1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2019 Intel Corporation 4 */ 5 6 #include <drm/intel-gtt.h> 7 8 #include "intel_gt_debugfs.h" 9 10 #include "gem/i915_gem_lmem.h" 11 #include "i915_drv.h" 12 #include "intel_context.h" 13 #include "intel_engine_regs.h" 14 #include "intel_gt.h" 15 #include "intel_gt_buffer_pool.h" 16 #include "intel_gt_clock_utils.h" 17 #include "intel_gt_pm.h" 18 #include "intel_gt_regs.h" 19 #include "intel_gt_requests.h" 20 #include "intel_migrate.h" 21 #include "intel_mocs.h" 22 #include "intel_pm.h" 23 #include "intel_rc6.h" 24 #include "intel_renderstate.h" 25 #include "intel_rps.h" 26 #include "intel_uncore.h" 27 #include "shmem_utils.h" 28 #include "pxp/intel_pxp.h" 29 30 void __intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915) 31 { 32 spin_lock_init(>->irq_lock); 33 34 mutex_init(>->tlb_invalidate_lock); 35 36 INIT_LIST_HEAD(>->closed_vma); 37 spin_lock_init(>->closed_lock); 38 39 init_llist_head(>->watchdog.list); 40 INIT_WORK(>->watchdog.work, intel_gt_watchdog_work); 41 42 intel_gt_init_buffer_pool(gt); 43 intel_gt_init_reset(gt); 44 intel_gt_init_requests(gt); 45 intel_gt_init_timelines(gt); 46 intel_gt_pm_init_early(gt); 47 48 intel_uc_init_early(>->uc); 49 intel_rps_init_early(>->rps); 50 } 51 52 void intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915) 53 { 54 gt->i915 = i915; 55 gt->uncore = &i915->uncore; 56 } 57 58 int intel_gt_probe_lmem(struct intel_gt *gt) 59 { 60 struct drm_i915_private *i915 = gt->i915; 61 struct intel_memory_region *mem; 62 int id; 63 int err; 64 65 mem = intel_gt_setup_lmem(gt); 66 if (mem == ERR_PTR(-ENODEV)) 67 mem = intel_gt_setup_fake_lmem(gt); 68 if (IS_ERR(mem)) { 69 err = PTR_ERR(mem); 70 if (err == -ENODEV) 71 return 0; 72 73 drm_err(&i915->drm, 74 "Failed to setup region(%d) type=%d\n", 75 err, INTEL_MEMORY_LOCAL); 76 return err; 77 } 78 79 id = INTEL_REGION_LMEM; 80 81 mem->id = id; 82 83 intel_memory_region_set_name(mem, "local%u", mem->instance); 84 85 GEM_BUG_ON(!HAS_REGION(i915, id)); 86 GEM_BUG_ON(i915->mm.regions[id]); 87 i915->mm.regions[id] = mem; 88 89 return 0; 90 } 91 92 void intel_gt_init_hw_early(struct intel_gt *gt, struct i915_ggtt *ggtt) 93 { 94 gt->ggtt = ggtt; 95 } 96 97 static const struct intel_mmio_range icl_l3bank_steering_table[] = { 98 { 0x00B100, 0x00B3FF }, 99 {}, 100 }; 101 102 static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = { 103 { 0x004000, 0x004AFF }, 104 { 0x00C800, 0x00CFFF }, 105 { 0x00DD00, 0x00DDFF }, 106 { 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */ 107 {}, 108 }; 109 110 static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = { 111 { 0x00B000, 0x00B0FF }, 112 { 0x00D800, 0x00D8FF }, 113 {}, 114 }; 115 116 static const struct intel_mmio_range dg2_lncf_steering_table[] = { 117 { 0x00B000, 0x00B0FF }, 118 { 0x00D880, 0x00D8FF }, 119 {}, 120 }; 121 122 static u16 slicemask(struct intel_gt *gt, int count) 123 { 124 u64 dss_mask = intel_sseu_get_subslices(>->info.sseu, 0); 125 126 return intel_slicemask_from_dssmask(dss_mask, count); 127 } 128 129 int intel_gt_init_mmio(struct intel_gt *gt) 130 { 131 struct drm_i915_private *i915 = gt->i915; 132 133 intel_gt_init_clock_frequency(gt); 134 135 intel_uc_init_mmio(>->uc); 136 intel_sseu_info_init(gt); 137 138 /* 139 * An mslice is unavailable only if both the meml3 for the slice is 140 * disabled *and* all of the DSS in the slice (quadrant) are disabled. 