xref: /linux/drivers/gpu/drm/i915/gt/intel_gt.c (revision 508ecc78b6c983a7921bee2f4bd22682f9f0396e)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <drm/drm_managed.h>
7 #include <drm/intel-gtt.h>
8 
9 #include "gem/i915_gem_internal.h"
10 #include "gem/i915_gem_lmem.h"
11 
12 #include "i915_drv.h"
13 #include "i915_perf_oa_regs.h"
14 #include "i915_reg.h"
15 #include "intel_context.h"
16 #include "intel_engine_pm.h"
17 #include "intel_engine_regs.h"
18 #include "intel_ggtt_gmch.h"
19 #include "intel_gt.h"
20 #include "intel_gt_buffer_pool.h"
21 #include "intel_gt_clock_utils.h"
22 #include "intel_gt_debugfs.h"
23 #include "intel_gt_mcr.h"
24 #include "intel_gt_pm.h"
25 #include "intel_gt_print.h"
26 #include "intel_gt_regs.h"
27 #include "intel_gt_requests.h"
28 #include "intel_migrate.h"
29 #include "intel_mocs.h"
30 #include "intel_pci_config.h"
31 #include "intel_rc6.h"
32 #include "intel_renderstate.h"
33 #include "intel_rps.h"
34 #include "intel_sa_media.h"
35 #include "intel_gt_sysfs.h"
36 #include "intel_tlb.h"
37 #include "intel_uncore.h"
38 #include "shmem_utils.h"
39 
40 void intel_gt_common_init_early(struct intel_gt *gt)
41 {
42 	spin_lock_init(gt->irq_lock);
43 
44 	INIT_LIST_HEAD(&gt->closed_vma);
45 	spin_lock_init(&gt->closed_lock);
46 
47 	init_llist_head(&gt->watchdog.list);
48 	INIT_WORK(&gt->watchdog.work, intel_gt_watchdog_work);
49 
50 	intel_gt_init_buffer_pool(gt);
51 	intel_gt_init_reset(gt);
52 	intel_gt_init_requests(gt);
53 	intel_gt_init_timelines(gt);
54 	intel_gt_init_tlb(gt);
55 	intel_gt_pm_init_early(gt);
56 
57 	intel_wopcm_init_early(&gt->wopcm);
58 	intel_uc_init_early(&gt->uc);
59 	intel_rps_init_early(&gt->rps);
60 }
61 
62 /* Preliminary initialization of Tile 0 */
63 int intel_root_gt_init_early(struct drm_i915_private *i915)
64 {
65 	struct intel_gt *gt;
66 
67 	gt = drmm_kzalloc(&i915->drm, sizeof(*gt), GFP_KERNEL);
68 	if (!gt)
69 		return -ENOMEM;
70 
71 	i915->gt[0] = gt;
72 
73 	gt->i915 = i915;
74 	gt->uncore = &i915->uncore;
75 	gt->irq_lock = drmm_kzalloc(&i915->drm, sizeof(*gt->irq_lock), GFP_KERNEL);
76 	if (!gt->irq_lock)
77 		return -ENOMEM;
78 
79 	intel_gt_common_init_early(gt);
80 
81 	return 0;
82 }
83 
84 static int intel_gt_probe_lmem(struct intel_gt *gt)
85 {
86 	struct drm_i915_private *i915 = gt->i915;
87 	unsigned int instance = gt->info.id;
88 	int id = INTEL_REGION_LMEM_0 + instance;
89 	struct intel_memory_region *mem;
90 	int err;
91 
92 	mem = intel_gt_setup_lmem(gt);
93 	if (IS_ERR(mem)) {
94 		err = PTR_ERR(mem);
95 		if (err == -ENODEV)
96 			return 0;
97 
98 		gt_err(gt, "Failed to setup region(%d) type=%d\n",
99 		       err, INTEL_MEMORY_LOCAL);
100 		return err;
101 	}
102 
103 	mem->id = id;
104 	mem->instance = instance;
105 
106 	intel_memory_region_set_name(mem, "local%u", mem->instance);
107 
108 	GEM_BUG_ON(!HAS_REGION(i915, id));
109 	GEM_BUG_ON(i915->mm.regions[id]);
110 	i915->mm.regions[id] = mem;
111 
112 	return 0;
113 }
114 
115 int intel_gt_assign_ggtt(struct intel_gt *gt)
116 {
117 	/* Media GT shares primary GT's GGTT */
118 	if (gt->type == GT_MEDIA) {
119 		gt->ggtt = to_gt(gt->i915)->ggtt;
120 	} else {
121 		gt->ggtt = i915_ggtt_create(gt->i915);
122 		if (IS_ERR(gt->ggtt))
123 			return PTR_ERR(gt->ggtt);
124 	}
125 
126 	list_add_tail(&gt->ggtt_link, &gt->ggtt->gt_list);
127 
128 	return 0;
129 }
130 
131 int intel_gt_init_mmio(struct intel_gt *gt)
132 {
133 	intel_gt_init_clock_frequency(gt);
134 
135 	intel_uc_init_mmio(&gt->uc);
136 	intel_sseu_info_init(gt);
137 	intel_gt_mcr_init(gt);
138 
139 	return intel_engines_init_mmio(gt);
140 }
141 
142 static void init_unused_ring(struct intel_gt *gt, u32 base)
