xref: /linux/drivers/gpu/drm/i915/gt/intel_gt.c (revision a1c3be890440a1769ed6f822376a3e3ab0d42994)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include "debugfs_gt.h"
7 #include "i915_drv.h"
8 #include "intel_context.h"
9 #include "intel_gt.h"
10 #include "intel_gt_buffer_pool.h"
11 #include "intel_gt_clock_utils.h"
12 #include "intel_gt_pm.h"
13 #include "intel_gt_requests.h"
14 #include "intel_mocs.h"
15 #include "intel_rc6.h"
16 #include "intel_renderstate.h"
17 #include "intel_rps.h"
18 #include "intel_uncore.h"
19 #include "intel_pm.h"
20 #include "shmem_utils.h"
21 
22 void intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915)
23 {
24 	gt->i915 = i915;
25 	gt->uncore = &i915->uncore;
26 
27 	spin_lock_init(&gt->irq_lock);
28 
29 	INIT_LIST_HEAD(&gt->closed_vma);
30 	spin_lock_init(&gt->closed_lock);
31 
32 	intel_gt_init_buffer_pool(gt);
33 	intel_gt_init_reset(gt);
34 	intel_gt_init_requests(gt);
35 	intel_gt_init_timelines(gt);
36 	intel_gt_pm_init_early(gt);
37 
38 	intel_rps_init_early(&gt->rps);
39 	intel_uc_init_early(&gt->uc);
40 }
41 
42 void intel_gt_init_hw_early(struct intel_gt *gt, struct i915_ggtt *ggtt)
43 {
44 	gt->ggtt = ggtt;
45 }
46 
47 int intel_gt_init_mmio(struct intel_gt *gt)
48 {
49 	intel_gt_init_clock_frequency(gt);
50 
51 	intel_uc_init_mmio(&gt->uc);
52 	intel_sseu_info_init(gt);
53 
54 	return intel_engines_init_mmio(gt);
55 }
56 
57 static void init_unused_ring(struct intel_gt *gt, u32 base)
58 {
59 	struct intel_uncore *uncore = gt->uncore;
60 
61 	intel_uncore_write(uncore, RING_CTL(base), 0);
62 	intel_uncore_write(uncore, RING_HEAD(base), 0);
63 	intel_uncore_write(uncore, RING_TAIL(base), 0);
64 	intel_uncore_write(uncore, RING_START(base), 0);
65 }
66 
67 static void init_unused_rings(struct intel_gt *gt)
68 {
69 	struct drm_i915_private *i915 = gt->i915;
70 
71 	if (IS_I830(i915)) {
72 		init_unused_ring(gt, PRB1_BASE);
73 		init_unused_ring(gt, SRB0_BASE);
74 		init_unused_ring(gt, SRB1_BASE);
75 		init_unused_ring(gt, SRB2_BASE);
76 		init_unused_ring(gt, SRB3_BASE);
77 	} else if (IS_GEN(i915, 2)) {
78 		init_unused_ring(gt, SRB0_BASE);
79 		init_unused_ring(gt, SRB1_BASE);
80 	} else if (IS_GEN(i915, 3)) {
81 		init_unused_ring(gt, PRB1_BASE);
82 		init_unused_ring(gt, PRB2_BASE);
83 	}
84 }
85 
86 int intel_gt_init_hw(struct intel_gt *gt)
87 {
88 	struct drm_i915_private *i915 = gt->i915;
89 	struct intel_uncore *uncore = gt->uncore;
90 	int ret;
91 
92 	gt->last_init_time = ktime_get();
93 
94 	/* Double layer security blanket, see i915_gem_init() */
95 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
96 
97 	if (HAS_EDRAM(i915) && INTEL_GEN(i915) < 9)
98 		intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
99 
100 	if (IS_HASWELL(i915))
101 		intel_uncore_write(uncore,
102 				   MI_PREDICATE_RESULT_2,
103 				   IS_HSW_GT3(i915) ?
104 				   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
105 
106 	/* Apply the GT workarounds... */
107 	intel_gt_apply_workarounds(gt);
108 	/* ...and determine whether they are sticking. */
109 	intel_gt_verify_workarounds(gt, "init");
110 
111 	intel_gt_init_swizzling(gt);
112 
113 	/*
114 	 * At least 830 can leave some of the unused rings
115 	 * "active" (ie. head != tail) after resume which
116 	 * will prevent c3 entry. Makes sure all unused rings
117 	 * are totally idle.
