	intel_gt_verify_workarounds(gt, "init");
190 
191 	intel_gt_init_swizzling(gt);
192 
193 	/*
194 	 * At least 830 can leave some of the unused rings
195 	 * "active" (ie. head != tail) after resume which
196 	 * will prevent c3 entry. Makes sure all unused rings
197 	 * are totally idle.
198 	 */
199 	init_unused_rings(gt);
200 
201 	ret = i915_ppgtt_init_hw(gt);
202 	if (ret) {
203 		gt_err(gt, "Enabling PPGTT failed (%d)\n", ret);
204 		goto out;
205 	}
206 
207 	/* We can't enable contexts until all firmware is loaded */
208 	ret = intel_uc_init_hw(&gt->uc);
209 	if (ret) {
210 		gt_probe_error(gt, "Enabling uc failed (%d)\n", ret);
211 		goto out;
212 	}
213 
214 	intel_mocs_init(gt);
215 
216 out:
217 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
218 	return ret;
219 }
220 
221 static void gen6_clear_engine_error_register(struct intel_engine_cs *engine)
222 {
223 	GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
224 	GEN6_RING_FAULT_REG_POSTING_READ(engine);
225 }
226 
227 i915_reg_t intel_gt_perf_limit_reasons_reg(struct intel_gt *gt)
228 {
229 	/* GT0_PERF_LIMIT_REASONS is available only for Gen11+ */
230 	if (GRAPHICS_VER(gt->i915) < 11)
231 		return INVALID_MMIO_REG;
232 
233 	return gt->type == GT_MEDIA ?
234 		MTL_MEDIA_PERF_LIMIT_REASONS : GT0_PERF_LIMIT_REASONS;
235 }
236 
237 void
238 intel_gt_clear_error_registers(struct intel_gt *gt,
239 			       intel_engine_mask_t engine_mask)
240 {
241 	struct drm_i915_private *i915 = gt->i915;
242 	struct intel_uncore *uncore = gt->uncore;
243 	u32 eir;
244 
245 	if (GRAPHICS_VER(i915) != 2)
246 		intel_uncore_write(uncore, PGTBL_ER, 0);
247 
248 	if (GRAPHICS_VER(i915) < 4)
249 		intel_uncore_write(uncore, IPEIR(RENDER_RING_BASE), 0);
250 	else
251 		intel_uncore_write(uncore, IPEIR_I965, 0);
252 
253 	intel_uncore_write(uncore, EIR, 0);
254 	eir = intel_uncore_read(uncore, EIR);
255 	if (eir) {
256 		/*
257 		 * some errors might have become stuck,
258 		 * mask them.
259 		 */
260 		gt_dbg(gt, "EIR stuck: 0x%08x, masking\n", eir);
261 		intel_uncore_rmw(uncore, EMR, 0, eir);
262 		intel_uncore_write(uncore, GEN2_IIR,
263 				   I915_MASTER_ERROR_INTERRUPT);
264 	}
265 
266 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
267 		intel_gt_mcr_multicast_rmw(gt, XEHP_RING_FAULT_REG,
268 					   RING_FAULT_VALID, 0);
269 		intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG);
270 	} else if (GRAPHICS_VER(i915) >= 12) {
271 		intel_uncore_rmw(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID, 0);
272 		intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
273 	} else if (GRAPHICS_VER(i915) >= 8) {
274 		intel_uncore_rmw(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID, 0);
275 		intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
276 	} else if (GRAPHICS_VER(i915) >= 6) {
277 		struct intel_engine_cs *engine;
278 		enum intel_engine_id id;
279 
280 		for_each_engine_masked(engine, gt, engine_mask, id)
281 			gen6_clear_engine_error_register(engine);
282 	}
283 }
284 
285 static void gen6_check_faults(struct intel_gt *gt)
286 {
287 	struct intel_engine_cs *engine;
288 	enum intel_engine_id id;
289 	u32 fault;
290 
291 	for_each_engine(engine, gt, id) {
292 		fault = GEN6_RING_FAULT_REG_READ(engine);
293 		if (fault & RING_FAULT_VALID) {
294 			gt_dbg(gt, "Unexpected fault\n"
295 			       "\tAddr: 0x%08lx\n"
296 			       "\tAddress space: %s\n"
297 			       "\tSource ID: %d\n"
298 			       "\tType: %d\n",
299 			       fault & PAGE_MASK,
300 			       fault & RING_FAULT_GTTSEL_MASK ?