141 */ 142 if (HAS_MSLICES(i915)) 143 gt->info.mslice_mask = 144 slicemask(gt, GEN_DSS_PER_MSLICE) | 145 (intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & 146 GEN12_MEML3_EN_MASK); 147 148 if (IS_DG2(i915)) { 149 gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; 150 gt->steering_table[LNCF] = dg2_lncf_steering_table; 151 } else if (IS_XEHPSDV(i915)) { 152 gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; 153 gt->steering_table[LNCF] = xehpsdv_lncf_steering_table; 154 } else if (GRAPHICS_VER(i915) >= 11 && 155 GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) { 156 gt->steering_table[L3BANK] = icl_l3bank_steering_table; 157 gt->info.l3bank_mask = 158 ~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & 159 GEN10_L3BANK_MASK; 160 } else if (HAS_MSLICES(i915)) { 161 MISSING_CASE(INTEL_INFO(i915)->platform); 162 } 163 164 return intel_engines_init_mmio(gt); 165 } 166 167 static void init_unused_ring(struct intel_gt *gt, u32 base) 168 { 169 struct intel_uncore *uncore = gt->uncore; 170 171 intel_uncore_write(uncore, RING_CTL(base), 0); 172 intel_uncore_write(uncore, RING_HEAD(base), 0); 173 intel_uncore_write(uncore, RING_TAIL(base), 0); 174 intel_uncore_write(uncore, RING_START(base), 0); 175 } 176 177 static void init_unused_rings(struct intel_gt *gt) 178 { 179 struct drm_i915_private *i915 = gt->i915; 180 181 if (IS_I830(i915)) { 182 init_unused_ring(gt, PRB1_BASE); 183 init_unused_ring(gt, SRB0_BASE); 184 init_unused_ring(gt, SRB1_BASE); 185 init_unused_ring(gt, SRB2_BASE); 186 init_unused_ring(gt, SRB3_BASE); 187 } else if (GRAPHICS_VER(i915) == 2) { 188 init_unused_ring(gt, SRB0_BASE); 189 init_unused_ring(gt, SRB1_BASE); 190 } else if (GRAPHICS_VER(i915) == 3) { 191 init_unused_ring(gt, PRB1_BASE); 192 init_unused_ring(gt, PRB2_BASE); 193 } 194 } 195 196 int intel_gt_init_hw(struct intel_gt *gt) 197 { 198 struct drm_i915_private *i915 = gt->i915; 199 struct intel_uncore *uncore = gt->uncore; 200 int ret; 201 202 gt->last_init_time = ktime_get(); 203 204 /* Double layer security blanket, see i915_gem_init() */ 205 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); 206 207 if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9) 208 intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf)); 209 210 if (IS_HASWELL(i915)) 211 intel_uncore_write(uncore, 212 HSW_MI_PREDICATE_RESULT_2, 213 IS_HSW_GT3(i915) ? 214 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 215 216 /* Apply the GT workarounds... */ 217 intel_gt_apply_workarounds(gt); 218 /* ...and determine whether they are sticking. */ 219 intel_gt_verify_workarounds(gt, "init"); 220 221 intel_gt_init_swizzling(gt); 222 223 /* 224 * At least 830 can leave some of the unused rings 225 * "active" (ie. head != tail) after resume which 226 * will prevent c3 entry. Makes sure all unused rings 227 * are totally idle. 228 */ 229 init_unused_rings(gt); 230 231 ret = i915_ppgtt_init_hw(gt); 232 if (ret) { 233 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret); 234 goto out; 235 } 236 237 /* We can't enable contexts until all firmware is loaded */ 238 ret = intel_uc_init_hw(>->uc); 239 if (ret) { 240 i915_probe_error(i915, "Enabling uc failed (%d)\n", ret); 241 goto out; 242 } 243 244 intel_mocs_init(gt); 245 246 out: 247 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); 248 return ret; 249 } 250 251 static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set) 252 { 253 intel_uncore_rmw(uncore, reg, 0, set); 254 } 255 256 static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr) 257 { 258 