143 {
144 	struct intel_uncore *uncore = gt->uncore;
145 
146 	intel_uncore_write(uncore, RING_CTL(base), 0);
147 	intel_uncore_write(uncore, RING_HEAD(base), 0);
148 	intel_uncore_write(uncore, RING_TAIL(base), 0);
149 	intel_uncore_write(uncore, RING_START(base), 0);
150 }
151 
152 static void init_unused_rings(struct intel_gt *gt)
153 {
154 	struct drm_i915_private *i915 = gt->i915;
155 
156 	if (IS_I830(i915)) {
157 		init_unused_ring(gt, PRB1_BASE);
158 		init_unused_ring(gt, SRB0_BASE);
159 		init_unused_ring(gt, SRB1_BASE);
160 		init_unused_ring(gt, SRB2_BASE);
161 		init_unused_ring(gt, SRB3_BASE);
162 	} else if (GRAPHICS_VER(i915) == 2) {
163 		init_unused_ring(gt, SRB0_BASE);
164 		init_unused_ring(gt, SRB1_BASE);
165 	} else if (GRAPHICS_VER(i915) == 3) {
166 		init_unused_ring(gt, PRB1_BASE);
167 		init_unused_ring(gt, PRB2_BASE);
168 	}
169 }
170 
171 int intel_gt_init_hw(struct intel_gt *gt)
172 {
173 	struct drm_i915_private *i915 = gt->i915;
174 	struct intel_uncore *uncore = gt->uncore;
175 	int ret;
176 
177 	gt->last_init_time = ktime_get();
178 
179 	/* Double layer security blanket, see i915_gem_init() */
180 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
181 
182 	if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9)
183 		intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
184 
185 	if (IS_HASWELL(i915))
186 		intel_uncore_write(uncore,
187 				   HSW_MI_PREDICATE_RESULT_2,
188 				   IS_HASWELL_GT3(i915) ?
189 				   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
190 
191 	/* Apply the GT workarounds... */
192 	intel_gt_apply_workarounds(gt);
193 	/* ...and determine whether they are sticking. */
194 	intel_gt_verify_workarounds(gt, "init");
195 
196 	intel_gt_init_swizzling(gt);
197 
198 	/*
199 	 * At least 830 can leave some of the unused rings
200 	 * "active" (ie. head != tail) after resume which
201 	 * will prevent c3 entry. Makes sure all unused rings
202 	 * are totally idle.
203 	 */
204 	init_unused_rings(gt);
205 
206 	ret = i915_ppgtt_init_hw(gt);
207 	if (ret) {
208 		gt_err(gt, "Enabling PPGTT failed (%d)\n", ret);
209 		goto out;
210 	}
211 
212 	/* We can't enable contexts until all firmware is loaded */
213 	ret = intel_uc_init_hw(&gt->uc);
214 	if (ret) {
215 		gt_probe_error(gt, "Enabling uc failed (%d)\n", ret);
216 		goto out;
217 	}
218 
219 	intel_mocs_init(gt);
220 
221 out:
222 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
223 	return ret;
224 }
225 
226 static void gen6_clear_engine_error_register(struct intel_engine_cs *engine)
227 {
228 	GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
229 	GEN6_RING_FAULT_REG_POSTING_READ(engine);
230 }
231 
232 i915_reg_t intel_gt_perf_limit_reasons_reg(struct intel_gt *gt)
233 {
234 	/* GT0_PERF_LIMIT_REASONS is available only for Gen11+ */
235 	if (GRAPHICS_VER(gt->i915) < 11)
236 		return INVALID_MMIO_REG;
237 
238 	return gt->type == GT_MEDIA ?
239 		MTL_MEDIA_PERF_LIMIT_REASONS : GT0_PERF_LIMIT_REASONS;
240 }
241 
242 void
243 intel_gt_clear_error_registers(struct intel_gt *gt,
244 			       intel_engine_mask_t engine_mask)
245 {
246 	struct drm_i915_private *i915 = gt->i915;
247 	struct intel_uncore *uncore = gt->uncore;
248 	u32 eir;
249 
250 	if (GRAPHICS_VER(i915) != 2)
251 		intel_uncore_write(uncore, PGTBL_ER, 0);
252 
253 	if (GRAPHICS_VER(i915) < 4)
254 		intel_uncore_write(uncore, IPEIR(RENDER_RING_BASE), 0);
255 	else
256 		intel_uncore_write(uncore, IPEIR_I965, 0);
257 
258 	intel_uncore_write(uncore, EIR, 0);
259 	eir = intel_uncore_read(uncore, EIR);
260 	if (eir) {
261 		/*
262 		 * some errors might have become stuck,
263 		 * mask them.