301 			       "GGTT" : "PPGTT",
302 			       RING_FAULT_SRCID(fault),
303 			       RING_FAULT_FAULT_TYPE(fault));
304 		}
305 	}
306 }
307 
308 static void xehp_check_faults(struct intel_gt *gt)
309 {
310 	u32 fault;
311 
312 	/*
313 	 * Although the fault register now lives in an MCR register range,
314 	 * the GAM registers are special and we only truly need to read
315 	 * the "primary" GAM instance rather than handling each instance
316 	 * individually.  intel_gt_mcr_read_any() will automatically steer
317 	 * toward the primary instance.
318 	 */
319 	fault = intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG);
320 	if (fault & RING_FAULT_VALID) {
321 		u32 fault_data0, fault_data1;
322 		u64 fault_addr;
323 
324 		fault_data0 = intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA0);
325 		fault_data1 = intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA1);
326 
327 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
328 			     ((u64)fault_data0 << 12);
329 
330 		gt_dbg(gt, "Unexpected fault\n"
331 		       "\tAddr: 0x%08x_%08x\n"
332 		       "\tAddress space: %s\n"
333 		       "\tEngine ID: %d\n"
334 		       "\tSource ID: %d\n"
335 		       "\tType: %d\n",
336 		       upper_32_bits(fault_addr), lower_32_bits(fault_addr),
337 		       fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
338 		       GEN8_RING_FAULT_ENGINE_ID(fault),
339 		       RING_FAULT_SRCID(fault),
340 		       RING_FAULT_FAULT_TYPE(fault));
341 	}
342 }
343 
344 static void gen8_check_faults(struct intel_gt *gt)
345 {
346 	struct intel_uncore *uncore = gt->uncore;
347 	i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
348 	u32 fault;
349 
350 	if (GRAPHICS_VER(gt->i915) >= 12) {
351 		fault_reg = GEN12_RING_FAULT_REG;
352 		fault_data0_reg = GEN12_FAULT_TLB_DATA0;
353 		fault_data1_reg = GEN12_FAULT_TLB_DATA1;
354 	} else {
355 		fault_reg = GEN8_RING_FAULT_REG;
356 		fault_data0_reg = GEN8_FAULT_TLB_DATA0;
357 		fault_data1_reg = GEN8_FAULT_TLB_DATA1;
358 	}
359 
360 	fault = intel_uncore_read(uncore, fault_reg);
361 	if (fault & RING_FAULT_VALID) {
362 		u32 fault_data0, fault_data1;
363 		u64 fault_addr;
364 
365 		fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
366 		fault_data1 = intel_uncore_read(uncore, fault_data1_reg);
367 
368 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
369 			     ((u64)fault_data0 << 12);
370 
371 		gt_dbg(gt, "Unexpected fault\n"
372 		       "\tAddr: 0x%08x_%08x\n"
373 		       "\tAddress space: %s\n"
374 		       "\tEngine ID: %d\n"
375 		       "\tSource ID: %d\n"
376 		       "\tType: %d\n",
377 		       upper_32_bits(fault_addr), lower_32_bits(fault_addr),
378 		       fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
379 		       GEN8_RING_FAULT_ENGINE_ID(fault),
380 		       RING_FAULT_SRCID(fault),
381 		       RING_FAULT_FAULT_TYPE(fault));
382 	}
383 }
384 
385 void intel_gt_check_and_clear_faults(struct intel_gt *gt)
386 {
387 	struct drm_i915_private *i915 = gt->i915;
388 
389 	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
390 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
391 		xehp_check_faults(gt);
392 	else if (GRAPHICS_VER(i915) >= 8)
393 		gen8_check_faults(gt);
394 	else if (GRAPHICS_VER(i915) >= 6)
395 		gen6_check_faults(gt);
396 	else
397 		return;
398 
399 	intel_gt_clear_error_registers(gt, ALL_ENGINES);
400 }
401 
402 void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
403 {
404 	struct intel_uncore *uncore = gt->uncore;
405 	intel_wakeref_t wakeref;
406 
407 	/*
408 	 * No actual flushing is required for the GTT write domain for reads
409 	 * from the GTT domain. Writes to it "immediately" go to main memory
410 	 * as far as we know, so there's no chipset flush. It also doesn't
411 	 * land in the GPU render cache.
412 	 *
413 	 * However, we do have to enforce the order so that all writes through
414 	 * the GTT land before any writes to the device, such as updates to
415 	 * the GATT itself.
416 	 *
417 	 * We also have to wait a bit for the writes to land from the GTT.
418 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
419 	 * timing. This issue has only been observed when switching quickly
420 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
421 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
422 	 * system agents we cannot reproduce this behaviour, until Cannonlake
423 	 * that was!).
