xref: /linux/drivers/gpu/drm/i915/gt/intel_gt.c (revision a4eb44a6435d6d8f9e642407a4a06f65eb90ca04)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <drm/intel-gtt.h>
7 
8 #include "intel_gt_debugfs.h"
9 
10 #include "gem/i915_gem_lmem.h"
11 #include "i915_drv.h"
12 #include "intel_context.h"
13 #include "intel_gt.h"
14 #include "intel_gt_buffer_pool.h"
15 #include "intel_gt_clock_utils.h"
16 #include "intel_gt_pm.h"
17 #include "intel_gt_requests.h"
18 #include "intel_migrate.h"
19 #include "intel_mocs.h"
20 #include "intel_pm.h"
21 #include "intel_rc6.h"
22 #include "intel_renderstate.h"
23 #include "intel_rps.h"
24 #include "intel_uncore.h"
25 #include "shmem_utils.h"
26 #include "pxp/intel_pxp.h"
27 
28 void __intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915)
29 {
30 	spin_lock_init(&gt->irq_lock);
31 
32 	mutex_init(&gt->tlb_invalidate_lock);
33 
34 	INIT_LIST_HEAD(&gt->closed_vma);
35 	spin_lock_init(&gt->closed_lock);
36 
37 	init_llist_head(&gt->watchdog.list);
38 	INIT_WORK(&gt->watchdog.work, intel_gt_watchdog_work);
39 
40 	intel_gt_init_buffer_pool(gt);
41 	intel_gt_init_reset(gt);
42 	intel_gt_init_requests(gt);
43 	intel_gt_init_timelines(gt);
44 	intel_gt_pm_init_early(gt);
45 
46 	intel_uc_init_early(&gt->uc);
47 	intel_rps_init_early(&gt->rps);
48 }
49 
50 void intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915)
51 {
52 	gt->i915 = i915;
53 	gt->uncore = &i915->uncore;
54 }
55 
56 int intel_gt_probe_lmem(struct intel_gt *gt)
57 {
58 	struct drm_i915_private *i915 = gt->i915;
59 	struct intel_memory_region *mem;
60 	int id;
61 	int err;
62 
63 	mem = intel_gt_setup_lmem(gt);
64 	if (mem == ERR_PTR(-ENODEV))
65 		mem = intel_gt_setup_fake_lmem(gt);
66 	if (IS_ERR(mem)) {
67 		err = PTR_ERR(mem);
68 		if (err == -ENODEV)
69 			return 0;
70 
71 		drm_err(&i915->drm,
72 			"Failed to setup region(%d) type=%d\n",
73 			err, INTEL_MEMORY_LOCAL);
74 		return err;
75 	}
76 
77 	id = INTEL_REGION_LMEM;
78 
79 	mem->id = id;
80 
81 	intel_memory_region_set_name(mem, "local%u", mem->instance);
82 
83 	GEM_BUG_ON(!HAS_REGION(i915, id));
84 	GEM_BUG_ON(i915->mm.regions[id]);
85 	i915->mm.regions[id] = mem;
86 
87 	return 0;
88 }
89 
90 void intel_gt_init_hw_early(struct intel_gt *gt, struct i915_ggtt *ggtt)
91 {
92 	gt->ggtt = ggtt;
93 }
94 
95 static const struct intel_mmio_range icl_l3bank_steering_table[] = {
96 	{ 0x00B100, 0x00B3FF },
97 	{},
98 };
99 
100 static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = {
101 	{ 0x004000, 0x004AFF },
102 	{ 0x00C800, 0x00CFFF },
103 	{ 0x00DD00, 0x00DDFF },
104 	{ 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
105 	{},
106 };
107 
108 static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = {
109 	{ 0x00B000, 0x00B0FF },
110 	{ 0x00D800, 0x00D8FF },
111 	{},
112 };
113 
114 static const struct intel_mmio_range dg2_lncf_steering_table[] = {
115 	{ 0x00B000, 0x00B0FF },
116 	{ 0x00D880, 0x00D8FF },
117 	{},
118 };
119 
120 static u16 slicemask(struct intel_gt *gt, int count)
121 {
122 	u64 dss_mask = intel_sseu_get_subslices(&gt->info.sseu, 0);
123 
124 	return intel_slicemask_from_dssmask(dss_mask, count);
125 }
126 
127 int intel_gt_init_mmio(struct intel_gt *gt)
128 {
129 	struct drm_i915_private *i915 = gt->i915;
130 
131 	intel_gt_init_clock_frequency(gt);
132 
133 	intel_uc_init_mmio(&gt->uc);
134 	intel_sseu_info_init(gt);
135 
136 	/*
137 	 * An mslice is unavailable only if both the meml3 for the slice is
138 	 * disabled *and* all of the DSS in the slice (quadrant) are disabled.