intel_uncore_rmw(uncore, reg, clr, 0); 259 } 260 261 static void clear_register(struct intel_uncore *uncore, i915_reg_t reg) 262 { 263 intel_uncore_rmw(uncore, reg, 0, 0); 264 } 265 266 static void gen6_clear_engine_error_register(struct intel_engine_cs *engine) 267 { 268 GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0); 269 GEN6_RING_FAULT_REG_POSTING_READ(engine); 270 } 271 272 void 273 intel_gt_clear_error_registers(struct intel_gt *gt, 274 intel_engine_mask_t engine_mask) 275 { 276 struct drm_i915_private *i915 = gt->i915; 277 struct intel_uncore *uncore = gt->uncore; 278 u32 eir; 279 280 if (GRAPHICS_VER(i915) != 2) 281 clear_register(uncore, PGTBL_ER); 282 283 if (GRAPHICS_VER(i915) < 4) 284 clear_register(uncore, IPEIR(RENDER_RING_BASE)); 285 else 286 clear_register(uncore, IPEIR_I965); 287 288 clear_register(uncore, EIR); 289 eir = intel_uncore_read(uncore, EIR); 290 if (eir) { 291 /* 292 * some errors might have become stuck, 293 * mask them. 294 */ 295 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir); 296 rmw_set(uncore, EMR, eir); 297 intel_uncore_write(uncore, GEN2_IIR, 298 I915_MASTER_ERROR_INTERRUPT); 299 } 300 301 if (GRAPHICS_VER(i915) >= 12) { 302 rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID); 303 intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG); 304 } else if (GRAPHICS_VER(i915) >= 8) { 305 rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID); 306 intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG); 307 } else if (GRAPHICS_VER(i915) >= 6) { 308 struct intel_engine_cs *engine; 309 enum intel_engine_id id; 310 311 for_each_engine_masked(engine, gt, engine_mask, id) 312 gen6_clear_engine_error_register(engine); 313 } 314 } 315 316 static void gen6_check_faults(struct intel_gt *gt) 317 { 318 struct intel_engine_cs *engine; 319 enum intel_engine_id id; 320 u32 fault; 321 322 for_each_engine(engine, gt, id) { 323 fault = GEN6_RING_FAULT_REG_READ(engine); 324 if (fault & RING_FAULT_VALID) { 325 drm_dbg(&engine->i915->drm, "Unexpected fault\n" 326 "\tAddr: 0x%08lx\n" 327 "\tAddress space: %s\n" 328 "\tSource ID: %d\n" 329 "\tType: %d\n", 330 fault & PAGE_MASK, 331 fault & RING_FAULT_GTTSEL_MASK ? 332 "GGTT" : "PPGTT", 333 RING_FAULT_SRCID(fault), 334 RING_FAULT_FAULT_TYPE(fault)); 335 } 336 } 337 } 338 339 static void gen8_check_faults(struct intel_gt *gt) 340 { 341 struct intel_uncore *uncore = gt->uncore; 342 i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg; 343 u32 fault; 344 345 if (GRAPHICS_VER(gt->i915) >= 12) { 346 fault_reg = GEN12_RING_FAULT_REG; 347 fault_data0_reg = GEN12_FAULT_TLB_DATA0; 348 fault_data1_reg = GEN12_FAULT_TLB_DATA1; 349 } else { 350 fault_reg = GEN8_RING_FAULT_REG; 351 fault_data0_reg = GEN8_FAULT_TLB_DATA0; 352 fault_data1_reg = GEN8_FAULT_TLB_DATA1; 353 } 354 355 fault = intel_uncore_read(uncore, fault_reg); 356 if (fault & RING_FAULT_VALID) { 357 u32 fault_data0, fault_data1; 358 u64 fault_addr; 359 360 fault_data0 = intel_uncore_read(uncore, fault_data0_reg); 361 fault_data1 = intel_uncore_read(uncore, fault_data1_reg); 362 363 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) | 364 ((u64)fault_data0 << 12); 365 366 drm_dbg(&uncore->i915->drm, "Unexpected fault\n" 367 "\tAddr: 0x%08x_%08x\n" 368 "\tAddress space: %s\n" 369 "\tEngine ID: %d\n" 370 "\tSource ID: %d\n" 371 "\tType: %d\n", 372 upper_32_bits(fault_addr), lower_32_bits(fault_addr), 373 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT", 374 GEN8_RING_FAULT_ENGINE_ID(fault), 