xref: /linux/drivers/gpu/drm/i915/gt/intel_gt.c (revision 95298d63c67673c654c08952672d016212b26054)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include "debugfs_gt.h"
7 #include "i915_drv.h"
8 #include "intel_context.h"
9 #include "intel_gt.h"
10 #include "intel_gt_buffer_pool.h"
11 #include "intel_gt_clock_utils.h"
12 #include "intel_gt_pm.h"
13 #include "intel_gt_requests.h"
14 #include "intel_mocs.h"
15 #include "intel_rc6.h"
16 #include "intel_renderstate.h"
17 #include "intel_rps.h"
18 #include "intel_uncore.h"
19 #include "intel_pm.h"
20 #include "shmem_utils.h"
21 
22 void intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915)
23 {
24 	gt->i915 = i915;
25 	gt->uncore = &i915->uncore;
26 
27 	spin_lock_init(&gt->irq_lock);
28 
29 	INIT_LIST_HEAD(&gt->closed_vma);
30 	spin_lock_init(&gt->closed_lock);
31 
32 	intel_gt_init_buffer_pool(gt);
33 	intel_gt_init_reset(gt);
34 	intel_gt_init_requests(gt);
35 	intel_gt_init_timelines(gt);
36 	intel_gt_pm_init_early(gt);
37 
38 	intel_rps_init_early(&gt->rps);
39 	intel_uc_init_early(&gt->uc);
40 }
41 
42 void intel_gt_init_hw_early(struct intel_gt *gt, struct i915_ggtt *ggtt)
43 {
44 	gt->ggtt = ggtt;
45 }
46 
47 static void init_unused_ring(struct intel_gt *gt, u32 base)
48 {
49 	struct intel_uncore *uncore = gt->uncore;
50 
51 	intel_uncore_write(uncore, RING_CTL(base), 0);
52 	intel_uncore_write(uncore, RING_HEAD(base), 0);
53 	intel_uncore_write(uncore, RING_TAIL(base), 0);
54 	intel_uncore_write(uncore, RING_START(base), 0);
55 }
56 
57 static void init_unused_rings(struct intel_gt *gt)
58 {
59 	struct drm_i915_private *i915 = gt->i915;
60 
61 	if (IS_I830(i915)) {
62 		init_unused_ring(gt, PRB1_BASE);
63 		init_unused_ring(gt, SRB0_BASE);
64 		init_unused_ring(gt, SRB1_BASE);
65 		init_unused_ring(gt, SRB2_BASE);
66 		init_unused_ring(gt, SRB3_BASE);
67 	} else if (IS_GEN(i915, 2)) {
68 		init_unused_ring(gt, SRB0_BASE);
69 		init_unused_ring(gt, SRB1_BASE);
70 	} else if (IS_GEN(i915, 3)) {
71 		init_unused_ring(gt, PRB1_BASE);
72 		init_unused_ring(gt, PRB2_BASE);
73 	}
74 }
75 
76 int intel_gt_init_hw(struct intel_gt *gt)
77 {
78 	struct drm_i915_private *i915 = gt->i915;
79 	struct intel_uncore *uncore = gt->uncore;
80 	int ret;
81 
82 	gt->last_init_time = ktime_get();
83 
84 	/* Double layer security blanket, see i915_gem_init() */
85 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
86 
87 	if (HAS_EDRAM(i915) && INTEL_GEN(i915) < 9)
88 		intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
89 
90 	if (IS_HASWELL(i915))
91 		intel_uncore_write(uncore,
92 				   MI_PREDICATE_RESULT_2,
93 				   IS_HSW_GT3(i915) ?
94 				   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
95 
96 	/* Apply the GT workarounds... */
97 	intel_gt_apply_workarounds(gt);
98 	/* ...and determine whether they are sticking. */
99 	intel_gt_verify_workarounds(gt, "init");
100 
101 	intel_gt_init_swizzling(gt);
102 
103 	/*
104 	 * At least 830 can leave some of the unused rings
105 	 * "active" (ie. head != tail) after resume which
106 	 * will prevent c3 entry. Makes sure all unused rings
107 	 * are totally idle.