139 	 */
140 	if (HAS_MSLICES(i915))
141 		gt->info.mslice_mask =
142 			slicemask(gt, GEN_DSS_PER_MSLICE) |
143 			(intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
144 			 GEN12_MEML3_EN_MASK);
145 
146 	if (IS_DG2(i915)) {
147 		gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
148 		gt->steering_table[LNCF] = dg2_lncf_steering_table;
149 	} else if (IS_XEHPSDV(i915)) {
150 		gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
151 		gt->steering_table[LNCF] = xehpsdv_lncf_steering_table;
152 	} else if (GRAPHICS_VER(i915) >= 11 &&
153 		   GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) {
154 		gt->steering_table[L3BANK] = icl_l3bank_steering_table;
155 		gt->info.l3bank_mask =
156 			~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
157 			GEN10_L3BANK_MASK;
158 	} else if (HAS_MSLICES(i915)) {
159 		MISSING_CASE(INTEL_INFO(i915)->platform);
160 	}
161 
162 	return intel_engines_init_mmio(gt);
163 }
164 
165 static void init_unused_ring(struct intel_gt *gt, u32 base)
166 {
167 	struct intel_uncore *uncore = gt->uncore;
168 
169 	intel_uncore_write(uncore, RING_CTL(base), 0);
170 	intel_uncore_write(uncore, RING_HEAD(base), 0);
171 	intel_uncore_write(uncore, RING_TAIL(base), 0);
172 	intel_uncore_write(uncore, RING_START(base), 0);
173 }
174 
175 static void init_unused_rings(struct intel_gt *gt)
176 {
177 	struct drm_i915_private *i915 = gt->i915;
178 
179 	if (IS_I830(i915)) {
180 		init_unused_ring(gt, PRB1_BASE);
181 		init_unused_ring(gt, SRB0_BASE);
182 		init_unused_ring(gt, SRB1_BASE);
183 		init_unused_ring(gt, SRB2_BASE);
184 		init_unused_ring(gt, SRB3_BASE);
185 	} else if (GRAPHICS_VER(i915) == 2) {
186 		init_unused_ring(gt, SRB0_BASE);
187 		init_unused_ring(gt, SRB1_BASE);
188 	} else if (GRAPHICS_VER(i915) == 3) {
189 		init_unused_ring(gt, PRB1_BASE);
190 		init_unused_ring(gt, PRB2_BASE);
191 	}
192 }
193 
194 int intel_gt_init_hw(struct intel_gt *gt)
195 {
196 	struct drm_i915_private *i915 = gt->i915;
197 	struct intel_uncore *uncore = gt->uncore;
198 	int ret;
199 
200 	gt->last_init_time = ktime_get();
201 
202 	/* Double layer security blanket, see i915_gem_init() */
203 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
204 
205 	if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9)
206 		intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
207 
208 	if (IS_HASWELL(i915))
209 		intel_uncore_write(uncore,
210 				   MI_PREDICATE_RESULT_2,
211 				   IS_HSW_GT3(i915) ?
212 				   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
213 
214 	/* Apply the GT workarounds... */
215 	intel_gt_apply_workarounds(gt);
216 	/* ...and determine whether they are sticking. */
217 	intel_gt_verify_workarounds(gt, "init");
218 
219 	intel_gt_init_swizzling(gt);
220 
221 	/*
222 	 * At least 830 can leave some of the unused rings
223 	 * "active" (ie. head != tail) after resume which
224 	 * will prevent c3 entry. Makes sure all unused rings
225 	 * are totally idle.