264 		 */
265 		gt_dbg(gt, "EIR stuck: 0x%08x, masking\n", eir);
266 		intel_uncore_rmw(uncore, EMR, 0, eir);
267 		intel_uncore_write(uncore, GEN2_IIR,
268 				   I915_MASTER_ERROR_INTERRUPT);
269 	}
270 
271 	/*
272 	 * For the media GT, this ring fault register is not replicated,
273 	 * so don't do multicast/replicated register read/write operation on it.
274 	 */
275 	if (MEDIA_VER(i915) >= 13 && gt->type == GT_MEDIA) {
276 		intel_uncore_rmw(uncore, XELPMP_RING_FAULT_REG,
277 				 RING_FAULT_VALID, 0);
278 		intel_uncore_posting_read(uncore,
279 					  XELPMP_RING_FAULT_REG);
280 
281 	} else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
282 		intel_gt_mcr_multicast_rmw(gt, XEHP_RING_FAULT_REG,
283 					   RING_FAULT_VALID, 0);
284 		intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG);
285 
286 	} else if (GRAPHICS_VER(i915) >= 12) {
287 		intel_uncore_rmw(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID, 0);
288 		intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
289 	} else if (GRAPHICS_VER(i915) >= 8) {
290 		intel_uncore_rmw(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID, 0);
291 		intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
292 	} else if (GRAPHICS_VER(i915) >= 6) {
293 		struct intel_engine_cs *engine;
294 		enum intel_engine_id id;
295 
296 		for_each_engine_masked(engine, gt, engine_mask, id)
297 			gen6_clear_engine_error_register(engine);
298 	}
299 }
300 
301 static void gen6_check_faults(struct intel_gt *gt)
302 {
303 	struct intel_engine_cs *engine;
304 	enum intel_engine_id id;
305 	u32 fault;
306 
307 	for_each_engine(engine, gt, id) {
308 		fault = GEN6_RING_FAULT_REG_READ(engine);
309 		if (fault & RING_FAULT_VALID) {
310 			gt_dbg(gt, "Unexpected fault\n"
311 			       "\tAddr: 0x%08lx\n"
312 			       "\tAddress space: %s\n"
313 			       "\tSource ID: %d\n"
314 			       "\tType: %d\n",
315 			       fault & PAGE_MASK,
316 			       fault & RING_FAULT_GTTSEL_MASK ?
317 			       "GGTT" : "PPGTT",
318 			       RING_FAULT_SRCID(fault),
319 			       RING_FAULT_FAULT_TYPE(fault));
320 		}
321 	}
322 }
323 
324 static void xehp_check_faults(struct intel_gt *gt)
325 {
326 	u32 fault;
327 
328 	/*
329 	 * Although the fault register now lives in an MCR register range,
330 	 * the GAM registers are special and we only truly need to read
331 	 * the "primary" GAM instance rather than handling each instance
332 	 * individually.  intel_gt_mcr_read_any() will automatically steer
333 	 * toward the primary instance.