108 	 */
109 	init_unused_rings(gt);
110 
111 	ret = i915_ppgtt_init_hw(gt);
112 	if (ret) {
113 		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
114 		goto out;
115 	}
116 
117 	/* We can't enable contexts until all firmware is loaded */
118 	ret = intel_uc_init_hw(&gt->uc);
119 	if (ret) {
120 		i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
121 		goto out;
122 	}
123 
124 	intel_mocs_init(gt);
125 
126 out:
127 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
128 	return ret;
129 }
130 
131 static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
132 {
133 	intel_uncore_rmw(uncore, reg, 0, set);
134 }
135 
136 static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
137 {
138 	intel_uncore_rmw(uncore, reg, clr, 0);
139 }
140 
141 static void clear_register(struct intel_uncore *uncore, i915_reg_t reg)
142 {
143 	intel_uncore_rmw(uncore, reg, 0, 0);
144 }
145 
146 static void gen8_clear_engine_error_register(struct intel_engine_cs *engine)
147 {
148 	GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
149 	GEN6_RING_FAULT_REG_POSTING_READ(engine);
150 }
151 
152 void
153 intel_gt_clear_error_registers(struct intel_gt *gt,
154 			       intel_engine_mask_t engine_mask)
155 {
156 	struct drm_i915_private *i915 = gt->i915;
157 	struct intel_uncore *uncore = gt->uncore;
158 	u32 eir;
159 
160 	if (!IS_GEN(i915, 2))
161 		clear_register(uncore, PGTBL_ER);
162 
163 	if (INTEL_GEN(i915) < 4)
164 		clear_register(uncore, IPEIR(RENDER_RING_BASE));
165 	else
166 		clear_register(uncore, IPEIR_I965);
167 
168 	clear_register(uncore, EIR);
169 	eir = intel_uncore_read(uncore, EIR);
170 	if (eir) {
171 		/*
172 		 * some errors might have become stuck,
173 		 * mask them.
174 		 */
175 		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
176 		rmw_set(uncore, EMR, eir);
177 		intel_uncore_write(uncore, GEN2_IIR,
178 				   I915_MASTER_ERROR_INTERRUPT);
179 	}
180 
181 	if (INTEL_GEN(i915) >= 12) {
182 		rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID);
183 		intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
184 	} else if (INTEL_GEN(i915) >= 8) {
185 		rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID);
186 		intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
187 	} else if (INTEL_GEN(i915) >= 6) {
188 		struct intel_engine_cs *engine;
189 		enum intel_engine_id id;
190 
191 		for_each_engine_masked(engine, gt, engine_mask, id)
192 			gen8_clear_engine_error_register(engine);
193 	}
194 }
195 
196 static void gen6_check_faults(struct intel_gt *gt)
197 {
198 	struct intel_engine_cs *engine;
199 	enum intel_engine_id id;
200 	u32 fault;
201 
202 	for_each_engine(engine, gt, id) {
203 		fault = GEN6_RING_FAULT_REG_READ(engine);
204 		if (fault & RING_FAULT_VALID) {
205 			drm_dbg(&engine->i915->drm, "Unexpected fault\n"
206 				"\tAddr: 0x%08lx\n"
207 				"\tAddress space: %s\n"
208 				"\tSource ID: %d\n"
209 				"\tType: %d\n",
210 				fault & PAGE_MASK,
211 				fault & RING_FAULT_GTTSEL_MASK ?
