1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2019 Intel Corporation 4 */ 5 6 #include <drm/drm_managed.h> 7 #include <drm/intel-gtt.h> 8 9 #include "gem/i915_gem_internal.h" 10 #include "gem/i915_gem_lmem.h" 11 12 #include "i915_drv.h" 13 #include "i915_perf_oa_regs.h" 14 #include "i915_reg.h" 15 #include "intel_context.h" 16 #include "intel_engine_pm.h" 17 #include "intel_engine_regs.h" 18 #include "intel_ggtt_gmch.h" 19 #include "intel_gt.h" 20 #include "intel_gt_buffer_pool.h" 21 #include "intel_gt_clock_utils.h" 22 #include "intel_gt_debugfs.h" 23 #include "intel_gt_mcr.h" 24 #include "intel_gt_pm.h" 25 #include "intel_gt_print.h" 26 #include "intel_gt_regs.h" 27 #include "intel_gt_requests.h" 28 #include "intel_migrate.h" 29 #include "intel_mocs.h" 30 #include "intel_pci_config.h" 31 #include "intel_rc6.h" 32 #include "intel_renderstate.h" 33 #include "intel_rps.h" 34 #include "intel_sa_media.h" 35 #include "intel_gt_sysfs.h" 36 #include "intel_tlb.h" 37 #include "intel_uncore.h" 38 #include "shmem_utils.h" 39 40 void intel_gt_common_init_early(struct intel_gt *gt) 41 { 42 spin_lock_init(gt->irq_lock); 43 44 INIT_LIST_HEAD(>->closed_vma); 45 spin_lock_init(>->closed_lock); 46 47 init_llist_head(>->watchdog.list); 48 INIT_WORK(>->watchdog.work, intel_gt_watchdog_work); 49 50 intel_gt_init_buffer_pool(gt); 51 intel_gt_init_reset(gt); 52 intel_gt_init_requests(gt); 53 intel_gt_init_timelines(gt); 54 intel_gt_init_tlb(gt); 55 intel_gt_pm_init_early(gt); 56 57 intel_wopcm_init_early(>->wopcm); 58 intel_uc_init_early(>->uc); 59 intel_rps_init_early(>->rps); 60 } 61 62 /* Preliminary initialization of Tile 0 */ 63 int intel_root_gt_init_early(struct drm_i915_private *i915) 64 { 65 struct intel_gt *gt; 66 67 gt = drmm_kzalloc(&i915->drm, sizeof(*gt), GFP_KERNEL); 68 if (!gt) 69 return -ENOMEM; 70 71 i915->gt[0] = gt; 72 73 gt->i915 = i915; 74 gt->uncore = &i915->uncore; 75 gt->irq_lock = drmm_kzalloc(&i915->drm, sizeof(*gt->irq_lock), GFP_KERNEL); 76 if (!gt->irq_lock) 77 return -ENOMEM; 78 79 intel_gt_common_init_early(gt); 80 81 return 0; 82 } 83 84 static int intel_gt_probe_lmem(struct intel_gt *gt) 85 { 86 struct drm_i915_private *i915 = gt->i915; 87 unsigned int instance = gt->info.id; 88 int id = INTEL_REGION_LMEM_0 + instance; 89 struct intel_memory_region *mem; 90 int err; 91 92 mem = intel_gt_setup_lmem(gt); 93 if (IS_ERR(mem)) { 94 err = PTR_ERR(mem); 95 if (err == -ENODEV) 96 return 0; 97 98 gt_err(gt, "Failed to setup region(%d) type=%d\n", 99 err, INTEL_MEMORY_LOCAL); 100 return err; 101 } 102 103 mem->id = id; 104 mem->instance = instance; 105 106 intel_memory_region_set_name(mem, "local%u", mem->instance); 107 108 GEM_BUG_ON(!HAS_REGION(i915, id)); 109 GEM_BUG_ON(i915->mm.regions[id]); 110 i915->mm.regions[id] = mem; 111 112 return 0; 113 } 114 115 int intel_gt_assign_ggtt(struct intel_gt *gt) 116 { 117 /* Media GT shares primary GT's GGTT */ 118 if (gt->type == GT_MEDIA) { 119 gt->ggtt = to_gt(gt->i915)->ggtt; 120 } else { 121 gt->ggtt = i915_ggtt_create(gt->i915); 122 if (IS_ERR(gt->ggtt)) 123 return PTR_ERR(gt->ggtt); 124 } 125 126 list_add_tail(>->ggtt_link, >->ggtt->gt_list); 