334 	 */
335 	fault = intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG);
336 	if (fault & RING_FAULT_VALID) {
337 		u32 fault_data0, fault_data1;
338 		u64 fault_addr;
339 
340 		fault_data0 = intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA0);
341 		fault_data1 = intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA1);
342 
343 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
344 			     ((u64)fault_data0 << 12);
345 
346 		gt_dbg(gt, "Unexpected fault\n"
347 		       "\tAddr: 0x%08x_%08x\n"
348 		       "\tAddress space: %s\n"
349 		       "\tEngine ID: %d\n"
350 		       "\tSource ID: %d\n"
351 		       "\tType: %d\n",
352 		       upper_32_bits(fault_addr), lower_32_bits(fault_addr),
353 		       fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
354 		       GEN8_RING_FAULT_ENGINE_ID(fault),
355 		       RING_FAULT_SRCID(fault),
356 		       RING_FAULT_FAULT_TYPE(fault));
357 	}
358 }
359 
360 static void gen8_check_faults(struct intel_gt *gt)
361 {
362 	struct intel_uncore *uncore = gt->uncore;
363 	i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
364 	u32 fault;
365 
366 	if (GRAPHICS_VER(gt->i915) >= 12) {
367 		fault_reg = GEN12_RING_FAULT_REG;
368 		fault_data0_reg = GEN12_FAULT_TLB_DATA0;
369 		fault_data1_reg = GEN12_FAULT_TLB_DATA1;
370 	} else {
371 		fault_reg = GEN8_RING_FAULT_REG;
372 		fault_data0_reg = GEN8_FAULT_TLB_DATA0;
373 		fault_data1_reg = GEN8_FAULT_TLB_DATA1;
374 	}
375 
376 	fault = intel_uncore_read(uncore, fault_reg);
377 	if (fault & RING_FAULT_VALID) {
378 		u32 fault_data0, fault_data1;
379 		u64 fault_addr;
380 
381 		fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
382 		fault_data1 = intel_uncore_read(uncore, fault_data1_reg);
383 
384 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
385 			     ((u64)fault_data0 << 12);
386 
387 		gt_dbg(gt, "Unexpected fault\n"
388 		       "\tAddr: 0x%08x_%08x\n"
389 		       "\tAddress space: %s\n"
390 		       "\tEngine ID: %d\n"
391 		       "\tSource ID: %d\n"
392 		       "\tType: %d\n",
393 		       upper_32_bits(fault_addr), lower_32_bits(fault_addr),
394 		       fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
395 		       GEN8_RING_FAULT_ENGINE_ID(fault),
396 		       RING_FAULT_SRCID(fault),
397 		       RING_FAULT_FAULT_TYPE(fault));
398 	}
399 }
400 
401 void intel_gt_check_and_clear_faults(struct intel_gt *gt)
402 {
403 	struct drm_i915_private *i915 = gt->i915;
404 
405 	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
406 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
407 		xehp_check_faults(gt);
408 	else if (GRAPHICS_VER(i915) >= 8)
409 		gen8_check_faults(gt);
410 	else if (GRAPHICS_VER(i915) >= 6)
411 		gen6_check_faults(gt);
412 	else
413 		return;
414 
415 	intel_gt_clear_error_registers(gt, ALL_ENGINES);
416 }
417 
418 void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
419 {
420 	struct intel_uncore *uncore = gt->uncore;
421 	intel_wakeref_t wakeref;
422 
423 	/*
424 	 * No actual flushing is required for the GTT write domain for reads
425 	 * from the GTT domain. Writes to it "immediately" go to main memory
426 	 * as far as we know, so there's no chipset flush. It also doesn't
427 	 * land in the GPU render cache.
428 	 *
429 	 * However, we do have to enforce the order so that all writes through
430 	 * the GTT land before any writes to the device, such as updates to
431 	 * the GATT itself.
432 	 *
433 	 * We also have to wait a bit for the writes to land from the GTT.
434 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
435 	 * timing. This issue has only been observed when switching quickly
436 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
437 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
438 	 * system agents we cannot reproduce this behaviour, until Cannonlake
439 	 * that was!).
440 	 */
441 
442 	wmb();
443 
444 	if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
445 		return;
446 
447 	intel_gt_chipset_flush(gt);
448 
449 	with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
450 		unsigned long flags;
451 
452 		spin_lock_irqsave(&uncore->lock, flags);
453 		intel_uncore_posting_read_fw(uncore,
454 					     RING_TAIL(RENDER_RING_BASE));
455 		spin_unlock_irqrestore(&uncore->lock, flags);
456 	}
457 }
458 
459 void intel_gt_chipset_flush(struct intel_gt *gt)
460 {
461 	wmb();
462 	if (GRAPHICS_VER(gt->i915) < 6)
463 		intel_ggtt_gmch_flush();
464 }
465 
466 void intel_gt_driver_register(struct intel_gt *gt)
467 {
468 	intel_gsc_init(&gt->gsc, gt->i915);
469 
470 	intel_rps_driver_register(&gt->rps);
471 
472 	intel_gt_debugfs_register(gt);
473 	intel_gt_sysfs_register(gt);
474 }
475 
476 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
477 {
478 	struct drm_i915_private *i915 = gt->i915;
479 	struct drm_i915_gem_object *obj;
480 	struct i915_vma *vma;
481 	int ret;
482 
483 	obj = i915_gem_object_create_lmem(i915, size,
484 					  I915_BO_ALLOC_VOLATILE |
485 					  I915_BO_ALLOC_GPU_ONLY);
486 	if (IS_ERR(obj) && !IS_METEORLAKE(i915)) /* Wa_22018444074 */
487 		obj = i915_gem_object_create_stolen(i915, size);
488 	if (IS_ERR(obj))
489 		obj = i915_gem_object_create_internal(i915, size);
490 	if (IS_ERR(obj)) {
491 		gt_err(gt, "Failed to allocate scratch page\n");
492 		return PTR_ERR(obj);
493 	}
494 
495 	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
496 	if (IS_ERR(vma)) {
497 		ret = PTR_ERR(vma);
498 		goto err_unref;
499 	}
500 
501 	ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
502 	if (ret)
503 		goto err_unref;
504 
505 	gt->scratch = i915_vma_make_unshrinkable(vma);
506 
507 	return 0;
508 
509 err_unref:
510 	i915_gem_object_put(obj);
511 	return ret;
512 }
513 
514 static void intel_gt_fini_scratch(struct intel_gt *gt)
515 {
516 	i915_vma_unpin_and_release(&gt->scratch, 0);
517 }
518 
519 static struct i915_address_space *kernel_vm(struct intel_gt *gt)
520 {
521 	if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
522 		return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm;
523 	else
524 		return i915_vm_get(&gt->ggtt->vm);
525 }
526 
527 static int __engines_record_defaults(struct intel_gt *gt)
528 {
529 	struct i915_request *requests[I915_NUM_ENGINES] = {};
530 	struct intel_engine_cs *engine;
531 	enum intel_engine_id id;
532 	int err = 0;
533 
534 	/*
535 	 * As we reset the gpu during very early sanitisation, the current
536 	 * register state on the GPU should reflect its defaults values.