212 				"GGTT" : "PPGTT",
213 				RING_FAULT_SRCID(fault),
214 				RING_FAULT_FAULT_TYPE(fault));
215 		}
216 	}
217 }
218 
219 static void gen8_check_faults(struct intel_gt *gt)
220 {
221 	struct intel_uncore *uncore = gt->uncore;
222 	i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
223 	u32 fault;
224 
225 	if (INTEL_GEN(gt->i915) >= 12) {
226 		fault_reg = GEN12_RING_FAULT_REG;
227 		fault_data0_reg = GEN12_FAULT_TLB_DATA0;
228 		fault_data1_reg = GEN12_FAULT_TLB_DATA1;
229 	} else {
230 		fault_reg = GEN8_RING_FAULT_REG;
231 		fault_data0_reg = GEN8_FAULT_TLB_DATA0;
232 		fault_data1_reg = GEN8_FAULT_TLB_DATA1;
233 	}
234 
235 	fault = intel_uncore_read(uncore, fault_reg);
236 	if (fault & RING_FAULT_VALID) {
237 		u32 fault_data0, fault_data1;
238 		u64 fault_addr;
239 
240 		fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
241 		fault_data1 = intel_uncore_read(uncore, fault_data1_reg);
242 
243 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
244 			     ((u64)fault_data0 << 12);
245 
246 		drm_dbg(&uncore->i915->drm, "Unexpected fault\n"
247 			"\tAddr: 0x%08x_%08x\n"
248 			"\tAddress space: %s\n"
249 			"\tEngine ID: %d\n"
250 			"\tSource ID: %d\n"
251 			"\tType: %d\n",
252 			upper_32_bits(fault_addr), lower_32_bits(fault_addr),
253 			fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
254 			GEN8_RING_FAULT_ENGINE_ID(fault),
255 			RING_FAULT_SRCID(fault),
256 			RING_FAULT_FAULT_TYPE(fault));
257 	}
258 }
259 
260 void intel_gt_check_and_clear_faults(struct intel_gt *gt)
261 {
262 	struct drm_i915_private *i915 = gt->i915;
263 
264 	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
265 	if (INTEL_GEN(i915) >= 8)
266 		gen8_check_faults(gt);
267 	else if (INTEL_GEN(i915) >= 6)
268 		gen6_check_faults(gt);
269 	else
270 		return;
271 
272 	intel_gt_clear_error_registers(gt, ALL_ENGINES);
273 }
274 
275 void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
276 {
277 	struct intel_uncore *uncore = gt->uncore;
278 	intel_wakeref_t wakeref;
279 
280 	/*
281 	 * No actual flushing is required for the GTT write domain for reads
282 	 * from the GTT domain. Writes to it "immediately" go to main memory
283 	 * as far as we know, so there's no chipset flush. It also doesn't
284 	 * land in the GPU render cache.
285 	 *
286 	 * However, we do have to enforce the order so that all writes through
287 	 * the GTT land before any writes to the device, such as updates to
288 	 * the GATT itself.
289 	 *
290 	 * We also have to wait a bit for the writes to land from the GTT.
291 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
292 	 * timing. This issue has only been observed when switching quickly
293 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
294 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
295 	 * system agents we cannot reproduce this behaviour, until Cannonlake
296 	 * that was!).
297 	 */
298 
299 	wmb();
300 
301 	if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
302 		return;
303 
304 	intel_gt_chipset_flush(gt);
305 
306 	with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
307 		unsigned long flags;
308 
309 		spin_lock_irqsave(&uncore->lock, flags);
310 		intel_uncore_posting_read_fw(uncore,
311 					     RING_HEAD(RENDER_RING_BASE));
312 		spin_unlock_irqrestore(&uncore->lock, flags);
313 	}
314 }
315 
316 void intel_gt_chipset_flush(struct intel_gt *gt)
317 {
318 	wmb();
319 	if (INTEL_GEN(gt->i915) < 6)
320 		intel_gtt_chipset_flush();
321 }
322 
323 void intel_gt_driver_register(struct intel_gt *gt)
324 {
325 	intel_rps_driver_register(&gt->rps);
326 
327 	debugfs_gt_register(gt);
328 }
329 
330 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
331 {
332 	struct drm_i915_private *i915 = gt->i915;
333 	struct drm_i915_gem_object *obj;
334 	struct i915_vma *vma;
335 	int ret;
336 
337 	obj = i915_gem_object_create_stolen(i915, size);
338 	if (IS_ERR(obj))
339 		obj = i915_gem_object_create_internal(i915, size);
340 	if (IS_ERR(obj)) {
341 		DRM_ERROR("Failed to allocate scratch page\n");
342 		return PTR_ERR(obj);
343 	}
344 
345 	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
346 	if (IS_ERR(vma)) {
347 		ret = PTR_ERR(vma);
348 		goto err_unref;
349 	}
350 
351 	ret = i915_ggtt_pin(vma, 0, PIN_HIGH);
352 	if (ret)
353 		goto err_unref;
354 
355 	gt->scratch = i915_vma_make_unshrinkable(vma);
356 
357 	return 0;
358 
359 err_unref:
360 	i915_gem_object_put(obj);
361 	return ret;
362 }
363 
364 static void intel_gt_fini_scratch(struct intel_gt *gt)
365 {
366 	i915_vma_unpin_and_release(&gt->scratch, 0);
367 }
368 
369 static struct i915_address_space *kernel_vm(struct intel_gt *gt)
370 {
371 	if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
372 		return &i915_ppgtt_create(gt)->vm;
373 	else
374 		return i915_vm_get(&gt->ggtt->vm);
375 }
376 
377 static int __engines_record_defaults(struct intel_gt *gt)
378 {
379 	struct i915_request *requests[I915_NUM_ENGINES] = {};
380 	struct intel_engine_cs *engine;
381 	enum intel_engine_id id;
382 	int err = 0;
383 
384 	/*
385 	 * As we reset the gpu during very early sanitisation, the current
386 	 * register state on the GPU should reflect its defaults values.