226 	 */
227 	init_unused_rings(gt);
228 
229 	ret = i915_ppgtt_init_hw(gt);
230 	if (ret) {
231 		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
232 		goto out;
233 	}
234 
235 	/* We can't enable contexts until all firmware is loaded */
236 	ret = intel_uc_init_hw(&gt->uc);
237 	if (ret) {
238 		i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
239 		goto out;
240 	}
241 
242 	intel_mocs_init(gt);
243 
244 out:
245 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
246 	return ret;
247 }
248 
249 static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
250 {
251 	intel_uncore_rmw(uncore, reg, 0, set);
252 }
253 
254 static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
255 {
256 	intel_uncore_rmw(uncore, reg, clr, 0);
257 }
258 
259 static void clear_register(struct intel_uncore *uncore, i915_reg_t reg)
260 {
261 	intel_uncore_rmw(uncore, reg, 0, 0);
262 }
263 
264 static void gen6_clear_engine_error_register(struct intel_engine_cs *engine)
265 {
266 	GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
267 	GEN6_RING_FAULT_REG_POSTING_READ(engine);
268 }
269 
270 void
271 intel_gt_clear_error_registers(struct intel_gt *gt,
272 			       intel_engine_mask_t engine_mask)
273 {
274 	struct drm_i915_private *i915 = gt->i915;
275 	struct intel_uncore *uncore = gt->uncore;
276 	u32 eir;
277 
278 	if (GRAPHICS_VER(i915) != 2)
279 		clear_register(uncore, PGTBL_ER);
280 
281 	if (GRAPHICS_VER(i915) < 4)
282 		clear_register(uncore, IPEIR(RENDER_RING_BASE));
283 	else
284 		clear_register(uncore, IPEIR_I965);
285 
286 	clear_register(uncore, EIR);
287 	eir = intel_uncore_read(uncore, EIR);
288 	if (eir) {
289 		/*
290 		 * some errors might have become stuck,
291 		 * mask them.
292 		 */
293 		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
294 		rmw_set(uncore, EMR, eir);
295 		intel_uncore_write(uncore, GEN2_IIR,
296 				   I915_MASTER_ERROR_INTERRUPT);
297 	}
298 
299 	if (GRAPHICS_VER(i915) >= 12) {
300 		rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID);
301 		intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
302 	} else if (GRAPHICS_VER(i915) >= 8) {
303 		rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID);
304 		intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
305 	} else if (GRAPHICS_VER(i915) >= 6) {
306 		struct intel_engine_cs *engine;
307 		enum intel_engine_id id;
308 
309 		for_each_engine_masked(engine, gt, engine_mask, id)
310 			gen6_clear_engine_error_register(engine);
311 	}
312 }
313 
314 static void gen6_check_faults(struct intel_gt *gt)
315 {
316 	struct intel_engine_cs *engine;
317 	enum intel_engine_id id;
318 	u32 fault;
319 
320 	for_each_engine(engine, gt, id) {
321 		fault = GEN6_RING_FAULT_REG_READ(engine);
322 		if (fault & RING_FAULT_VALID) {
323 			drm_dbg(&engine->i915->drm, "Unexpected fault\n"
324 				"\tAddr: 0x%08lx\n"
325 				"\tAddress space: %s\n"
326 				"\tSource ID: %d\n"
327 				"\tType: %d\n",
328 				fault & PAGE_MASK,
329 				fault & RING_FAULT_GTTSEL_MASK ?
330 				"GGTT" : "PPGTT",
331 				RING_FAULT_SRCID(fault),
332 				RING_FAULT_FAULT_TYPE(fault));
333 		}
334 	}
335 }
336 
337 static void gen8_check_faults(struct intel_gt *gt)
338 {
339 	struct intel_uncore *uncore = gt->uncore;
340 	i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
341 	u32 fault;
342 
343 	if (GRAPHICS_VER(gt->i915) >= 12) {
344 		fault_reg = GEN12_RING_FAULT_REG;
345 		fault_data0_reg = GEN12_FAULT_TLB_DATA0;
346 		fault_data1_reg = GEN12_FAULT_TLB_DATA1;
347 	} else {
348 		fault_reg = GEN8_RING_FAULT_REG;
349 		fault_data0_reg = GEN8_FAULT_TLB_DATA0;
350 		fault_data1_reg = GEN8_FAULT_TLB_DATA1;
351 	}
352 
353 	fault = intel_uncore_read(uncore, fault_reg);
354 	if (fault & RING_FAULT_VALID) {
355 		u32 fault_data0, fault_data1;
356 		u64 fault_addr;
357 
358 		fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
359 		fault_data1 = intel_uncore_read(uncore, fault_data1_reg);
360 
361 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
362 			     ((u64)fault_data0 << 12);
363 
364 		drm_dbg(&uncore->i915->drm, "Unexpected fault\n"
365 			"\tAddr: 0x%08x_%08x\n"
366 			"\tAddress space: %s\n"
367 			"\tEngine ID: %d\n"