118 	 */
119 	init_unused_rings(gt);
120 
121 	ret = i915_ppgtt_init_hw(gt);
122 	if (ret) {
123 		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
124 		goto out;
125 	}
126 
127 	/* We can't enable contexts until all firmware is loaded */
128 	ret = intel_uc_init_hw(&gt->uc);
129 	if (ret) {
130 		i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
131 		goto out;
132 	}
133 
134 	intel_mocs_init(gt);
135 
136 out:
137 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
138 	return ret;
139 }
140 
141 static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
142 {
143 	intel_uncore_rmw(uncore, reg, 0, set);
144 }
145 
146 static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
147 {
148 	intel_uncore_rmw(uncore, reg, clr, 0);
149 }
150 
151 static void clear_register(struct intel_uncore *uncore, i915_reg_t reg)
152 {
153 	intel_uncore_rmw(uncore, reg, 0, 0);
154 }
155 
156 static void gen8_clear_engine_error_register(struct intel_engine_cs *engine)
157 {
158 	GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
159 	GEN6_RING_FAULT_REG_POSTING_READ(engine);
160 }
161 
162 void
163 intel_gt_clear_error_registers(struct intel_gt *gt,
164 			       intel_engine_mask_t engine_mask)
165 {
166 	struct drm_i915_private *i915 = gt->i915;
167 	struct intel_uncore *uncore = gt->uncore;
168 	u32 eir;
169 
170 	if (!IS_GEN(i915, 2))
171 		clear_register(uncore, PGTBL_ER);
172 
173 	if (INTEL_GEN(i915) < 4)
174 		clear_register(uncore, IPEIR(RENDER_RING_BASE));
175 	else
176 		clear_register(uncore, IPEIR_I965);
177 
178 	clear_register(uncore, EIR);
179 	eir = intel_uncore_read(uncore, EIR);
180 	if (eir) {
181 		/*
182 		 * some errors might have become stuck,
183 		 * mask them.
184 		 */
185 		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
186 		rmw_set(uncore, EMR, eir);
187 		intel_uncore_write(uncore, GEN2_IIR,
188 				   I915_MASTER_ERROR_INTERRUPT);
189 	}
190 
191 	if (INTEL_GEN(i915) >= 12) {
192 		rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID);
193 		intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
194 	} else if (INTEL_GEN(i915) >= 8) {
195 		rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID);
196 		intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
197 	} else if (INTEL_GEN(i915) >= 6) {
198 		struct intel_engine_cs *engine;
199 		enum intel_engine_id id;
200 
201 		for_each_engine_masked(engine, gt, engine_mask, id)
202 			gen8_clear_engine_error_register(engine);
203 	}
204 }
205 
206 static void gen6_check_faults(struct intel_gt *gt)
207 {
208 	struct intel_engine_cs *engine;
209 	enum intel_engine_id id;
210 	u32 fault;
211 
212 	for_each_engine(engine, gt, id) {
213 		fault = GEN6_RING_FAULT_REG_READ(engine);
214 		if (fault & RING_FAULT_VALID) {
215 			drm_dbg(&engine->i915->drm, "Unexpected fault\n"
216 				"\tAddr: 0x%08lx\n"
217 				"\tAddress space: %s\n"
218 				"\tSource ID: %d\n"
219 				"\tType: %d\n",
220 				fault & PAGE_MASK,
221 				fault & RING_FAULT_GTTSEL_MASK ?