424 	 */
425 
426 	wmb();
427 
428 	if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
429 		return;
430 
431 	intel_gt_chipset_flush(gt);
432 
433 	with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
434 		unsigned long flags;
435 
436 		spin_lock_irqsave(&uncore->lock, flags);
437 		intel_uncore_posting_read_fw(uncore,
438 					     RING_HEAD(RENDER_RING_BASE));
439 		spin_unlock_irqrestore(&uncore->lock, flags);
440 	}
441 }
442 
443 void intel_gt_chipset_flush(struct intel_gt *gt)
444 {
445 	wmb();
446 	if (GRAPHICS_VER(gt->i915) < 6)
447 		intel_ggtt_gmch_flush();
448 }
449 
450 void intel_gt_driver_register(struct intel_gt *gt)
451 {
452 	intel_gsc_init(&gt->gsc, gt->i915);
453 
454 	intel_rps_driver_register(&gt->rps);
455 
456 	intel_gt_debugfs_register(gt);
457 	intel_gt_sysfs_register(gt);
458 }
459 
460 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
461 {
462 	struct drm_i915_private *i915 = gt->i915;
463 	struct drm_i915_gem_object *obj;
464 	struct i915_vma *vma;
465 	int ret;
466 
467 	obj = i915_gem_object_create_lmem(i915, size,
468 					  I915_BO_ALLOC_VOLATILE |
469 					  I915_BO_ALLOC_GPU_ONLY);
470 	if (IS_ERR(obj))
471 		obj = i915_gem_object_create_stolen(i915, size);
472 	if (IS_ERR(obj))
473 		obj = i915_gem_object_create_internal(i915, size);
474 	if (IS_ERR(obj)) {
475 		gt_err(gt, "Failed to allocate scratch page\n");
476 		return PTR_ERR(obj);
477 	}
478 
479 	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
480 	if (IS_ERR(vma)) {
481 		ret = PTR_ERR(vma);
482 		goto err_unref;
483 	}
484 
485 	ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
486 	if (ret)
487 		goto err_unref;
488 
489 	gt->scratch = i915_vma_make_unshrinkable(vma);
490 
491 	return 0;
492 
493 err_unref:
494 	i915_gem_object_put(obj);
495 	return ret;
496 }
497 
498 static void intel_gt_fini_scratch(struct intel_gt *gt)
499 {
500 	i915_vma_unpin_and_release(&gt->scratch, 0);
501 }
502 
503 static struct i915_address_space *kernel_vm(struct intel_gt *gt)
504 {
505 	if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
506 		return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm;
507 	else
508 		return i915_vm_get(&gt->ggtt->vm);
509 }
510 
511 static int __engines_record_defaults(struct intel_gt *gt)
512 {
513 	struct i915_request *requests[I915_NUM_ENGINES] = {};
514 	struct intel_engine_cs *engine;
515 	enum intel_engine_id id;
516 	int err = 0;
517 
518 	/*
519 	 * As we reset the gpu during very early sanitisation, the current
520 	 * register state on the GPU should reflect its defaults values.
521 	 * We load a context onto the hw (with restore-inhibit), then switch
522 	 * over to a second context to save that default register state. We
523 	 * can then prime every new context with that state so they all start
524 	 * from the same default HW values.
525 	 */
526 
527 	for_each_engine(engine, gt, id) {
528 		struct intel_renderstate so;
529 		struct intel_context *ce;
530 		struct i915_request *rq;
531 
532 		/* We must be able to switch to something! */
533 		GEM_BUG_ON(!engine->kernel_context);
534 
535 		ce = intel_context_create(engine);
536 		if (IS_ERR(ce)) {
537 			err = PTR_ERR(ce);
538 			goto out;
539 		}
540 
541 		err = intel_renderstate_init(&so, ce);
542 		if (err)
543 			goto err;
544 
545 		rq = i915_request_create(ce);
546 		if (IS_ERR(rq)) {
547 			err = PTR_ERR(rq);
548 			goto err_fini;
549 		}
550 
551 		err = intel_engine_emit_ctx_wa(rq);
552 		if (err)
553 			goto err_rq;
554 
555 		err = intel_renderstate_emit(&so, rq);
556 		if (err)
557 			goto err_rq;
558 
559 err_rq:
560 		requests[id] = i915_request_get(rq);
561 		i915_request_add(rq);
562 err_fini:
563 		intel_renderstate_fini(&so, ce);
564 err:
565 		if (err) {
566 			intel_context_put(ce);
567 			goto out;
568 		}
569 	}
570 
571 	/* Flush the default context image to memory, and enable powersaving. */
572 	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
573 		err = -EIO;
574 		goto out;
575 	}
576 
577 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
578 		struct i915_request *rq;
579 		struct file *state;
580 
581 		rq = requests[id];
582 		if (!rq)
583 			continue;
584 
585 		if (rq->fence.error) {
586 			err = -EIO;
587 			goto out;
588 		}
589 
590 		GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
591 		if (!rq->context->state)
592 			continue;
593 
594 		/* Keep a copy of the state's backing pages; free the obj */
595 		state = shmem_create_from_object(rq->context->state->obj);
596 		if (IS_ERR(state)) {
597 			err = PTR_ERR(state);
598 			goto out;
599 		}
600 		rq->engine->default_state = state;
601 	}
602 
603 out:
604 	/*
605 	 * If we have to abandon now, we expect the engines to be idle
606 	 * and ready to be torn-down. The quickest way we can accomplish
607 	 * this is by declaring ourselves wedged.