368 			"\tSource ID: %d\n"
369 			"\tType: %d\n",
370 			upper_32_bits(fault_addr), lower_32_bits(fault_addr),
371 			fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
372 			GEN8_RING_FAULT_ENGINE_ID(fault),
373 			RING_FAULT_SRCID(fault),
374 			RING_FAULT_FAULT_TYPE(fault));
375 	}
376 }
377 
378 void intel_gt_check_and_clear_faults(struct intel_gt *gt)
379 {
380 	struct drm_i915_private *i915 = gt->i915;
381 
382 	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
383 	if (GRAPHICS_VER(i915) >= 8)
384 		gen8_check_faults(gt);
385 	else if (GRAPHICS_VER(i915) >= 6)
386 		gen6_check_faults(gt);
387 	else
388 		return;
389 
390 	intel_gt_clear_error_registers(gt, ALL_ENGINES);
391 }
392 
393 void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
394 {
395 	struct intel_uncore *uncore = gt->uncore;
396 	intel_wakeref_t wakeref;
397 
398 	/*
399 	 * No actual flushing is required for the GTT write domain for reads
400 	 * from the GTT domain. Writes to it "immediately" go to main memory
401 	 * as far as we know, so there's no chipset flush. It also doesn't
402 	 * land in the GPU render cache.
403 	 *
404 	 * However, we do have to enforce the order so that all writes through
405 	 * the GTT land before any writes to the device, such as updates to
406 	 * the GATT itself.
407 	 *
408 	 * We also have to wait a bit for the writes to land from the GTT.
409 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
410 	 * timing. This issue has only been observed when switching quickly
411 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
412 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
413 	 * system agents we cannot reproduce this behaviour, until Cannonlake
414 	 * that was!).
415 	 */
416 
417 	wmb();
418 
419 	if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
420 		return;
421 
422 	intel_gt_chipset_flush(gt);
423 
424 	with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
425 		unsigned long flags;
426 
427 		spin_lock_irqsave(&uncore->lock, flags);
428 		intel_uncore_posting_read_fw(uncore,
429 					     RING_HEAD(RENDER_RING_BASE));
430 		spin_unlock_irqrestore(&uncore->lock, flags);
431 	}
432 }
433 
434 void intel_gt_chipset_flush(struct intel_gt *gt)
435 {
436 	wmb();
437 	if (GRAPHICS_VER(gt->i915) < 6)
438 		intel_gtt_chipset_flush();
439 }
440 
441 void intel_gt_driver_register(struct intel_gt *gt)
442 {
443 	intel_rps_driver_register(&gt->rps);
444 
445 	intel_gt_debugfs_register(gt);
446 }
447 
448 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
449 {
450 	struct drm_i915_private *i915 = gt->i915;
451 	struct drm_i915_gem_object *obj;
452 	struct i915_vma *vma;
453 	int ret;
454 
455 	obj = i915_gem_object_create_lmem(i915, size, I915_BO_ALLOC_VOLATILE);
456 	if (IS_ERR(obj))
457 		obj = i915_gem_object_create_stolen(i915, size);
458 	if (IS_ERR(obj))
459 		obj = i915_gem_object_create_internal(i915, size);
460 	if (IS_ERR(obj)) {
461 		drm_err(&i915->drm, "Failed to allocate scratch page\n");
462 		return PTR_ERR(obj);
463 	}
464 
465 	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
466 	if (IS_ERR(vma)) {
467 		ret = PTR_ERR(vma);
468 		goto err_unref;
469 	}
470 
471 	ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
472 	if (ret)
473 		goto err_unref;
474 
475 	gt->scratch = i915_vma_make_unshrinkable(vma);
476 
477 	return 0;
478 
479 err_unref:
480 	i915_gem_object_put(obj);
481 	return ret;
482 }
483 
484 static void intel_gt_fini_scratch(struct intel_gt *gt)
485 {
486 	i915_vma_unpin_and_release(&gt->scratch, 0);
487 }
488 
489 static struct i915_address_space *kernel_vm(struct intel_gt *gt)
490 {
491 	if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
492 		return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm;
493 	else
494 		return i915_vm_get(&gt->ggtt->vm);
495 }
496 
497 static int __engines_record_defaults(struct intel_gt *gt)
498 {
499 	struct i915_request *requests[I915_NUM_ENGINES] = {};
500 	struct intel_engine_cs *engine;
501 	enum intel_engine_id id;
502 	int err = 0;
503 
504 	/*
505 	 * As we reset the gpu during very early sanitisation, the current
506 	 * register state on the GPU should reflect its defaults values.