375 RING_FAULT_SRCID(fault), 376 RING_FAULT_FAULT_TYPE(fault)); 377 } 378 } 379 380 void intel_gt_check_and_clear_faults(struct intel_gt *gt) 381 { 382 struct drm_i915_private *i915 = gt->i915; 383 384 /* From GEN8 onwards we only have one 'All Engine Fault Register' */ 385 if (GRAPHICS_VER(i915) >= 8) 386 gen8_check_faults(gt); 387 else if (GRAPHICS_VER(i915) >= 6) 388 gen6_check_faults(gt); 389 else 390 return; 391 392 intel_gt_clear_error_registers(gt, ALL_ENGINES); 393 } 394 395 void intel_gt_flush_ggtt_writes(struct intel_gt *gt) 396 { 397 struct intel_uncore *uncore = gt->uncore; 398 intel_wakeref_t wakeref; 399 400 /* 401 * No actual flushing is required for the GTT write domain for reads 402 * from the GTT domain. Writes to it "immediately" go to main memory 403 * as far as we know, so there's no chipset flush. It also doesn't 404 * land in the GPU render cache. 405 * 406 * However, we do have to enforce the order so that all writes through 407 * the GTT land before any writes to the device, such as updates to 408 * the GATT itself. 409 * 410 * We also have to wait a bit for the writes to land from the GTT. 411 * An uncached read (i.e. mmio) seems to be ideal for the round-trip 412 * timing. This issue has only been observed when switching quickly 413 * between GTT writes and CPU reads from inside the kernel on recent hw, 414 * and it appears to only affect discrete GTT blocks (i.e. on LLC 415 * system agents we cannot reproduce this behaviour, until Cannonlake 416 * that was!). 417 */ 418 419 wmb(); 420 421 if (INTEL_INFO(gt->i915)->has_coherent_ggtt) 422 return; 423 424 intel_gt_chipset_flush(gt); 425 426 with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) { 427 unsigned long flags; 428 429 spin_lock_irqsave(&uncore->lock, flags); 430 intel_uncore_posting_read_fw(uncore, 431 RING_HEAD(RENDER_RING_BASE)); 432 spin_unlock_irqrestore(&uncore->lock, flags); 433 } 434 } 435 436 void intel_gt_chipset_flush(struct intel_gt *gt) 437 { 438 wmb(); 439 if (GRAPHICS_VER(gt->i915) < 6) 440 intel_gtt_chipset_flush(); 441 } 442 443 void intel_gt_driver_register(struct intel_gt *gt) 444 { 445 intel_rps_driver_register(>->rps); 446 447 intel_gt_debugfs_register(gt); 448 } 449 450 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size) 451 { 452 struct drm_i915_private *i915 = gt->i915; 453 struct drm_i915_gem_object *obj; 454 struct i915_vma *vma; 455 int ret; 456 457 obj = i915_gem_object_create_lmem(i915, size, I915_BO_ALLOC_VOLATILE); 458 if (IS_ERR(obj)) 459 obj = i915_gem_object_create_stolen(i915, size); 460 if (IS_ERR(obj)) 461 obj = i915_gem_object_create_internal(i915, size); 462 if (IS_ERR(obj)) { 463 drm_err(&i915->drm, "Failed to allocate scratch page\n"); 464 return PTR_ERR(obj); 465 } 466 467 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 468 if (IS_ERR(vma)) { 469 ret = PTR_ERR(vma); 470 goto err_unref; 471 } 472 473 ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH); 474 if (ret) 475 goto err_unref; 476 477 gt->scratch = i915_vma_make_unshrinkable(vma); 478 479 return 0; 480 481 err_unref: 482 i915_gem_object_put(obj); 483 return ret; 484 } 485 486 static void intel_gt_fini_scratch(struct intel_gt *gt) 487 { 488 i915_vma_unpin_and_release(>->scratch, 0); 489 } 490 491 static struct i915_address_space *kernel_vm(struct intel_gt *gt) 492 { 493 if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING) 494 return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm; 495 else 496 return i915_vm_get(>->ggtt->vm); 497 } 498 499 static int __engines_record_defaults(struct intel_gt *gt) 500 { 501 struct i915_request *requests[I915_NUM_ENGINES] = {}; 502 struct intel_engine_cs *engine; 503 enum intel_engine_id id; 504 int err = 0; 505 506 /* 507 * As we reset the gpu during very early sanitisation, the current 508 * register state on the GPU should reflect its defaults values. 