222 				"GGTT" : "PPGTT",
223 				RING_FAULT_SRCID(fault),
224 				RING_FAULT_FAULT_TYPE(fault));
225 		}
226 	}
227 }
228 
229 static void gen8_check_faults(struct intel_gt *gt)
230 {
231 	struct intel_uncore *uncore = gt->uncore;
232 	i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
233 	u32 fault;
234 
235 	if (INTEL_GEN(gt->i915) >= 12) {
236 		fault_reg = GEN12_RING_FAULT_REG;
237 		fault_data0_reg = GEN12_FAULT_TLB_DATA0;
238 		fault_data1_reg = GEN12_FAULT_TLB_DATA1;
239 	} else {
240 		fault_reg = GEN8_RING_FAULT_REG;
241 		fault_data0_reg = GEN8_FAULT_TLB_DATA0;
242 		fault_data1_reg = GEN8_FAULT_TLB_DATA1;
243 	}
244 
245 	fault = intel_uncore_read(uncore, fault_reg);
246 	if (fault & RING_FAULT_VALID) {
247 		u32 fault_data0, fault_data1;
248 		u64 fault_addr;
249 
250 		fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
251 		fault_data1 = intel_uncore_read(uncore, fault_data1_reg);
252 
253 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
254 			     ((u64)fault_data0 << 12);
255 
256 		drm_dbg(&uncore->i915->drm, "Unexpected fault\n"
257 			"\tAddr: 0x%08x_%08x\n"
258 			"\tAddress space: %s\n"
259 			"\tEngine ID: %d\n"
260 			"\tSource ID: %d\n"
261 			"\tType: %d\n",
262 			upper_32_bits(fault_addr), lower_32_bits(fault_addr),
263 			fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
264 			GEN8_RING_FAULT_ENGINE_ID(fault),
265 			RING_FAULT_SRCID(fault),
266 			RING_FAULT_FAULT_TYPE(fault));
267 	}
268 }
269 
270 void intel_gt_check_and_clear_faults(struct intel_gt *gt)
271 {
272 	struct drm_i915_private *i915 = gt->i915;
273 
274 	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
275 	if (INTEL_GEN(i915) >= 8)
276 		gen8_check_faults(gt);
277 	else if (INTEL_GEN(i915) >= 6)
278 		gen6_check_faults(gt);
279 	else
280 		return;
281 
282 	intel_gt_clear_error_registers(gt, ALL_ENGINES);
283 }
284 
285 void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
286 {
287 	struct intel_uncore *uncore = gt->uncore;
288 	intel_wakeref_t wakeref;
289 
290 	/*
291 	 * No actual flushing is required for the GTT write domain for reads
292 	 * from the GTT domain. Writes to it "immediately" go to main memory
293 	 * as far as we know, so there's no chipset flush. It also doesn't
294 	 * land in the GPU render cache.
295 	 *
296 	 * However, we do have to enforce the order so that all writes through
297 	 * the GTT land before any writes to the device, such as updates to
298 	 * the GATT itself.
299 	 *
300 	 * We also have to wait a bit for the writes to land from the GTT.
301 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
302 	 * timing. This issue has only been observed when switching quickly
303 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
304 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
305 	 * system agents we cannot reproduce this behaviour, until Cannonlake
306 	 * that was!).
307 	 */
308 
309 	wmb();
310 
311 	if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
312 		return;
313 
314 	intel_gt_chipset_flush(gt);
315 
316 	with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
317 		unsigned long flags;
318 
319 		spin_lock_irqsave(&uncore->lock, flags);
320 		intel_uncore_posting_read_fw(uncore,
321 					     RING_HEAD(RENDER_RING_BASE));
322 		spin_unlock_irqrestore(&uncore->lock, flags);
323 	}
324 }
325 
326 void intel_gt_chipset_flush(struct intel_gt *gt)
327 {
328 	wmb();
329 	if (INTEL_GEN(gt->i915) < 6)
330 		intel_gtt_chipset_flush();
331 }
332 
333 void intel_gt_driver_register(struct intel_gt *gt)
334 {
335 	intel_rps_driver_register(&gt->rps);
336 
337 	debugfs_gt_register(gt);
338 }
339 
340 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
341 {
342 	struct drm_i915_private *i915 = gt->i915;
343 	struct drm_i915_gem_object *obj;
344 	struct i915_vma *vma;
345 	int ret;
346 
347 	obj = i915_gem_object_create_stolen(i915, size);
348 	if (IS_ERR(obj))
349 		obj = i915_gem_object_create_internal(i915, size);
350 	if (IS_ERR(obj)) {
351 		DRM_ERROR("Failed to allocate scratch page\n");
352 		return PTR_ERR(obj);
353 	}
354 
355 	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
356 	if (IS_ERR(vma)) {
357 		ret = PTR_ERR(vma);
358 		goto err_unref;
359 	}
360 
361 	ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
362 	if (ret)
363 		goto err_unref;
364 
365 	gt->scratch = i915_vma_make_unshrinkable(vma);
366 
367 	return 0;
368 
369 err_unref:
370 	i915_gem_object_put(obj);
371 	return ret;
372 }
373 
374 static void intel_gt_fini_scratch(struct intel_gt *gt)
375 {
376 	i915_vma_unpin_and_release(&gt->scratch, 0);
377 }
378 
379 static struct i915_address_space *kernel_vm(struct intel_gt *gt)
380 {
381 	if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
382 		return &i915_ppgtt_create(gt)->vm;
383 	else
384 		return i915_vm_get(&gt->ggtt->vm);
385 }
386 
387 static int __engines_record_defaults(struct intel_gt *gt)
388 {
389 	struct i915_request *requests[I915_NUM_ENGINES] = {};
390 	struct intel_engine_cs *engine;
391 	enum intel_engine_id id;
392 	int err = 0;
393 
394 	/*
395 	 * As we reset the gpu during very early sanitisation, the current
396 	 * register state on the GPU should reflect its defaults values.