127 128 return 0; 129 } 130 131 int intel_gt_init_mmio(struct intel_gt *gt) 132 { 133 intel_gt_init_clock_frequency(gt); 134 135 intel_uc_init_mmio(>->uc); 136 intel_sseu_info_init(gt); 137 intel_gt_mcr_init(gt); 138 139 return intel_engines_init_mmio(gt); 140 } 141 142 static void init_unused_ring(struct intel_gt *gt, u32 base) 143 { 144 struct intel_uncore *uncore = gt->uncore; 145 146 intel_uncore_write(uncore, RING_CTL(base), 0); 147 intel_uncore_write(uncore, RING_HEAD(base), 0); 148 intel_uncore_write(uncore, RING_TAIL(base), 0); 149 intel_uncore_write(uncore, RING_START(base), 0); 150 } 151 152 static void init_unused_rings(struct intel_gt *gt) 153 { 154 struct drm_i915_private *i915 = gt->i915; 155 156 if (IS_I830(i915)) { 157 init_unused_ring(gt, PRB1_BASE); 158 init_unused_ring(gt, SRB0_BASE); 159 init_unused_ring(gt, SRB1_BASE); 160 init_unused_ring(gt, SRB2_BASE); 161 init_unused_ring(gt, SRB3_BASE); 162 } else if (GRAPHICS_VER(i915) == 2) { 163 init_unused_ring(gt, SRB0_BASE); 164 init_unused_ring(gt, SRB1_BASE); 165 } else if (GRAPHICS_VER(i915) == 3) { 166 init_unused_ring(gt, PRB1_BASE); 167 init_unused_ring(gt, PRB2_BASE); 168 } 169 } 170 171 int intel_gt_init_hw(struct intel_gt *gt) 172 { 173 struct drm_i915_private *i915 = gt->i915; 174 struct intel_uncore *uncore = gt->uncore; 175 int ret; 176 177 gt->last_init_time = ktime_get(); 178 179 /* Double layer security blanket, see i915_gem_init() */ 180 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); 181 182 if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9) 183 intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf)); 184 185 if (IS_HASWELL(i915)) 186 intel_uncore_write(uncore, 187 HSW_MI_PREDICATE_RESULT_2, 188 IS_HASWELL_GT3(i915) ? 189 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 190 191 /* Apply the GT workarounds... */ 192 intel_gt_apply_workarounds(gt); 193 /* ...and determine whether they are sticking. */ 194 intel_gt_verify_workarounds(gt, "init"); 195 196 intel_gt_init_swizzling(gt); 197 198 /* 199 * At least 830 can leave some of the unused rings 200 * "active" (ie. head != tail) after resume which 201 * will prevent c3 entry. Makes sure all unused rings 202 * are totally idle. 203 */ 204 init_unused_rings(gt); 205 206 ret = i915_ppgtt_init_hw(gt); 207 if (ret) { 208 gt_err(gt, "Enabling PPGTT failed (%d)\n", ret); 209 goto out; 210 } 211 212 /* We can't enable contexts until all firmware is loaded */ 213 ret = intel_uc_init_hw(>->uc); 214 if (ret) { 215 gt_probe_error(gt, "Enabling uc failed (%d)\n", ret); 216 goto out; 217 } 218 219 intel_mocs_init(gt); 220 221 out: 222 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); 223 return ret; 224 } 225 226 static void gen6_clear_engine_error_register(struct intel_engine_cs *engine) 227 { 228 GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0); 229 GEN6_RING_FAULT_REG_POSTING_READ(engine); 230 } 231 232 i915_reg_t intel_gt_perf_limit_reasons_reg(struct intel_gt *gt) 233 { 234 /* GT0_PERF_LIMIT_REASONS is available only for Gen11+ */ 235 if (GRAPHICS_VER(gt->i915) < 11) 236 return INVALID_MMIO_REG; 237 238 return gt->type == GT_MEDIA ? 