509 * We load a context onto the hw (with restore-inhibit), then switch 510 * over to a second context to save that default register state. We 511 * can then prime every new context with that state so they all start 512 * from the same default HW values. 513 */ 514 515 for_each_engine(engine, gt, id) { 516 struct intel_renderstate so; 517 struct intel_context *ce; 518 struct i915_request *rq; 519 520 /* We must be able to switch to something! */ 521 GEM_BUG_ON(!engine->kernel_context); 522 523 ce = intel_context_create(engine); 524 if (IS_ERR(ce)) { 525 err = PTR_ERR(ce); 526 goto out; 527 } 528 529 err = intel_renderstate_init(&so, ce); 530 if (err) 531 goto err; 532 533 rq = i915_request_create(ce); 534 if (IS_ERR(rq)) { 535 err = PTR_ERR(rq); 536 goto err_fini; 537 } 538 539 err = intel_engine_emit_ctx_wa(rq); 540 if (err) 541 goto err_rq; 542 543 err = intel_renderstate_emit(&so, rq); 544 if (err) 545 goto err_rq; 546 547 err_rq: 548 requests[id] = i915_request_get(rq); 549 i915_request_add(rq); 550 err_fini: 551 intel_renderstate_fini(&so, ce); 552 err: 553 if (err) { 554 intel_context_put(ce); 555 goto out; 556 } 557 } 558 559 /* Flush the default context image to memory, and enable powersaving. */ 560 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) { 561 err = -EIO; 562 goto out; 563 } 564 565 for (id = 0; id < ARRAY_SIZE(requests); id++) { 566 struct i915_request *rq; 567 struct file *state; 568 569 rq = requests[id]; 570 if (!rq) 571 continue; 572 573 if (rq->fence.error) { 574 err = -EIO; 575 goto out; 576 } 577 578 GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags)); 579 if (!rq->context->state) 580 continue; 581 582 /* Keep a copy of the state's backing pages; free the obj */ 583 state = shmem_create_from_object(rq->context->state->obj); 584 if (IS_ERR(state)) { 585 err = PTR_ERR(state); 586 goto out; 587 } 588 rq->engine->default_state = state; 589 } 590 591 out: 592 /* 593 * If we have to abandon now, we expect the engines to be idle 594 * and ready to be torn-down. The quickest way we can accomplish 595 * this is by declaring ourselves wedged. 596 */ 597 if (err) 598 intel_gt_set_wedged(gt); 599 600 for (id = 0; id < ARRAY_SIZE(requests); id++) { 601 struct intel_context *ce; 602 struct i915_request *rq; 603 604 rq = requests[id]; 605 if (!rq) 606 continue; 607 608 ce = rq->context; 609 i915_request_put(rq); 610 intel_context_put(ce); 611 } 612 return err; 613 } 614 615 static int __engines_verify_workarounds(struct intel_gt *gt) 616 { 617 struct intel_engine_cs *engine; 618 enum intel_engine_id id; 619 int err = 0; 620 621 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 622 return 0; 623 624 for_each_engine(engine, gt, id) { 625 if (intel_engine_verify_workarounds(engine, "load")) 626 err = -EIO; 627 } 628 629 /* Flush and restore the kernel context for safety */ 630 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) 631 err = -EIO; 632 633 return err; 634 } 635 636 static void __intel_gt_disable(struct intel_gt *gt) 637 { 638 intel_gt_set_wedged_on_fini(gt); 639 640 intel_gt_suspend_prepare(gt); 641 intel_gt_suspend_late(gt); 