397 	 * We load a context onto the hw (with restore-inhibit), then switch
398 	 * over to a second context to save that default register state. We
399 	 * can then prime every new context with that state so they all start
400 	 * from the same default HW values.
401 	 */
402 
403 	for_each_engine(engine, gt, id) {
404 		struct intel_renderstate so;
405 		struct intel_context *ce;
406 		struct i915_request *rq;
407 
408 		/* We must be able to switch to something! */
409 		GEM_BUG_ON(!engine->kernel_context);
410 
411 		ce = intel_context_create(engine);
412 		if (IS_ERR(ce)) {
413 			err = PTR_ERR(ce);
414 			goto out;
415 		}
416 
417 		err = intel_renderstate_init(&so, ce);
418 		if (err)
419 			goto err;
420 
421 		rq = i915_request_create(ce);
422 		if (IS_ERR(rq)) {
423 			err = PTR_ERR(rq);
424 			goto err_fini;
425 		}
426 
427 		err = intel_engine_emit_ctx_wa(rq);
428 		if (err)
429 			goto err_rq;
430 
431 		err = intel_renderstate_emit(&so, rq);
432 		if (err)
433 			goto err_rq;
434 
435 err_rq:
436 		requests[id] = i915_request_get(rq);
437 		i915_request_add(rq);
438 err_fini:
439 		intel_renderstate_fini(&so, ce);
440 err:
441 		if (err) {
442 			intel_context_put(ce);
443 			goto out;
444 		}
445 	}
446 
447 	/* Flush the default context image to memory, and enable powersaving. */
448 	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
449 		err = -EIO;
450 		goto out;
451 	}
452 
453 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
454 		struct i915_request *rq;
455 		struct file *state;
456 
457 		rq = requests[id];
458 		if (!rq)
459 			continue;
460 
461 		if (rq->fence.error) {
462 			err = -EIO;
463 			goto out;
464 		}
465 
466 		GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
467 		if (!rq->context->state)
468 			continue;
469 
470 		/* Keep a copy of the state's backing pages; free the obj */
471 		state = shmem_create_from_object(rq->context->state->obj);
472 		if (IS_ERR(state)) {
473 			err = PTR_ERR(state);
474 			goto out;
475 		}
476 		rq->engine->default_state = state;
477 	}
478 
479 out:
480 	/*
481 	 * If we have to abandon now, we expect the engines to be idle
482 	 * and ready to be torn-down. The quickest way we can accomplish
483 	 * this is by declaring ourselves wedged.
484 	 */
485 	if (err)
486 		intel_gt_set_wedged(gt);
487 
488 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
489 		struct intel_context *ce;
490 		struct i915_request *rq;
491 
492 		rq = requests[id];
493 		if (!rq)
494 			continue;
495 
496 		ce = rq->context;
497 		i915_request_put(rq);
498 		intel_context_put(ce);
499 	}
500 	return err;
501 }
502 
503 static int __engines_verify_workarounds(struct intel_gt *gt)
504 {
505 	struct intel_engine_cs *engine;
506 	enum intel_engine_id id;
507 	int err = 0;
508 
509 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
510 		return 0;
511 
512 	for_each_engine(engine, gt, id) {
513 		if (intel_engine_verify_workarounds(engine, "load"))
514 			err = -EIO;
515 	}
516 
517 	/* Flush and restore the kernel context for safety */
518 	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
519 		err = -EIO;
520 
521 	return err;
522 }
523 
524 static void __intel_gt_disable(struct intel_gt *gt)
525 {
526 	intel_gt_set_wedged_on_fini(gt);
527 
528 	intel_gt_suspend_prepare(gt);
529 	intel_gt_suspend_late(gt);
530 
531 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
532 }
533 
534 int intel_gt_init(struct intel_gt *gt)
535 {
536 	int err;
537 
538 	err = i915_inject_probe_error(gt->i915, -ENODEV);
539 	if (err)
540 		return err;
541 
542 	/*
543 	 * This is just a security blanket to placate dragons.