537 	 * We load a context onto the hw (with restore-inhibit), then switch
538 	 * over to a second context to save that default register state. We
539 	 * can then prime every new context with that state so they all start
540 	 * from the same default HW values.
541 	 */
542 
543 	for_each_engine(engine, gt, id) {
544 		struct intel_renderstate so;
545 		struct intel_context *ce;
546 		struct i915_request *rq;
547 
548 		/* We must be able to switch to something! */
549 		GEM_BUG_ON(!engine->kernel_context);
550 
551 		ce = intel_context_create(engine);
552 		if (IS_ERR(ce)) {
553 			err = PTR_ERR(ce);
554 			goto out;
555 		}
556 
557 		err = intel_renderstate_init(&so, ce);
558 		if (err)
559 			goto err;
560 
561 		rq = i915_request_create(ce);
562 		if (IS_ERR(rq)) {
563 			err = PTR_ERR(rq);
564 			goto err_fini;
565 		}
566 
567 		err = intel_engine_emit_ctx_wa(rq);
568 		if (err)
569 			goto err_rq;
570 
571 		err = intel_renderstate_emit(&so, rq);
572 		if (err)
573 			goto err_rq;
574 
575 err_rq:
576 		requests[id] = i915_request_get(rq);
577 		i915_request_add(rq);
578 err_fini:
579 		intel_renderstate_fini(&so, ce);
580 err:
581 		if (err) {
582 			intel_context_put(ce);
583 			goto out;
584 		}
585 	}
586 
587 	/* Flush the default context image to memory, and enable powersaving. */
588 	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
589 		err = -EIO;
590 		goto out;
591 	}
592 
593 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
594 		struct i915_request *rq;
595 		struct file *state;
596 
597 		rq = requests[id];
598 		if (!rq)
599 			continue;
600 
601 		if (rq->fence.error) {
602 			err = -EIO;
603 			goto out;
604 		}
605 
606 		GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
607 		if (!rq->context->state)
608 			continue;
609 
610 		/* Keep a copy of the state's backing pages; free the obj */
611 		state = shmem_create_from_object(rq->context->state->obj);
612 		if (IS_ERR(state)) {
613 			err = PTR_ERR(state);
614 			goto out;
615 		}
616 		rq->engine->default_state = state;
617 	}
618 
619 out:
620 	/*
621 	 * If we have to abandon now, we expect the engines to be idle
622 	 * and ready to be torn-down. The quickest way we can accomplish
623 	 * this is by declaring ourselves wedged.