507 	 * We load a context onto the hw (with restore-inhibit), then switch
508 	 * over to a second context to save that default register state. We
509 	 * can then prime every new context with that state so they all start
510 	 * from the same default HW values.
511 	 */
512 
513 	for_each_engine(engine, gt, id) {
514 		struct intel_renderstate so;
515 		struct intel_context *ce;
516 		struct i915_request *rq;
517 
518 		/* We must be able to switch to something! */
519 		GEM_BUG_ON(!engine->kernel_context);
520 
521 		ce = intel_context_create(engine);
522 		if (IS_ERR(ce)) {
523 			err = PTR_ERR(ce);
524 			goto out;
525 		}
526 
527 		err = intel_renderstate_init(&so, ce);
528 		if (err)
529 			goto err;
530 
531 		rq = i915_request_create(ce);
532 		if (IS_ERR(rq)) {
533 			err = PTR_ERR(rq);
534 			goto err_fini;
535 		}
536 
537 		err = intel_engine_emit_ctx_wa(rq);
538 		if (err)
539 			goto err_rq;
540 
541 		err = intel_renderstate_emit(&so, rq);
542 		if (err)
543 			goto err_rq;
544 
545 err_rq:
546 		requests[id] = i915_request_get(rq);
547 		i915_request_add(rq);
548 err_fini:
549 		intel_renderstate_fini(&so, ce);
550 err:
551 		if (err) {
552 			intel_context_put(ce);
553 			goto out;
554 		}
555 	}
556 
557 	/* Flush the default context image to memory, and enable powersaving. */
558 	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
559 		err = -EIO;
560 		goto out;
561 	}
562 
563 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
564 		struct i915_request *rq;
565 		struct file *state;
566 
567 		rq = requests[id];
568 		if (!rq)
569 			continue;
570 
571 		if (rq->fence.error) {
572 			err = -EIO;
573 			goto out;
574 		}
575 
576 		GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
577 		if (!rq->context->state)
578 			continue;
579 
580 		/* Keep a copy of the state's backing pages; free the obj */
581 		state = shmem_create_from_object(rq->context->state->obj);
582 		if (IS_ERR(state)) {
583 			err = PTR_ERR(state);
584 			goto out;
585 		}
586 		rq->engine->default_state = state;
587 	}
588 
589 out:
590 	/*
591 	 * If we have to abandon now, we expect the engines to be idle
592 	 * and ready to be torn-down. The quickest way we can accomplish
593 	 * this is by declaring ourselves wedged.
594 	 */
595 	if (err)
596 		intel_gt_set_wedged(gt);
597 
598 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
599 		struct intel_context *ce;
600 		struct i915_request *rq;
601 
602 		rq = requests[id];
603 		if (!rq)
604 			continue;
605 
606 		ce = rq->context;
607 		i915_request_put(rq);
608 		intel_context_put(ce);
609 	}
610 	return err;
611 }
612 
613 static int __engines_verify_workarounds(struct intel_gt *gt)
614 {
615 	struct intel_engine_cs *engine;
616 	enum intel_engine_id id;
617 	int err = 0;
618 
619 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
620 		return 0;
621 
622 	for_each_engine(engine, gt, id) {
623 		if (intel_engine_verify_workarounds(engine, "load"))
624 			err = -EIO;
625 	}
626 
627 	/* Flush and restore the kernel context for safety */
628 	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
629 		err = -EIO;
630 
631 	return err;
632 }
633 
634 static void __intel_gt_disable(struct intel_gt *gt)
635 {
636 	intel_gt_set_wedged_on_fini(gt);
637 
638 	intel_gt_suspend_prepare(gt);
639 	intel_gt_suspend_late(gt);
640 
641 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
642 }
643 
644 int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout)
645 {
646 	long remaining_timeout;
647 
648 	/* If the device is asleep, we have no requests outstanding */
649 	if (!intel_gt_pm_is_awake(gt))
650 		return 0;
651 
652 	while ((timeout = intel_gt_retire_requests_timeout(gt, timeout,
653 							   &remaining_timeout)) > 0) {
654 		cond_resched();
655 		if (signal_pending(current))
656 			return -EINTR;
657 	}
658 
659 	return timeout ? timeout : intel_uc_wait_for_idle(&gt->uc,
660 							  remaining_timeout);
661 }
662 
663 int intel_gt_init(struct intel_gt *gt)
664 {
665 	int err;
666 
667 	err = i915_inject_probe_error(gt->i915, -ENODEV);
668 	if (err)
669 		return err;
670 
671 	intel_gt_init_workarounds(gt);
672 
673 	/*
674 	 * This is just a security blanket to placate dragons.