642 643 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 644 } 645 646 int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout) 647 { 648 long remaining_timeout; 649 650 /* If the device is asleep, we have no requests outstanding */ 651 if (!intel_gt_pm_is_awake(gt)) 652 return 0; 653 654 while ((timeout = intel_gt_retire_requests_timeout(gt, timeout, 655 &remaining_timeout)) > 0) { 656 cond_resched(); 657 if (signal_pending(current)) 658 return -EINTR; 659 } 660 661 return timeout ? timeout : intel_uc_wait_for_idle(>->uc, 662 remaining_timeout); 663 } 664 665 int intel_gt_init(struct intel_gt *gt) 666 { 667 int err; 668 669 err = i915_inject_probe_error(gt->i915, -ENODEV); 670 if (err) 671 return err; 672 673 intel_gt_init_workarounds(gt); 674 675 /* 676 * This is just a security blanket to placate dragons. 677 * On some systems, we very sporadically observe that the first TLBs 678 * used by the CS may be stale, despite us poking the TLB reset. If 679 * we hold the forcewake during initialisation these problems 680 * just magically go away. 681 */ 682 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 683 684 err = intel_gt_init_scratch(gt, 685 GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K); 686 if (err) 687 goto out_fw; 688 689 intel_gt_pm_init(gt); 690 691 gt->vm = kernel_vm(gt); 692 if (!gt->vm) { 693 err = -ENOMEM; 694 goto err_pm; 695 } 696 697 intel_set_mocs_index(gt); 698 699 err = intel_engines_init(gt); 700 if (err) 701 goto err_engines; 702 703 err = intel_uc_init(>->uc); 704 if (err) 705 goto err_engines; 706 707 err = intel_gt_resume(gt); 708 if (err) 709 goto err_uc_init; 710 711 err = __engines_record_defaults(gt); 712 if (err) 713 goto err_gt; 714 715 err = __engines_verify_workarounds(gt); 716 if (err) 717 goto err_gt; 718 719 intel_uc_init_late(>->uc); 720 721 err = i915_inject_probe_error(gt->i915, -EIO); 722 if (err) 723 goto err_gt; 724 725 intel_migrate_init(>->migrate, gt); 726 727 intel_pxp_init(>->pxp); 728 729 goto out_fw; 730 err_gt: 731 __intel_gt_disable(gt); 732 intel_uc_fini_hw(>->uc); 733 err_uc_init: 734 intel_uc_fini(>->uc); 735 err_engines: 736 intel_engines_release(gt); 737 i915_vm_put(fetch_and_zero(>->vm)); 738 err_pm: 739 intel_gt_pm_fini(gt); 740 intel_gt_fini_scratch(gt); 741 out_fw: 742 if (err) 743 intel_gt_set_wedged_on_init(gt); 744 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 745 return err; 746 } 747 748 void intel_gt_driver_remove(struct intel_gt *gt) 749 { 750 __intel_gt_disable(gt); 751 752 intel_migrate_fini(>->migrate); 753 intel_uc_driver_remove(>->uc); 754 755 intel_engines_release(gt); 756 757 intel_gt_flush_buffer_pool(gt); 758 } 759 760 void intel_gt_driver_unregister(struct intel_gt *gt) 761 { 762 intel_wakeref_t wakeref; 763 764 intel_rps_driver_unregister(>->rps); 765 766 intel_pxp_fini(>->pxp); 767 768 /* 769 * Upon unregistering the device to prevent any new users, cancel 770 * all in-flight requests so that we can quickly unbind the active 771 * resources. 