608 	 */
609 	if (err)
610 		intel_gt_set_wedged(gt);
611 
612 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
613 		struct intel_context *ce;
614 		struct i915_request *rq;
615 
616 		rq = requests[id];
617 		if (!rq)
618 			continue;
619 
620 		ce = rq->context;
621 		i915_request_put(rq);
622 		intel_context_put(ce);
623 	}
624 	return err;
625 }
626 
627 static int __engines_verify_workarounds(struct intel_gt *gt)
628 {
629 	struct intel_engine_cs *engine;
630 	enum intel_engine_id id;
631 	int err = 0;
632 
633 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
634 		return 0;
635 
636 	for_each_engine(engine, gt, id) {
637 		if (intel_engine_verify_workarounds(engine, "load"))
638 			err = -EIO;
639 	}
640 
641 	/* Flush and restore the kernel context for safety */
642 	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
643 		err = -EIO;
644 
645 	return err;
646 }
647 
648 static void __intel_gt_disable(struct intel_gt *gt)
649 {
650 	intel_gt_set_wedged_on_fini(gt);
651 
652 	intel_gt_suspend_prepare(gt);
653 	intel_gt_suspend_late(gt);
654 
655 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
656 }
657 
658 int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout)
659 {
660 	long remaining_timeout;
661 
662 	/* If the device is asleep, we have no requests outstanding */
663 	if (!intel_gt_pm_is_awake(gt))
664 		return 0;
665 
666 	while ((timeout = intel_gt_retire_requests_timeout(gt, timeout,
667 							   &remaining_timeout)) > 0) {
668 		cond_resched();
669 		if (signal_pending(current))
670 			return -EINTR;
671 	}
672 
673 	if (timeout)
674 		return timeout;
675 
676 	if (remaining_timeout < 0)
677 		remaining_timeout = 0;
678 
679 	return intel_uc_wait_for_idle(&gt->uc, remaining_timeout);
680 }
681 
682 int intel_gt_init(struct intel_gt *gt)
683 {
684 	int err;
685 
686 	err = i915_inject_probe_error(gt->i915, -ENODEV);
687 	if (err)
688 		return err;
689 
690 	intel_gt_init_workarounds(gt);
691 
692 	/*
693 	 * This is just a security blanket to placate dragons.
694 	 * On some systems, we very sporadically observe that the first TLBs
695 	 * used by the CS may be stale, despite us poking the TLB reset. If
696 	 * we hold the forcewake during initialisation these problems
697 	 * just magically go away.