387 	 * We load a context onto the hw (with restore-inhibit), then switch
388 	 * over to a second context to save that default register state. We
389 	 * can then prime every new context with that state so they all start
390 	 * from the same default HW values.
391 	 */
392 
393 	for_each_engine(engine, gt, id) {
394 		struct intel_renderstate so;
395 		struct intel_context *ce;
396 		struct i915_request *rq;
397 
398 		/* We must be able to switch to something! */
399 		GEM_BUG_ON(!engine->kernel_context);
400 
401 		err = intel_renderstate_init(&so, engine);
402 		if (err)
403 			goto out;
404 
405 		ce = intel_context_create(engine);
406 		if (IS_ERR(ce)) {
407 			err = PTR_ERR(ce);
408 			goto out;
409 		}
410 
411 		rq = intel_context_create_request(ce);
412 		if (IS_ERR(rq)) {
413 			err = PTR_ERR(rq);
414 			intel_context_put(ce);
415 			goto out;
416 		}
417 
418 		err = intel_engine_emit_ctx_wa(rq);
419 		if (err)
420 			goto err_rq;
421 
422 		err = intel_renderstate_emit(&so, rq);
423 		if (err)
424 			goto err_rq;
425 
426 err_rq:
427 		requests[id] = i915_request_get(rq);
428 		i915_request_add(rq);
429 		intel_renderstate_fini(&so);
430 		if (err)
431 			goto out;
432 	}
433 
434 	/* Flush the default context image to memory, and enable powersaving. */
435 	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
436 		err = -EIO;
437 		goto out;
438 	}
439 
440 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
441 		struct i915_request *rq;
442 		struct file *state;
443 
444 		rq = requests[id];
445 		if (!rq)
446 			continue;
447 
448 		if (rq->fence.error) {
449 			err = -EIO;
450 			goto out;
451 		}
452 
453 		GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
454 		if (!rq->context->state)
455 			continue;
456 
457 		/* Keep a copy of the state's backing pages; free the obj */
458 		state = shmem_create_from_object(rq->context->state->obj);
459 		if (IS_ERR(state)) {
460 			err = PTR_ERR(state);
461 			goto out;
462 		}
463 		rq->engine->default_state = state;
464 	}
465 
466 out:
467 	/*
468 	 * If we have to abandon now, we expect the engines to be idle
469 	 * and ready to be torn-down. The quickest way we can accomplish
470 	 * this is by declaring ourselves wedged.
471 	 */
472 	if (err)
473 		intel_gt_set_wedged(gt);
474 
475 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
476 		struct intel_context *ce;
477 		struct i915_request *rq;
478 
479 		rq = requests[id];
480 		if (!rq)
481 			continue;
482 
483 		ce = rq->context;
484 		i915_request_put(rq);
485 		intel_context_put(ce);
486 	}
487 	return err;
488 }
489 
490 static int __engines_verify_workarounds(struct intel_gt *gt)
491 {
492 	struct intel_engine_cs *engine;
493 	enum intel_engine_id id;
494 	int err = 0;
495 
496 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
497 		return 0;
498 
499 	for_each_engine(engine, gt, id) {
500 		if (intel_engine_verify_workarounds(engine, "load"))
501 			err = -EIO;
502 	}
503 
504 	/* Flush and restore the kernel context for safety */
505 	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
506 		err = -EIO;
507 
508 	return err;
509 }
510 
511 static void __intel_gt_disable(struct intel_gt *gt)
512 {
513 	intel_gt_set_wedged_on_init(gt);
514 
515 	intel_gt_suspend_prepare(gt);
516 	intel_gt_suspend_late(gt);
517 
518 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
519 }
520 
521 int intel_gt_init(struct intel_gt *gt)
522 {
523 	int err;
524 
525 	err = i915_inject_probe_error(gt->i915, -ENODEV);
526 	if (err)
527 		return err;
528 
529 	/*
530 	 * This is just a security blanket to placate dragons.