772 */ 773 intel_gt_set_wedged_on_fini(gt); 774 775 /* Scrub all HW state upon release */ 776 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 777 __intel_gt_reset(gt, ALL_ENGINES); 778 } 779 780 void intel_gt_driver_release(struct intel_gt *gt) 781 { 782 struct i915_address_space *vm; 783 784 vm = fetch_and_zero(>->vm); 785 if (vm) /* FIXME being called twice on error paths :( */ 786 i915_vm_put(vm); 787 788 intel_wa_list_free(>->wa_list); 789 intel_gt_pm_fini(gt); 790 intel_gt_fini_scratch(gt); 791 intel_gt_fini_buffer_pool(gt); 792 } 793 794 void intel_gt_driver_late_release(struct intel_gt *gt) 795 { 796 /* We need to wait for inflight RCU frees to release their grip */ 797 rcu_barrier(); 798 799 intel_uc_driver_late_release(>->uc); 800 intel_gt_fini_requests(gt); 801 intel_gt_fini_reset(gt); 802 intel_gt_fini_timelines(gt); 803 intel_engines_free(gt); 804 } 805 806 /** 807 * intel_gt_reg_needs_read_steering - determine whether a register read 808 * requires explicit steering 809 * @gt: GT structure 810 * @reg: the register to check steering requirements for 811 * @type: type of multicast steering to check 812 * 813 * Determines whether @reg needs explicit steering of a specific type for 814 * reads. 815 * 816 * Returns false if @reg does not belong to a register range of the given 817 * steering type, or if the default (subslice-based) steering IDs are suitable 818 * for @type steering too. 819 */ 820 static bool intel_gt_reg_needs_read_steering(struct intel_gt *gt, 821 i915_reg_t reg, 822 enum intel_steering_type type) 823 { 824 const u32 offset = i915_mmio_reg_offset(reg); 825 const struct intel_mmio_range *entry; 826 827 if (likely(!intel_gt_needs_read_steering(gt, type))) 828 return false; 829 830 for (entry = gt->steering_table[type]; entry->end; entry++) { 831 if (offset >= entry->start && offset <= entry->end) 832 return true; 833 } 834 835 return false; 836 } 837 838 /** 839 * intel_gt_get_valid_steering - determines valid IDs for a class of MCR steering 840 * @gt: GT structure 841 * @type: multicast register type 842 * @sliceid: Slice ID returned 843 * @subsliceid: Subslice ID returned 844 * 845 * Determines sliceid and subsliceid values that will steer reads 846 * of a specific multicast register class to a valid value. 847 */ 848 static void intel_gt_get_valid_steering(struct intel_gt *gt, 849 enum intel_steering_type type, 850 u8 *sliceid, u8 *subsliceid) 851 { 852 switch (type) { 853 case L3BANK: 854 GEM_DEBUG_WARN_ON(!gt->info.l3bank_mask); /* should be impossible! */ 855 856 *sliceid = 0; /* unused */ 857 *subsliceid = __ffs(gt->info.l3bank_mask); 858 break; 859 case MSLICE: 860 GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */ 861 862 *sliceid = __ffs(gt->info.mslice_mask); 863 *subsliceid = 0; /* unused */ 864 break; 865 case LNCF: 866 GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */ 867 868 /* 869 * An LNCF is always present if its mslice is present, so we 870 * can safely just steer to LNCF 0 in all cases. 871 */ 872 *sliceid = __ffs(gt->info.mslice_mask) << 1; 873 *subsliceid = 0; /* unused */ 874 break; 875 default: 876 MISSING_CASE(type); 877 *sliceid = 0; 878 *subsliceid = 0; 879 } 880 } 881 882 /** 883 * intel_gt_read_register_fw - reads a GT register with support for multicast 884 * @gt: GT structure 885 * @reg: register to read 886 * 887 * This function will read a GT register. If the register is a multicast 888 * register, the read will be steered to a valid instance (i.e., one that 889 * isn't fused off or powered down by power gating). 