698 	 */
699 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
700 
701 	err = intel_gt_init_scratch(gt,
702 				    GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K);
703 	if (err)
704 		goto out_fw;
705 
706 	intel_gt_pm_init(gt);
707 
708 	gt->vm = kernel_vm(gt);
709 	if (!gt->vm) {
710 		err = -ENOMEM;
711 		goto err_pm;
712 	}
713 
714 	intel_set_mocs_index(gt);
715 
716 	err = intel_engines_init(gt);
717 	if (err)
718 		goto err_engines;
719 
720 	err = intel_uc_init(&gt->uc);
721 	if (err)
722 		goto err_engines;
723 
724 	err = intel_gt_resume(gt);
725 	if (err)
726 		goto err_uc_init;
727 
728 	err = intel_gt_init_hwconfig(gt);
729 	if (err)
730 		gt_err(gt, "Failed to retrieve hwconfig table: %pe\n", ERR_PTR(err));
731 
732 	err = __engines_record_defaults(gt);
733 	if (err)
734 		goto err_gt;
735 
736 	err = __engines_verify_workarounds(gt);
737 	if (err)
738 		goto err_gt;
739 
740 	intel_uc_init_late(&gt->uc);
741 
742 	err = i915_inject_probe_error(gt->i915, -EIO);
743 	if (err)
744 		goto err_gt;
745 
746 	intel_migrate_init(&gt->migrate, gt);
747 
748 	goto out_fw;
749 err_gt:
750 	__intel_gt_disable(gt);
751 	intel_uc_fini_hw(&gt->uc);
752 err_uc_init:
753 	intel_uc_fini(&gt->uc);
754 err_engines:
755 	intel_engines_release(gt);
756 	i915_vm_put(fetch_and_zero(&gt->vm));
757 err_pm:
758 	intel_gt_pm_fini(gt);
759 	intel_gt_fini_scratch(gt);
760 out_fw:
761 	if (err)
762 		intel_gt_set_wedged_on_init(gt);
763 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
764 	return err;
765 }
766 
767 void intel_gt_driver_remove(struct intel_gt *gt)
768 {
769 	__intel_gt_disable(gt);
770 
771 	intel_migrate_fini(&gt->migrate);
772 	intel_uc_driver_remove(&gt->uc);
773 
774 	intel_engines_release(gt);
775 
776 	intel_gt_flush_buffer_pool(gt);
777 }
778 
779 void intel_gt_driver_unregister(struct intel_gt *gt)
780 {
781 	intel_wakeref_t wakeref;
782 
783 	intel_gt_sysfs_unregister(gt);
784 	intel_rps_driver_unregister(&gt->rps);
785 	intel_gsc_fini(&gt->gsc);
786 
787 	/*
788 	 * Upon unregistering the device to prevent any new users, cancel
789 	 * all in-flight requests so that we can quickly unbind the active
790 	 * resources.
791 	 */
792 	intel_gt_set_wedged_on_fini(gt);
793 
794 	/* Scrub all HW state upon release */
795 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
796 		__intel_gt_reset(gt, ALL_ENGINES);
797 }
798 
799 void intel_gt_driver_release(struct intel_gt *gt)
800 {
801 	struct i915_address_space *vm;
802 
803 	vm = fetch_and_zero(&gt->vm);
804 	if (vm) /* FIXME being called twice on error paths :( */
805 		i915_vm_put(vm);
806 
807 	intel_wa_list_free(&gt->wa_list);
808 	intel_gt_pm_fini(gt);
809 	intel_gt_fini_scratch(gt);
810 	intel_gt_fini_buffer_pool(gt);
811 	intel_gt_fini_hwconfig(gt);
812 }
813 
814 void intel_gt_driver_late_release_all(struct drm_i915_private *i915)
815 {
816 	struct intel_gt *gt;
817 	unsigned int id;
818 
819 	/* We need to wait for inflight RCU frees to release their grip */
820 	rcu_barrier();
821 
822 	for_each_gt(gt, i915, id) {
823 		intel_uc_driver_late_release(&gt->uc);
824 		intel_gt_fini_requests(gt);
825 		intel_gt_fini_reset(gt);
826 		intel_gt_fini_timelines(gt);
827 		mutex_destroy(&gt->tlb.invalidate_lock);
828 		intel_engines_free(gt);
829 	}
830 }
831 
832 static int intel_gt_tile_setup(struct intel_gt *gt, phys_addr_t phys_addr)
833 {
834 	int ret;
835 
836 	if (!gt_is_root(gt)) {
837 		struct intel_uncore *uncore;
838 		spinlock_t *irq_lock;
839 
840 		uncore = drmm_kzalloc(&gt->i915->drm, sizeof(*uncore), GFP_KERNEL);
841 		if (!uncore)
842 			return -ENOMEM;
843 
844 		irq_lock = drmm_kzalloc(&gt->i915->drm, sizeof(*irq_lock), GFP_KERNEL);
845 		if (!irq_lock)
846 			return -ENOMEM;
847 
848 		gt->uncore = uncore;
849 		gt->irq_lock = irq_lock;
850 
851 		intel_gt_common_init_early(gt);
852 	}
853 
854 	intel_uncore_init_early(gt->uncore, gt);
855 
856 	ret = intel_uncore_setup_mmio(gt->uncore, phys_addr);
857 	if (ret)
858 		return ret;
859 