675 	 * On some systems, we very sporadically observe that the first TLBs
676 	 * used by the CS may be stale, despite us poking the TLB reset. If
677 	 * we hold the forcewake during initialisation these problems
678 	 * just magically go away.
679 	 */
680 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
681 
682 	err = intel_gt_init_scratch(gt,
683 				    GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K);
684 	if (err)
685 		goto out_fw;
686 
687 	intel_gt_pm_init(gt);
688 
689 	gt->vm = kernel_vm(gt);
690 	if (!gt->vm) {
691 		err = -ENOMEM;
692 		goto err_pm;
693 	}
694 
695 	intel_set_mocs_index(gt);
696 
697 	err = intel_engines_init(gt);
698 	if (err)
699 		goto err_engines;
700 
701 	err = intel_uc_init(&gt->uc);
702 	if (err)
703 		goto err_engines;
704 
705 	err = intel_gt_resume(gt);
706 	if (err)
707 		goto err_uc_init;
708 
709 	err = __engines_record_defaults(gt);
710 	if (err)
711 		goto err_gt;
712 
713 	err = __engines_verify_workarounds(gt);
714 	if (err)
715 		goto err_gt;
716 
717 	intel_uc_init_late(&gt->uc);
718 
719 	err = i915_inject_probe_error(gt->i915, -EIO);
720 	if (err)
721 		goto err_gt;
722 
723 	intel_migrate_init(&gt->migrate, gt);
724 
725 	intel_pxp_init(&gt->pxp);
726 
727 	goto out_fw;
728 err_gt:
729 	__intel_gt_disable(gt);
730 	intel_uc_fini_hw(&gt->uc);
731 err_uc_init:
732 	intel_uc_fini(&gt->uc);
733 err_engines:
734 	intel_engines_release(gt);
735 	i915_vm_put(fetch_and_zero(&gt->vm));
736 err_pm:
737 	intel_gt_pm_fini(gt);
738 	intel_gt_fini_scratch(gt);
739 out_fw:
740 	if (err)
741 		intel_gt_set_wedged_on_init(gt);
742 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
743 	return err;
744 }
745 
746 void intel_gt_driver_remove(struct intel_gt *gt)
747 {
748 	__intel_gt_disable(gt);
749 
750 	intel_migrate_fini(&gt->migrate);
751 	intel_uc_driver_remove(&gt->uc);
752 
753 	intel_engines_release(gt);
754 
755 	intel_gt_flush_buffer_pool(gt);
756 }
757 
758 void intel_gt_driver_unregister(struct intel_gt *gt)
759 {
760 	intel_wakeref_t wakeref;
761 
762 	intel_rps_driver_unregister(&gt->rps);
763 
764 	intel_pxp_fini(&gt->pxp);
765 
766 	/*
767 	 * Upon unregistering the device to prevent any new users, cancel
768 	 * all in-flight requests so that we can quickly unbind the active
769 	 * resources.
770 	 */
771 	intel_gt_set_wedged_on_fini(gt);
772 
773 	/* Scrub all HW state upon release */
774 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
775 		__intel_gt_reset(gt, ALL_ENGINES);
776 }
777 
778 void intel_gt_driver_release(struct intel_gt *gt)
779 {
780 	struct i915_address_space *vm;
781 
782 	vm = fetch_and_zero(&gt->vm);
783 	if (vm) /* FIXME being called twice on error paths :( */
784 		i915_vm_put(vm);
785 
786 	intel_wa_list_free(&gt->wa_list);
787 	intel_gt_pm_fini(gt);
788 	intel_gt_fini_scratch(gt);
789 	intel_gt_fini_buffer_pool(gt);
790 }
791 
792 void intel_gt_driver_late_release(struct intel_gt *gt)
793 {
794 	/* We need to wait for inflight RCU frees to release their grip */
795 	rcu_barrier();
796 
797 	intel_uc_driver_late_release(&gt->uc);
798 	intel_gt_fini_requests(gt);
799 	intel_gt_fini_reset(gt);
800 	intel_gt_fini_timelines(gt);
801 	intel_engines_free(gt);
802 }
803 
804 /**
805  * intel_gt_reg_needs_read_steering - determine whether a register read
806  *     requires explicit steering
807  * @gt: GT structure
808  * @reg: the register to check steering requirements for
809  * @type: type of multicast steering to check
810  *
811  * Determines whether @reg needs explicit steering of a specific type for
812  * reads.