544 	 * On some systems, we very sporadically observe that the first TLBs
545 	 * used by the CS may be stale, despite us poking the TLB reset. If
546 	 * we hold the forcewake during initialisation these problems
547 	 * just magically go away.
548 	 */
549 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
550 
551 	err = intel_gt_init_scratch(gt, IS_GEN(gt->i915, 2) ? SZ_256K : SZ_4K);
552 	if (err)
553 		goto out_fw;
554 
555 	intel_gt_pm_init(gt);
556 
557 	gt->vm = kernel_vm(gt);
558 	if (!gt->vm) {
559 		err = -ENOMEM;
560 		goto err_pm;
561 	}
562 
563 	err = intel_engines_init(gt);
564 	if (err)
565 		goto err_engines;
566 
567 	err = intel_uc_init(&gt->uc);
568 	if (err)
569 		goto err_engines;
570 
571 	err = intel_gt_resume(gt);
572 	if (err)
573 		goto err_uc_init;
574 
575 	err = __engines_record_defaults(gt);
576 	if (err)
577 		goto err_gt;
578 
579 	err = __engines_verify_workarounds(gt);
580 	if (err)
581 		goto err_gt;
582 
583 	err = i915_inject_probe_error(gt->i915, -EIO);
584 	if (err)
585 		goto err_gt;
586 
587 	goto out_fw;
588 err_gt:
589 	__intel_gt_disable(gt);
590 	intel_uc_fini_hw(&gt->uc);
591 err_uc_init:
592 	intel_uc_fini(&gt->uc);
593 err_engines:
594 	intel_engines_release(gt);
595 	i915_vm_put(fetch_and_zero(&gt->vm));
596 err_pm:
597 	intel_gt_pm_fini(gt);
598 	intel_gt_fini_scratch(gt);
599 out_fw:
600 	if (err)
601 		intel_gt_set_wedged_on_init(gt);
602 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
603 	return err;
604 }
605 
606 void intel_gt_driver_remove(struct intel_gt *gt)
607 {
608 	__intel_gt_disable(gt);
609 
610 	intel_uc_driver_remove(&gt->uc);
611 
612 	intel_engines_release(gt);
613 }
614 
615 void intel_gt_driver_unregister(struct intel_gt *gt)
616 {
617 	intel_wakeref_t wakeref;
618 
619 	intel_rps_driver_unregister(&gt->rps);
620 
621 	/*
622 	 * Upon unregistering the device to prevent any new users, cancel
623 	 * all in-flight requests so that we can quickly unbind the active
624 	 * resources.
625 	 */
626 	intel_gt_set_wedged(gt);
627 
628 	/* Scrub all HW state upon release */
629 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
630 		__intel_gt_reset(gt, ALL_ENGINES);
631 }
632 
633 void intel_gt_driver_release(struct intel_gt *gt)
634 {
635 	struct i915_address_space *vm;
636 
637 	vm = fetch_and_zero(&gt->vm);
638 	if (vm) /* FIXME being called twice on error paths :( */
639 		i915_vm_put(vm);
640 
641 	intel_gt_pm_fini(gt);
642 	intel_gt_fini_scratch(gt);
643 	intel_gt_fini_buffer_pool(gt);
644 }
645 
646 void intel_gt_driver_late_release(struct intel_gt *gt)
647 {
648 	/* We need to wait for inflight RCU frees to release their grip */
649 	rcu_barrier();
650 
651 	intel_uc_driver_late_release(&gt->uc);
652 	intel_gt_fini_requests(gt);
653 	intel_gt_fini_reset(gt);
654 	intel_gt_fini_timelines(gt);
655 	intel_engines_free(gt);
656 }
657 
658 void intel_gt_info_print(const struct intel_gt_info *info,
659 			 struct drm_printer *p)
660 {
661 	drm_printf(p, "available engines: %x\n", info->engine_mask);
662 
663 	intel_sseu_dump(&info->sseu, p);
664 }
665