624 	 */
625 	if (err)
626 		intel_gt_set_wedged(gt);
627 
628 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
629 		struct intel_context *ce;
630 		struct i915_request *rq;
631 
632 		rq = requests[id];
633 		if (!rq)
634 			continue;
635 
636 		ce = rq->context;
637 		i915_request_put(rq);
638 		intel_context_put(ce);
639 	}
640 	return err;
641 }
642 
643 static int __engines_verify_workarounds(struct intel_gt *gt)
644 {
645 	struct intel_engine_cs *engine;
646 	enum intel_engine_id id;
647 	int err = 0;
648 
649 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
650 		return 0;
651 
652 	for_each_engine(engine, gt, id) {
653 		if (intel_engine_verify_workarounds(engine, "load"))
654 			err = -EIO;
655 	}
656 
657 	/* Flush and restore the kernel context for safety */
658 	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
659 		err = -EIO;
660 
661 	return err;
662 }
663 
664 static void __intel_gt_disable(struct intel_gt *gt)
665 {
666 	intel_gt_set_wedged_on_fini(gt);
667 
668 	intel_gt_suspend_prepare(gt);
669 	intel_gt_suspend_late(gt);
670 
671 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
672 }
673 
674 int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout)
675 {
676 	long remaining_timeout;
677 
678 	/* If the device is asleep, we have no requests outstanding */
679 	if (!intel_gt_pm_is_awake(gt))
680 		return 0;
681 
682 	while ((timeout = intel_gt_retire_requests_timeout(gt, timeout,
683 							   &remaining_timeout)) > 0) {
684 		cond_resched();
685 		if (signal_pending(current))
686 			return -EINTR;
687 	}
688 
689 	if (timeout)
690 		return timeout;
691 
692 	if (remaining_timeout < 0)
693 		remaining_timeout = 0;
694 
695 	return intel_uc_wait_for_idle(&gt->uc, remaining_timeout);
696 }
697 
698 int intel_gt_init(struct intel_gt *gt)
699 {
700 	int err;
701 
702 	err = i915_inject_probe_error(gt->i915, -ENODEV);
703 	if (err)
704 		return err;
705 
706 	intel_gt_init_workarounds(gt);
707 
708 	/*
709 	 * This is just a security blanket to placate dragons.
710 	 * On some systems, we very sporadically observe that the first TLBs
711 	 * used by the CS may be stale, despite us poking the TLB reset. If
712 	 * we hold the forcewake during initialisation these problems
713 	 * just magically go away.
714 	 */
715 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
716 
717 	err = intel_gt_init_scratch(gt,
718 				    GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K);
719 	if (err)
720 		goto out_fw;
721 
722 	intel_gt_pm_init(gt);
723 
724 	gt->vm = kernel_vm(gt);
725 	if (!gt->vm) {
726 		err = -ENOMEM;
727 		goto err_pm;
728 	}
729 
730 	intel_set_mocs_index(gt);
731 
732 	err = intel_engines_init(gt);
733 	if (err)
734 		goto err_engines;
735 
736 	err = intel_uc_init(&gt->uc);
737 	if (err)
738 		goto err_engines;
739 
740 	err = intel_gt_resume(gt);
741 	if (err)
742 		goto err_uc_init;
743 
744 	err = intel_gt_init_hwconfig(gt);
745 	if (err)
746 		gt_err(gt, "Failed to retrieve hwconfig table: %pe\n", ERR_PTR(err));
747 
748 	err = __engines_record_defaults(gt);
749 	if (err)
750 		goto err_gt;
751 
752 	err = __engines_verify_workarounds(gt);
753 	if (err)
754 		goto err_gt;
755 
756 	err = i915_inject_probe_error(gt->i915, -EIO);
757 	if (err)
758 		goto err_gt;
759 
760 	intel_uc_init_late(&gt->uc);
761 
762 	intel_migrate_init(&gt->migrate, gt);
763 
764 	goto out_fw;
765 err_gt:
766 	__intel_gt_disable(gt);
767 	intel_uc_fini_hw(&gt->uc);
768 err_uc_init:
769 	intel_uc_fini(&gt->uc);
770 err_engines:
771 	intel_engines_release(gt);
772 	i915_vm_put(fetch_and_zero(&gt->vm));
773 err_pm:
774 	intel_gt_pm_fini(gt);
775 	intel_gt_fini_scratch(gt);
776 out_fw:
777 	if (err)
778 		intel_gt_set_wedged_on_init(gt);
779 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
780 	return err;
781 }
782 
783 void intel_gt_driver_remove(struct intel_gt *gt)
784 {
785 	__intel_gt_disable(gt);
786 
787 	intel_migrate_fini(&gt->migrate);
788 	intel_uc_driver_remove(&gt->uc);
789 
790 	intel_engines_release(gt);
791 
792 	intel_gt_flush_buffer_pool(gt);
793 }
794 
795 void intel_gt_driver_unregister(struct intel_gt *gt)
796 {
797 	intel_wakeref_t wakeref;
798 
799 	intel_gt_sysfs_unregister(gt);
800 	intel_rps_driver_unregister(&gt->rps);
801 	intel_gsc_fini(&gt->gsc);
802 
803 	/*
804 	 * If we unload the driver and wedge before the GSC worker is complete,
805 	 * the worker will hit an error on its submission to the GSC engine and
806 	 * then exit. This is hard to hit for a user, but it is reproducible
807 	 * with skipping selftests. The error is handled gracefully by the
808 	 * worker, so there are no functional issues, but we still end up with
809 	 * an error message in dmesg, which is something we want to avoid as
810 	 * this is a supported scenario. We could modify the worker to better
811 	 * handle a wedging occurring during its execution, but that gets
812 	 * complicated for a couple of reasons:
813 	 * - We do want the error on runtime wedging, because there are
814 	 *   implications for subsystems outside of GT (i.e., PXP, HDCP), it's
815 	 *   only the error on driver unload that we want to silence.