813  *
814  * Returns false if @reg does not belong to a register range of the given
815  * steering type, or if the default (subslice-based) steering IDs are suitable
816  * for @type steering too.
817  */
818 static bool intel_gt_reg_needs_read_steering(struct intel_gt *gt,
819 					     i915_reg_t reg,
820 					     enum intel_steering_type type)
821 {
822 	const u32 offset = i915_mmio_reg_offset(reg);
823 	const struct intel_mmio_range *entry;
824 
825 	if (likely(!intel_gt_needs_read_steering(gt, type)))
826 		return false;
827 
828 	for (entry = gt->steering_table[type]; entry->end; entry++) {
829 		if (offset >= entry->start && offset <= entry->end)
830 			return true;
831 	}
832 
833 	return false;
834 }
835 
836 /**
837  * intel_gt_get_valid_steering - determines valid IDs for a class of MCR steering
838  * @gt: GT structure
839  * @type: multicast register type
840  * @sliceid: Slice ID returned
841  * @subsliceid: Subslice ID returned
842  *
843  * Determines sliceid and subsliceid values that will steer reads
844  * of a specific multicast register class to a valid value.
845  */
846 static void intel_gt_get_valid_steering(struct intel_gt *gt,
847 					enum intel_steering_type type,
848 					u8 *sliceid, u8 *subsliceid)
849 {
850 	switch (type) {
851 	case L3BANK:
852 		GEM_DEBUG_WARN_ON(!gt->info.l3bank_mask); /* should be impossible! */
853 
854 		*sliceid = 0;		/* unused */
855 		*subsliceid = __ffs(gt->info.l3bank_mask);
856 		break;
857 	case MSLICE:
858 		GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */
859 
860 		*sliceid = __ffs(gt->info.mslice_mask);
861 		*subsliceid = 0;	/* unused */
862 		break;
863 	case LNCF:
864 		GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */
865 
866 		/*
867 		 * An LNCF is always present if its mslice is present, so we
868 		 * can safely just steer to LNCF 0 in all cases.
869 		 */
870 		*sliceid = __ffs(gt->info.mslice_mask) << 1;
871 		*subsliceid = 0;	/* unused */
872 		break;
873 	default:
874 		MISSING_CASE(type);
875 		*sliceid = 0;
876 		*subsliceid = 0;
877 	}
878 }
879 
880 /**
881  * intel_gt_read_register_fw - reads a GT register with support for multicast
882  * @gt: GT structure
883  * @reg: register to read
884  *
885  * This function will read a GT register.  If the register is a multicast
886  * register, the read will be steered to a valid instance (i.e., one that
887  * isn't fused off or powered down by power gating).
888  *
889  * Returns the value from a valid instance of @reg.