239 MTL_MEDIA_PERF_LIMIT_REASONS : GT0_PERF_LIMIT_REASONS; 240 } 241 242 void 243 intel_gt_clear_error_registers(struct intel_gt *gt, 244 intel_engine_mask_t engine_mask) 245 { 246 struct drm_i915_private *i915 = gt->i915; 247 struct intel_uncore *uncore = gt->uncore; 248 u32 eir; 249 250 if (GRAPHICS_VER(i915) != 2) 251 intel_uncore_write(uncore, PGTBL_ER, 0); 252 253 if (GRAPHICS_VER(i915) < 4) 254 intel_uncore_write(uncore, IPEIR(RENDER_RING_BASE), 0); 255 else 256 intel_uncore_write(uncore, IPEIR_I965, 0); 257 258 intel_uncore_write(uncore, EIR, 0); 259 eir = intel_uncore_read(uncore, EIR); 260 if (eir) { 261 /* 262 * some errors might have become stuck, 263 * mask them. 264 */ 265 gt_dbg(gt, "EIR stuck: 0x%08x, masking\n", eir); 266 intel_uncore_rmw(uncore, EMR, 0, eir); 267 intel_uncore_write(uncore, GEN2_IIR, 268 I915_MASTER_ERROR_INTERRUPT); 269 } 270 271 /* 272 * For the media GT, this ring fault register is not replicated, 273 * so don't do multicast/replicated register read/write operation on it. 274 */ 275 if (MEDIA_VER(i915) >= 13 && gt->type == GT_MEDIA) { 276 intel_uncore_rmw(uncore, XELPMP_RING_FAULT_REG, 277 RING_FAULT_VALID, 0); 278 intel_uncore_posting_read(uncore, 279 XELPMP_RING_FAULT_REG); 280 281 } else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) { 282 intel_gt_mcr_multicast_rmw(gt, XEHP_RING_FAULT_REG, 283 RING_FAULT_VALID, 0); 284 intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG); 285 286 } else if (GRAPHICS_VER(i915) >= 12) { 287 intel_uncore_rmw(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID, 0); 288 intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG); 289 } else if (GRAPHICS_VER(i915) >= 8) { 290 intel_uncore_rmw(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID, 0); 291 intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG); 292 } else if (GRAPHICS_VER(i915) >= 6) { 293 struct intel_engine_cs *engine; 294 enum intel_engine_id id; 295 296 for_each_engine_masked(engine, gt, engine_mask, id) 297 gen6_clear_engine_error_register(engine); 298 } 299 } 300 301 static void gen6_check_faults(struct intel_gt *gt) 302 { 303 struct intel_engine_cs *engine; 304 enum intel_engine_id id; 305 u32 fault; 306 307 for_each_engine(engine, gt, id) { 308 fault = GEN6_RING_FAULT_REG_READ(engine); 309 if (fault & RING_FAULT_VALID) { 310 gt_dbg(gt, "Unexpected fault\n" 311 "\tAddr: 0x%08lx\n" 312 "\tAddress space: %s\n" 313 "\tSource ID: %d\n" 314 "\tType: %d\n", 315 fault & PAGE_MASK, 316 fault & RING_FAULT_GTTSEL_MASK ? 317 "GGTT" : "PPGTT", 318 RING_FAULT_SRCID(fault), 319 RING_FAULT_FAULT_TYPE(fault)); 320 } 321 } 322 } 323 324 static void xehp_check_faults(struct intel_gt *gt) 325 { 326 u32 fault; 327 328 /* 329 * Although the fault register now lives in an MCR register range, 330 * the GAM registers are special and we only truly need to read 331 * the "primary" GAM instance rather than handling each instance 332 * individually. intel_gt_mcr_read_any() will automatically steer 333 * toward the primary instance. 