816 	 * - The worker is responsible for multiple submissions (GSC FW load,
817 	 *   HuC auth, SW proxy), so all of those will have to be adapted to
818 	 *   handle the wedged_on_fini scenario.
819 	 * Therefore, it's much simpler to just wait for the worker to be done
820 	 * before wedging on driver removal, also considering that the worker
821 	 * will likely already be idle in the great majority of non-selftest
822 	 * scenarios.
823 	 */
824 	intel_gsc_uc_flush_work(&gt->uc.gsc);
825 
826 	/*
827 	 * Upon unregistering the device to prevent any new users, cancel
828 	 * all in-flight requests so that we can quickly unbind the active
829 	 * resources.
830 	 */
831 	intel_gt_set_wedged_on_fini(gt);
832 
833 	/* Scrub all HW state upon release */
834 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
835 		__intel_gt_reset(gt, ALL_ENGINES);
836 }
837 
838 void intel_gt_driver_release(struct intel_gt *gt)
839 {
840 	struct i915_address_space *vm;
841 
842 	vm = fetch_and_zero(&gt->vm);
843 	if (vm) /* FIXME being called twice on error paths :( */
844 		i915_vm_put(vm);
845 
846 	intel_wa_list_free(&gt->wa_list);
847 	intel_gt_pm_fini(gt);
848 	intel_gt_fini_scratch(gt);
849 	intel_gt_fini_buffer_pool(gt);
850 	intel_gt_fini_hwconfig(gt);
851 }
852 
853 void intel_gt_driver_late_release_all(struct drm_i915_private *i915)
854 {
855 	struct intel_gt *gt;
856 	unsigned int id;
857 
858 	/* We need to wait for inflight RCU frees to release their grip */
859 	rcu_barrier();
860 
861 	for_each_gt(gt, i915, id) {
862 		intel_uc_driver_late_release(&gt->uc);
863 		intel_gt_fini_requests(gt);
864 		intel_gt_fini_reset(gt);
865 		intel_gt_fini_timelines(gt);
866 		intel_gt_fini_tlb(gt);
867 		intel_engines_free(gt);
868 	}
869 }
870 
871 static int intel_gt_tile_setup(struct intel_gt *gt, phys_addr_t phys_addr)
872 {
873 	int ret;
874 
875 	if (!gt_is_root(gt)) {
876 		struct intel_uncore *uncore;
877 		spinlock_t *irq_lock;
878 
879 		uncore = drmm_kzalloc(&gt->i915->drm, sizeof(*uncore), GFP_KERNEL);
880 		if (!uncore)
881 			return -ENOMEM;
882 
883 		irq_lock = drmm_kzalloc(&gt->i915->drm, sizeof(*irq_lock), GFP_KERNEL);
884 		if (!irq_lock)
885 			return -ENOMEM;
886 
887 		gt->uncore = uncore;
888 		gt->irq_lock = irq_lock;
889 
890 		intel_gt_common_init_early(gt);
891 	}
892 
893 	intel_uncore_init_early(gt->uncore, gt);
894 
895 	ret = intel_uncore_setup_mmio(gt->uncore, phys_addr);
896 	if (ret)
897 		return ret;
898 
899 	gt->phys_addr = phys_addr;
900 
901 	return 0;
902 }
903 
904 int intel_gt_probe_all(struct drm_i915_private *i915)
905 {
906 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
907 	struct intel_gt *gt = to_gt(i915);
908 	const struct intel_gt_definition *gtdef;
909 	phys_addr_t phys_addr;
910 	unsigned int mmio_bar;
911 	unsigned int i;
912 	int ret;
913 
914 	mmio_bar = intel_mmio_bar(GRAPHICS_VER(i915));
915 	phys_addr = pci_resource_start(pdev, mmio_bar);
916 
917 	/*
918 	 * We always have at least one primary GT on any device
919 	 * and it has been already initialized early during probe
920 	 * in i915_driver_probe()
921 	 */
922 	gt->i915 = i915;
923 	gt->name = "Primary GT";
924 	gt->info.engine_mask = INTEL_INFO(i915)->platform_engine_mask;
925 
926 	gt_dbg(gt, "Setting up %s\n", gt->name);
927 	ret = intel_gt_tile_setup(gt, phys_addr);
928 	if (ret)
929 		return ret;
930 
931 	if (!HAS_EXTRA_GT_LIST(i915))
932 		return 0;
933 
934 	for (i = 1, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1];
935 	     gtdef->name != NULL;
936 	     i++, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1]) {
937 		gt = drmm_kzalloc(&i915->drm, sizeof(*gt), GFP_KERNEL);
938 		if (!gt) {