860 	gt->phys_addr = phys_addr;
861 
862 	return 0;
863 }
864 
865 int intel_gt_probe_all(struct drm_i915_private *i915)
866 {
867 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
868 	struct intel_gt *gt = &i915->gt0;
869 	const struct intel_gt_definition *gtdef;
870 	phys_addr_t phys_addr;
871 	unsigned int mmio_bar;
872 	unsigned int i;
873 	int ret;
874 
875 	mmio_bar = intel_mmio_bar(GRAPHICS_VER(i915));
876 	phys_addr = pci_resource_start(pdev, mmio_bar);
877 
878 	/*
879 	 * We always have at least one primary GT on any device
880 	 * and it has been already initialized early during probe
881 	 * in i915_driver_probe()
882 	 */
883 	gt->i915 = i915;
884 	gt->name = "Primary GT";
885 	gt->info.engine_mask = RUNTIME_INFO(i915)->platform_engine_mask;
886 
887 	gt_dbg(gt, "Setting up %s\n", gt->name);
888 	ret = intel_gt_tile_setup(gt, phys_addr);
889 	if (ret)
890 		return ret;
891 
892 	i915->gt[0] = gt;
893 
894 	if (!HAS_EXTRA_GT_LIST(i915))
895 		return 0;
896 
897 	for (i = 1, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1];
898 	     gtdef->name != NULL;
899 	     i++, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1]) {
900 		gt = drmm_kzalloc(&i915->drm, sizeof(*gt), GFP_KERNEL);
901 		if (!gt) {
902 			ret = -ENOMEM;
903 			goto err;
904 		}
905 
906 		gt->i915 = i915;
907 		gt->name = gtdef->name;
908 		gt->type = gtdef->type;
909 		gt->info.engine_mask = gtdef->engine_mask;
910 		gt->info.id = i;
911 
912 		gt_dbg(gt, "Setting up %s\n", gt->name);
913 		if (GEM_WARN_ON(range_overflows_t(resource_size_t,
914 						  gtdef->mapping_base,
915 						  SZ_16M,
916 						  pci_resource_len(pdev, mmio_bar)))) {
917 			ret = -ENODEV;
918 			goto err;
919 		}
920 
921 		switch (gtdef->type) {
922 		case GT_TILE:
923 			ret = intel_gt_tile_setup(gt, phys_addr + gtdef->mapping_base);
924 			break;
925 
926 		case GT_MEDIA:
927 			ret = intel_sa_mediagt_setup(gt, phys_addr + gtdef->mapping_base,
928 						     gtdef->gsi_offset);
929 			break;
930 
931 		case GT_PRIMARY:
932 			/* Primary GT should not appear in extra GT list */
933 		default:
934 			MISSING_CASE(gtdef->type);
935 			ret = -ENODEV;
936 		}
937 
938 		if (ret)
939 			goto err;
940 
941 		i915->gt[i] = gt;
942 	}
943 
944 	return 0;
945 
946 err:
947 	i915_probe_error(i915, "Failed to initialize %s! (%d)\n", gtdef->name, ret);
948 	intel_gt_release_all(i915);
949 
950 	return ret;
951 }
952 
953 int intel_gt_tiles_init(struct drm_i915_private *i915)
954 {
955 	struct intel_gt *gt;
956 	unsigned int id;
957 	int ret;
958 
959 	for_each_gt(gt, i915, id) {
960 		ret = intel_gt_probe_lmem(gt);
961 		if (ret)
962 			return ret;
963 	}
964 
965 	return 0;
966 }
967 
968 void intel_gt_release_all(struct drm_i915_private *i915)
969 {
970 	struct intel_gt *gt;
971 	unsigned int id;
972 
973 	for_each_gt(gt, i915, id)
974 		i915->gt[id] = NULL;
975 }
976 
977 void intel_gt_info_print(const struct intel_gt_info *info,
978 			 struct drm_printer *p)
979 {
980 	drm_printf(p, "available engines: %x\n", info->engine_mask);
981 
982 	intel_sseu_dump(&info->sseu, p);
983 }
984 
985 struct reg_and_bit {
986 	union {
987 		i915_reg_t reg;
988 		i915_mcr_reg_t mcr_reg;
989 	};
990 	u32 bit;
991 };
992 
993 static struct reg_and_bit
994 get_reg_and_bit(const struct intel_engine_cs *engine, const bool gen8,
995 		const i915_reg_t *regs, const unsigned int num)
996 {
997 	const unsigned int class = engine->class;
998 	struct reg_and_bit rb = { };
999 
1000 	if (gt_WARN_ON_ONCE(engine->gt, class >= num || !regs[class].reg))
1001 		return rb;
1002 
1003 	rb.reg = regs[class];
1004 	if (gen8 && class == VIDEO_DECODE_CLASS)
1005 		rb.reg.reg += 4 * engine->instance; /* GEN8_M2TCR */
1006 	else
1007 		rb.bit = engine->instance;
1008 
1009 	rb.bit = BIT(rb.bit);
1010 
1011 	return rb;
1012 }
1013 
1014 /*
1015  * HW architecture suggest typical invalidation time at 40us,
1016  * with pessimistic cases up to 100us and a recommendation to
1017  * cap at 1ms. We go a bit higher just in case.