531 	 * On some systems, we very sporadically observe that the first TLBs
532 	 * used by the CS may be stale, despite us poking the TLB reset. If
533 	 * we hold the forcewake during initialisation these problems
534 	 * just magically go away.
535 	 */
536 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
537 
538 	intel_gt_init_clock_frequency(gt);
539 
540 	err = intel_gt_init_scratch(gt, IS_GEN(gt->i915, 2) ? SZ_256K : SZ_4K);
541 	if (err)
542 		goto out_fw;
543 
544 	intel_gt_pm_init(gt);
545 
546 	gt->vm = kernel_vm(gt);
547 	if (!gt->vm) {
548 		err = -ENOMEM;
549 		goto err_pm;
550 	}
551 
552 	err = intel_engines_init(gt);
553 	if (err)
554 		goto err_engines;
555 
556 	err = intel_uc_init(&gt->uc);
557 	if (err)
558 		goto err_engines;
559 
560 	err = intel_gt_resume(gt);
561 	if (err)
562 		goto err_uc_init;
563 
564 	err = __engines_record_defaults(gt);
565 	if (err)
566 		goto err_gt;
567 
568 	err = __engines_verify_workarounds(gt);
569 	if (err)
570 		goto err_gt;
571 
572 	err = i915_inject_probe_error(gt->i915, -EIO);
573 	if (err)
574 		goto err_gt;
575 
576 	goto out_fw;
577 err_gt:
578 	__intel_gt_disable(gt);
579 	intel_uc_fini_hw(&gt->uc);
580 err_uc_init:
581 	intel_uc_fini(&gt->uc);
582 err_engines:
583 	intel_engines_release(gt);
584 	i915_vm_put(fetch_and_zero(&gt->vm));
585 err_pm:
586 	intel_gt_pm_fini(gt);
587 	intel_gt_fini_scratch(gt);
588 out_fw:
589 	if (err)
590 		intel_gt_set_wedged_on_init(gt);
591 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
592 	return err;
593 }
594 
595 void intel_gt_driver_remove(struct intel_gt *gt)
596 {
597 	__intel_gt_disable(gt);
598 
599 	intel_uc_driver_remove(&gt->uc);
600 
601 	intel_engines_release(gt);
602 }
603 
604 void intel_gt_driver_unregister(struct intel_gt *gt)
605 {
606 	intel_rps_driver_unregister(&gt->rps);
607 
608 	/*
609 	 * Upon unregistering the device to prevent any new users, cancel
610 	 * all in-flight requests so that we can quickly unbind the active
611 	 * resources.
612 	 */
613 	intel_gt_set_wedged(gt);
614 }
615 
616 void intel_gt_driver_release(struct intel_gt *gt)
617 {
618 	struct i915_address_space *vm;
619 
620 	vm = fetch_and_zero(&gt->vm);
621 	if (vm) /* FIXME being called twice on error paths :( */
622 		i915_vm_put(vm);
623 
624 	intel_gt_pm_fini(gt);
625 	intel_gt_fini_scratch(gt);
626 	intel_gt_fini_buffer_pool(gt);
627 }
628 
629 void intel_gt_driver_late_release(struct intel_gt *gt)
630 {
631 	/* We need to wait for inflight RCU frees to release their grip */
632 	rcu_barrier();
633 
634 	intel_uc_driver_late_release(&gt->uc);
635 	intel_gt_fini_requests(gt);
636 	intel_gt_fini_reset(gt);
637 	intel_gt_fini_timelines(gt);
638 	intel_engines_free(gt);
639 }
640