939 			ret = -ENOMEM;
940 			goto err;
941 		}
942 
943 		gt->i915 = i915;
944 		gt->name = gtdef->name;
945 		gt->type = gtdef->type;
946 		gt->info.engine_mask = gtdef->engine_mask;
947 		gt->info.id = i;
948 
949 		gt_dbg(gt, "Setting up %s\n", gt->name);
950 		if (GEM_WARN_ON(range_overflows_t(resource_size_t,
951 						  gtdef->mapping_base,
952 						  SZ_16M,
953 						  pci_resource_len(pdev, mmio_bar)))) {
954 			ret = -ENODEV;
955 			goto err;
956 		}
957 
958 		switch (gtdef->type) {
959 		case GT_TILE:
960 			ret = intel_gt_tile_setup(gt, phys_addr + gtdef->mapping_base);
961 			break;
962 
963 		case GT_MEDIA:
964 			ret = intel_sa_mediagt_setup(gt, phys_addr + gtdef->mapping_base,
965 						     gtdef->gsi_offset);
966 			break;
967 
968 		case GT_PRIMARY:
969 			/* Primary GT should not appear in extra GT list */
970 		default:
971 			MISSING_CASE(gtdef->type);
972 			ret = -ENODEV;
973 		}
974 
975 		if (ret)
976 			goto err;
977 
978 		i915->gt[i] = gt;
979 	}
980 
981 	return 0;
982 
983 err:
984 	i915_probe_error(i915, "Failed to initialize %s! (%d)\n", gtdef->name, ret);
985 	return ret;
986 }
987 
988 int intel_gt_tiles_init(struct drm_i915_private *i915)
989 {
990 	struct intel_gt *gt;
991 	unsigned int id;
992 	int ret;
993 
994 	for_each_gt(gt, i915, id) {
995 		ret = intel_gt_probe_lmem(gt);
996 		if (ret)
997 			return ret;
998 	}
999 
1000 	return 0;
1001 }
1002 
1003 void intel_gt_info_print(const struct intel_gt_info *info,
1004 			 struct drm_printer *p)
1005 {
1006 	drm_printf(p, "available engines: %x\n", info->engine_mask);
1007 
1008 	intel_sseu_dump(&info->sseu, p);
1009 }
1010 
1011 enum i915_map_type intel_gt_coherent_map_type(struct intel_gt *gt,
1012 					      struct drm_i915_gem_object *obj,
1013 					      bool always_coherent)
1014 {
1015 	/*
1016 	 * Wa_22016122933: always return I915_MAP_WC for Media
1017 	 * version 13.0 when the object is on the Media GT
1018 	 */
1019 	if (i915_gem_object_is_lmem(obj) || intel_gt_needs_wa_22016122933(gt))
1020 		return I915_MAP_WC;
1021 	if (HAS_LLC(gt->i915) || always_coherent)
1022 		return I915_MAP_WB;
1023 	else
1024 		return I915_MAP_WC;
1025 }
1026 
1027 bool intel_gt_needs_wa_22016122933(struct intel_gt *gt)
1028 {
1029 	return MEDIA_VER_FULL(gt->i915) == IP_VER(13, 0) && gt->type == GT_MEDIA;
1030 }
1031 
1032 static void __intel_gt_bind_context_set_ready(struct intel_gt *gt, bool ready)
1033 {
1034 	struct intel_engine_cs *engine = gt->engine[BCS0];
1035 
1036 	if (engine && engine->bind_context)
1037 		engine->bind_context_ready = ready;
1038 }
1039 
1040 /**
1041  * intel_gt_bind_context_set_ready - Set the context binding as ready
1042  *
1043  * @gt: GT structure
1044  *
1045  * This function marks the binder context as ready.
1046  */
1047 void intel_gt_bind_context_set_ready(struct intel_gt *gt)
1048 {
1049 	__intel_gt_bind_context_set_ready(gt, true);
1050 }
1051 
1052 /**
1053  * intel_gt_bind_context_set_unready - Set the context binding as ready
1054  * @gt: GT structure
1055  *
1056  * This function marks the binder context as not ready.
1057  */
1058 
1059 void intel_gt_bind_context_set_unready(struct intel_gt *gt)
1060 {
1061 	__intel_gt_bind_context_set_ready(gt, false);
1062 }
1063 
1064 /**
1065  * intel_gt_is_bind_context_ready - Check if context binding is ready
1066  *
1067  * @gt: GT structure
1068  *
1069  * This function returns binder context's ready status.
1070  */
1071 bool intel_gt_is_bind_context_ready(struct intel_gt *gt)
1072 {
1073 	struct intel_engine_cs *engine = gt->engine[BCS0];
1074 
1075 	if (engine)
1076 		return engine->bind_context_ready;
1077 
1078 	return false;
1079 }
1080