1018  */
1019 #define TLB_INVAL_TIMEOUT_US 100
1020 #define TLB_INVAL_TIMEOUT_MS 4
1021 
1022 /*
1023  * On Xe_HP the TLB invalidation registers are located at the same MMIO offsets
1024  * but are now considered MCR registers.  Since they exist within a GAM range,
1025  * the primary instance of the register rolls up the status from each unit.
1026  */
1027 static int wait_for_invalidate(struct intel_gt *gt, struct reg_and_bit rb)
1028 {
1029 	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50))
1030 		return intel_gt_mcr_wait_for_reg(gt, rb.mcr_reg, rb.bit, 0,
1031 						 TLB_INVAL_TIMEOUT_US,
1032 						 TLB_INVAL_TIMEOUT_MS);
1033 	else
1034 		return __intel_wait_for_register_fw(gt->uncore, rb.reg, rb.bit, 0,
1035 						    TLB_INVAL_TIMEOUT_US,
1036 						    TLB_INVAL_TIMEOUT_MS,
1037 						    NULL);
1038 }
1039 
1040 static void mmio_invalidate_full(struct intel_gt *gt)
1041 {
1042 	static const i915_reg_t gen8_regs[] = {
1043 		[RENDER_CLASS]			= GEN8_RTCR,
1044 		[VIDEO_DECODE_CLASS]		= GEN8_M1TCR, /* , GEN8_M2TCR */
1045 		[VIDEO_ENHANCEMENT_CLASS]	= GEN8_VTCR,
1046 		[COPY_ENGINE_CLASS]		= GEN8_BTCR,
1047 	};
1048 	static const i915_reg_t gen12_regs[] = {
1049 		[RENDER_CLASS]			= GEN12_GFX_TLB_INV_CR,
1050 		[VIDEO_DECODE_CLASS]		= GEN12_VD_TLB_INV_CR,
1051 		[VIDEO_ENHANCEMENT_CLASS]	= GEN12_VE_TLB_INV_CR,
1052 		[COPY_ENGINE_CLASS]		= GEN12_BLT_TLB_INV_CR,
1053 		[COMPUTE_CLASS]			= GEN12_COMPCTX_TLB_INV_CR,
1054 	};
1055 	static const i915_mcr_reg_t xehp_regs[] = {
1056 		[RENDER_CLASS]			= XEHP_GFX_TLB_INV_CR,
1057 		[VIDEO_DECODE_CLASS]		= XEHP_VD_TLB_INV_CR,
1058 		[VIDEO_ENHANCEMENT_CLASS]	= XEHP_VE_TLB_INV_CR,
1059 		[COPY_ENGINE_CLASS]		= XEHP_BLT_TLB_INV_CR,
1060 		[COMPUTE_CLASS]			= XEHP_COMPCTX_TLB_INV_CR,
1061 	};
1062 	struct drm_i915_private *i915 = gt->i915;
1063 	struct intel_uncore *uncore = gt->uncore;
1064 	struct intel_engine_cs *engine;
1065 	intel_engine_mask_t awake, tmp;
1066 	enum intel_engine_id id;
1067 	const i915_reg_t *regs;
1068 	unsigned int num = 0;
1069 	unsigned long flags;
1070 
1071 	/*
1072 	 * New platforms should not be added with catch-all-newer (>=)
1073 	 * condition so that any later platform added triggers the below warning
1074 	 * and in turn mandates a human cross-check of whether the invalidation
1075 	 * flows have compatible semantics.
1076 	 *
1077 	 * For instance with the 11.00 -> 12.00 transition three out of five
1078 	 * respective engine registers were moved to masked type. Then after the
1079 	 * 12.00 -> 12.50 transition multi cast handling is required too.
1080 	 */
1081 
1082 	if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 50) ||
1083 	    GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) {
1084 		regs = NULL;
1085 		num = ARRAY_SIZE(xehp_regs);
1086 	} else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) ||
1087 		   GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) {
1088 		regs = gen12_regs;
1089 		num = ARRAY_SIZE(gen12_regs);
1090 	} else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
1091 		regs = gen8_regs;
1092 		num = ARRAY_SIZE(gen8_regs);
1093 	} else if (GRAPHICS_VER(i915) < 8) {
1094 		return;
1095 	}
1096 
1097 	if (gt_WARN_ONCE(gt, !num, "Platform does not implement TLB invalidation!"))