890 * 891 * Returns the value from a valid instance of @reg. 892 */ 893 u32 intel_gt_read_register_fw(struct intel_gt *gt, i915_reg_t reg) 894 { 895 int type; 896 u8 sliceid, subsliceid; 897 898 for (type = 0; type < NUM_STEERING_TYPES; type++) { 899 if (intel_gt_reg_needs_read_steering(gt, reg, type)) { 900 intel_gt_get_valid_steering(gt, type, &sliceid, 901 &subsliceid); 902 return intel_uncore_read_with_mcr_steering_fw(gt->uncore, 903 reg, 904 sliceid, 905 subsliceid); 906 } 907 } 908 909 return intel_uncore_read_fw(gt->uncore, reg); 910 } 911 912 void intel_gt_info_print(const struct intel_gt_info *info, 913 struct drm_printer *p) 914 { 915 drm_printf(p, "available engines: %x\n", info->engine_mask); 916 917 intel_sseu_dump(&info->sseu, p); 918 } 919 920 struct reg_and_bit { 921 i915_reg_t reg; 922 u32 bit; 923 }; 924 925 static struct reg_and_bit 926 get_reg_and_bit(const struct intel_engine_cs *engine, const bool gen8, 927 const i915_reg_t *regs, const unsigned int num) 928 { 929 const unsigned int class = engine->class; 930 struct reg_and_bit rb = { }; 931 932 if (drm_WARN_ON_ONCE(&engine->i915->drm, 933 class >= num || !regs[class].reg)) 934 return rb; 935 936 rb.reg = regs[class]; 937 if (gen8 && class == VIDEO_DECODE_CLASS) 938 rb.reg.reg += 4 * engine->instance; /* GEN8_M2TCR */ 939 else 940 rb.bit = engine->instance; 941 942 rb.bit = BIT(rb.bit); 943 944 return rb; 945 } 946 947 void intel_gt_invalidate_tlbs(struct intel_gt *gt) 948 { 949 static const i915_reg_t gen8_regs[] = { 950 [RENDER_CLASS] = GEN8_RTCR, 951 [VIDEO_DECODE_CLASS] = GEN8_M1TCR, /* , GEN8_M2TCR */ 952 [VIDEO_ENHANCEMENT_CLASS] = GEN8_VTCR, 953 [COPY_ENGINE_CLASS] = GEN8_BTCR, 954 }; 955 static const i915_reg_t gen12_regs[] = { 956 [RENDER_CLASS] = GEN12_GFX_TLB_INV_CR, 957 [VIDEO_DECODE_CLASS] = GEN12_VD_TLB_INV_CR, 958 [VIDEO_ENHANCEMENT_CLASS] = GEN12_VE_TLB_INV_CR, 959 [COPY_ENGINE_CLASS] = GEN12_BLT_TLB_INV_CR, 960 }; 961 struct drm_i915_private *i915 = gt->i915; 962 struct intel_uncore *uncore = gt->uncore; 963 struct intel_engine_cs *engine; 964 enum intel_engine_id id; 965 const i915_reg_t *regs; 966 unsigned int num = 0; 967 968 if (I915_SELFTEST_ONLY(gt->awake == -ENODEV)) 969 return; 970 971 if (GRAPHICS_VER(i915) == 12) { 972 regs = gen12_regs; 973 num = ARRAY_SIZE(gen12_regs); 974 } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) { 975 regs = gen8_regs; 976 num = ARRAY_SIZE(gen8_regs); 977 } else if (GRAPHICS_VER(i915) < 8) { 978 return; 979 } 980 981 if (drm_WARN_ONCE(&i915->drm, !num, 982 "Platform does not implement TLB invalidation!")) 983 return; 984 985 GEM_TRACE("\n"); 986 987 assert_rpm_wakelock_held(&i915->runtime_pm); 988 989 mutex_lock(>->tlb_invalidate_lock); 990 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); 991 992 for_each_engine(engine, gt, id) { 993 /* 994 * HW architecture suggest typical invalidation time at 40us, 995 * with pessimistic cases up to 100us and a recommendation to 996 * cap at 1ms. We go a bit higher just in case. 997 */ 998 const unsigned int timeout_us = 100; 999 const unsigned int timeout_ms = 4; 1000 struct reg_and_bit rb; 1001 1002 rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num); 1003 if (!i915_mmio_reg_offset(rb.reg)) 1004 continue; 1005 1006 intel_uncore_write_fw(uncore, rb.reg, rb.bit); 1007 if (__intel_wait_for_register_fw(uncore, 1008 rb.reg, rb.bit, 0, 1009 timeout_us, timeout_ms, 1010 NULL)) 1011 drm_err_ratelimited(>->i915->drm, 1012 "%s TLB invalidation did not complete in %ums!\n", 1013 engine->name, timeout_ms); 1014 } 1015 1016 /* 1017 * Use delayed put since a) we mostly expect a flurry of TLB 1018 * invalidations so it is good to avoid paying the forcewake cost and 1019 * b) it works around a bug in Icelake which cannot cope with too rapid 1020 * transitions. 1021 */ 1022 intel_uncore_forcewake_put_delayed(uncore, FORCEWAKE_ALL); 1023 mutex_unlock(>->tlb_invalidate_lock); 1024 } 1025