890  */
891 u32 intel_gt_read_register_fw(struct intel_gt *gt, i915_reg_t reg)
892 {
893 	int type;
894 	u8 sliceid, subsliceid;
895 
896 	for (type = 0; type < NUM_STEERING_TYPES; type++) {
897 		if (intel_gt_reg_needs_read_steering(gt, reg, type)) {
898 			intel_gt_get_valid_steering(gt, type, &sliceid,
899 						    &subsliceid);
900 			return intel_uncore_read_with_mcr_steering_fw(gt->uncore,
901 								      reg,
902 								      sliceid,
903 								      subsliceid);
904 		}
905 	}
906 
907 	return intel_uncore_read_fw(gt->uncore, reg);
908 }
909 
910 void intel_gt_info_print(const struct intel_gt_info *info,
911 			 struct drm_printer *p)
912 {
913 	drm_printf(p, "available engines: %x\n", info->engine_mask);
914 
915 	intel_sseu_dump(&info->sseu, p);
916 }
917 
918 struct reg_and_bit {
919 	i915_reg_t reg;
920 	u32 bit;
921 };
922 
923 static struct reg_and_bit
924 get_reg_and_bit(const struct intel_engine_cs *engine, const bool gen8,
925 		const i915_reg_t *regs, const unsigned int num)
926 {
927 	const unsigned int class = engine->class;
928 	struct reg_and_bit rb = { };
929 
930 	if (drm_WARN_ON_ONCE(&engine->i915->drm,
931 			     class >= num || !regs[class].reg))
932 		return rb;
933 
934 	rb.reg = regs[class];
935 	if (gen8 && class == VIDEO_DECODE_CLASS)
936 		rb.reg.reg += 4 * engine->instance; /* GEN8_M2TCR */
937 	else
938 		rb.bit = engine->instance;
939 
940 	rb.bit = BIT(rb.bit);
941 
942 	return rb;
943 }
944 
945 void intel_gt_invalidate_tlbs(struct intel_gt *gt)
946 {
947 	static const i915_reg_t gen8_regs[] = {
948 		[RENDER_CLASS]			= GEN8_RTCR,
949 		[VIDEO_DECODE_CLASS]		= GEN8_M1TCR, /* , GEN8_M2TCR */
950 		[VIDEO_ENHANCEMENT_CLASS]	= GEN8_VTCR,
951 		[COPY_ENGINE_CLASS]		= GEN8_BTCR,
952 	};
953 	static const i915_reg_t gen12_regs[] = {
954 		[RENDER_CLASS]			= GEN12_GFX_TLB_INV_CR,
955 		[VIDEO_DECODE_CLASS]		= GEN12_VD_TLB_INV_CR,
956 		[VIDEO_ENHANCEMENT_CLASS]	= GEN12_VE_TLB_INV_CR,
957 		[COPY_ENGINE_CLASS]		= GEN12_BLT_TLB_INV_CR,
958 	};
959 	struct drm_i915_private *i915 = gt->i915;
960 	struct intel_uncore *uncore = gt->uncore;
961 	struct intel_engine_cs *engine;
962 	enum intel_engine_id id;
963 	const i915_reg_t *regs;
964 	unsigned int num = 0;
965 
966 	if (I915_SELFTEST_ONLY(gt->awake == -ENODEV))
967 		return;
968 
969 	if (GRAPHICS_VER(i915) == 12) {
970 		regs = gen12_regs;
971 		num = ARRAY_SIZE(gen12_regs);
972 	} else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
973 		regs = gen8_regs;
974 		num = ARRAY_SIZE(gen8_regs);
975 	} else if (GRAPHICS_VER(i915) < 8) {
976 		return;
977 	}
978 
979 	if (drm_WARN_ONCE(&i915->drm, !num,
980 			  "Platform does not implement TLB invalidation!"))
981 		return;
982 
983 	GEM_TRACE("\n");
984 
985 	assert_rpm_wakelock_held(&i915->runtime_pm);
986 
987 	mutex_lock(&gt->tlb_invalidate_lock);
988 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
989 
990 	for_each_engine(engine, gt, id) {
991 		/*
992 		 * HW architecture suggest typical invalidation time at 40us,
993 		 * with pessimistic cases up to 100us and a recommendation to
994 		 * cap at 1ms. We go a bit higher just in case.
995 		 */
996 		const unsigned int timeout_us = 100;
997 		const unsigned int timeout_ms = 4;
998 		struct reg_and_bit rb;
999 
1000 		rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num);
1001 		if (!i915_mmio_reg_offset(rb.reg))
1002 			continue;
1003 
1004 		intel_uncore_write_fw(uncore, rb.reg, rb.bit);
1005 		if (__intel_wait_for_register_fw(uncore,
1006 						 rb.reg, rb.bit, 0,
1007 						 timeout_us, timeout_ms,
1008 						 NULL))
1009 			drm_err_ratelimited(&gt->i915->drm,
1010 					    "%s TLB invalidation did not complete in %ums!\n",
1011 					    engine->name, timeout_ms);
1012 	}
1013 
1014 	/*
1015 	 * Use delayed put since a) we mostly expect a flurry of TLB
1016 	 * invalidations so it is good to avoid paying the forcewake cost and
1017 	 * b) it works around a bug in Icelake which cannot cope with too rapid
1018 	 * transitions.
1019 	 */
1020 	intel_uncore_forcewake_put_delayed(uncore, FORCEWAKE_ALL);
1021 	mutex_unlock(&gt->tlb_invalidate_lock);
1022 }
1023