1098 		return;
1099 
1100 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1101 
1102 	intel_gt_mcr_lock(gt, &flags);
1103 	spin_lock(&uncore->lock); /* serialise invalidate with GT reset */
1104 
1105 	awake = 0;
1106 	for_each_engine(engine, gt, id) {
1107 		struct reg_and_bit rb;
1108 
1109 		if (!intel_engine_pm_is_awake(engine))
1110 			continue;
1111 
1112 		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
1113 			u32 val = BIT(engine->instance);
1114 
1115 			if (engine->class == VIDEO_DECODE_CLASS ||
1116 			    engine->class == VIDEO_ENHANCEMENT_CLASS ||
1117 			    engine->class == COMPUTE_CLASS)
1118 				val = _MASKED_BIT_ENABLE(val);
1119 			intel_gt_mcr_multicast_write_fw(gt,
1120 							xehp_regs[engine->class],
1121 							val);
1122 		} else {
1123 			rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num);
1124 			if (!i915_mmio_reg_offset(rb.reg))
1125 				continue;
1126 
1127 			if (GRAPHICS_VER(i915) == 12 && (engine->class == VIDEO_DECODE_CLASS ||
1128 			    engine->class == VIDEO_ENHANCEMENT_CLASS ||
1129 			    engine->class == COMPUTE_CLASS))
1130 				rb.bit = _MASKED_BIT_ENABLE(rb.bit);
1131 
1132 			intel_uncore_write_fw(uncore, rb.reg, rb.bit);
1133 		}
1134 		awake |= engine->mask;
1135 	}
1136 
1137 	GT_TRACE(gt, "invalidated engines %08x\n", awake);
1138 
1139 	/* Wa_2207587034:tgl,dg1,rkl,adl-s,adl-p */
1140 	if (awake &&
1141 	    (IS_TIGERLAKE(i915) ||
1142 	     IS_DG1(i915) ||
1143 	     IS_ROCKETLAKE(i915) ||
1144 	     IS_ALDERLAKE_S(i915) ||
1145 	     IS_ALDERLAKE_P(i915)))
1146 		intel_uncore_write_fw(uncore, GEN12_OA_TLB_INV_CR, 1);
1147 
1148 	spin_unlock(&uncore->lock);
1149 	intel_gt_mcr_unlock(gt, flags);
1150 
1151 	for_each_engine_masked(engine, gt, awake, tmp) {
1152 		struct reg_and_bit rb;
1153 
1154 		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
1155 			rb.mcr_reg = xehp_regs[engine->class];
1156 			rb.bit = BIT(engine->instance);
1157 		} else {
1158 			rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num);
1159 		}
1160 
1161 		if (wait_for_invalidate(gt, rb))
1162 			gt_err_ratelimited(gt, "%s TLB invalidation did not complete in %ums!\n",
1163 					   engine->name, TLB_INVAL_TIMEOUT_MS);
1164 	}
1165 
1166 	/*
1167 	 * Use delayed put since a) we mostly expect a flurry of TLB
1168 	 * invalidations so it is good to avoid paying the forcewake cost and
1169 	 * b) it works around a bug in Icelake which cannot cope with too rapid
1170 	 * transitions.
1171 	 */
1172 	intel_uncore_forcewake_put_delayed(uncore, FORCEWAKE_ALL);
1173 }
1174 
1175 static bool tlb_seqno_passed(const struct intel_gt *gt, u32 seqno)
1176 {
1177 	u32 cur = intel_gt_tlb_seqno(gt);
1178 
1179 	/* Only skip if a *full* TLB invalidate barrier has passed */
1180 	return (s32)(cur - ALIGN(seqno, 2)) > 0;
1181 }
1182 
1183 void intel_gt_invalidate_tlb(struct intel_gt *gt, u32 seqno)
1184 {
1185 	intel_wakeref_t wakeref;
1186 
1187 	if (I915_SELFTEST_ONLY(gt->awake == -ENODEV))
1188 		return;
1189 
1190 	if (intel_gt_is_wedged(gt))
1191 		return;
1192 
1193 	if (tlb_seqno_passed(gt, seqno))
1194 		return;
1195 
1196 	with_intel_gt_pm_if_awake(gt, wakeref) {
1197 		mutex_lock(&gt->tlb.invalidate_lock);
1198 		if (tlb_seqno_passed(gt, seqno))
1199 			goto unlock;
1200 
1201 		mmio_invalidate_full(gt);
1202 
1203 		write_seqcount_invalidate(&gt->tlb.seqno);
1204 unlock:
1205 		mutex_unlock(&gt->tlb.invalidate_lock);
1206 	}
1207 }
1208