334 */ 335 fault = intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG); 336 if (fault & RING_FAULT_VALID) { 337 u32 fault_data0, fault_data1; 338 u64 fault_addr; 339 340 fault_data0 = intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA0); 341 fault_data1 = intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA1); 342 343 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) | 344 ((u64)fault_data0 << 12); 345 346 gt_dbg(gt, "Unexpected fault\n" 347 "\tAddr: 0x%08x_%08x\n" 348 "\tAddress space: %s\n" 349 "\tEngine ID: %d\n" 350 "\tSource ID: %d\n" 351 "\tType: %d\n", 352 upper_32_bits(fault_addr), lower_32_bits(fault_addr), 353 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT", 354 GEN8_RING_FAULT_ENGINE_ID(fault), 355 RING_FAULT_SRCID(fault), 356 RING_FAULT_FAULT_TYPE(fault)); 357 } 358 } 359 360 static void gen8_check_faults(struct intel_gt *gt) 361 { 362 struct intel_uncore *uncore = gt->uncore; 363 i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg; 364 u32 fault; 365 366 if (GRAPHICS_VER(gt->i915) >= 12) { 367 fault_reg = GEN12_RING_FAULT_REG; 368 fault_data0_reg = GEN12_FAULT_TLB_DATA0; 369 fault_data1_reg = GEN12_FAULT_TLB_DATA1; 370 } else { 371 fault_reg = GEN8_RING_FAULT_REG; 372 fault_data0_reg = GEN8_FAULT_TLB_DATA0; 373 fault_data1_reg = GEN8_FAULT_TLB_DATA1; 374 } 375 376 fault = intel_uncore_read(uncore, fault_reg); 377 if (fault & RING_FAULT_VALID) { 378 u32 fault_data0, fault_data1; 379 u64 fault_addr; 380 381 fault_data0 = intel_uncore_read(uncore, fault_data0_reg); 382 fault_data1 = intel_uncore_read(uncore, fault_data1_reg); 383 384 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) | 385 ((u64)fault_data0 << 12); 386 387 gt_dbg(gt, "Unexpected fault\n" 388 "\tAddr: 0x%08x_%08x\n" 389 "\tAddress space: %s\n" 390 "\tEngine ID: %d\n" 391 "\tSource ID: %d\n" 392 "\tType: %d\n", 393 upper_32_bits(fault_addr), lower_32_bits(fault_addr), 394 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT", 395 GEN8_RING_FAULT_ENGINE_ID(fault), 396 RING_FAULT_SRCID(fault), 397 RING_FAULT_FAULT_TYPE(fault)); 398 } 399 } 400 401 void intel_gt_check_and_clear_faults(struct intel_gt *gt) 402 { 403 struct drm_i915_private *i915 = gt->i915; 404 405 /* From GEN8 onwards we only have one 'All Engine Fault Register' */ 406 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) 407 xehp_check_faults(gt); 408 else if (GRAPHICS_VER(i915) >= 8) 409 gen8_check_faults(gt); 410 else if (GRAPHICS_VER(i915) >= 6) 411 gen6_check_faults(gt); 412 else 413 return; 414 415 intel_gt_clear_error_registers(gt, ALL_ENGINES); 416 } 417 418 void intel_gt_flush_ggtt_writes(struct intel_gt *gt) 419 { 420 struct intel_uncore *uncore = gt->uncore; 421 intel_wakeref_t wakeref; 422 423 /* 424 * No actual flushing is required for the GTT write domain for reads 425 * from the GTT domain. Writes to it "immediately" go to main memory 426 * as far as we know, so there's no chipset flush. It also doesn't 427 * land in the GPU render cache. 428 * 429 * However, we do have to enforce the order so that all writes through 430 * the GTT land before any writes to the device, such as updates to 431 * the GATT itself. 432 * 433 * We also have to wait a bit for the writes to land from the GTT. 434 * An uncached read (i.e. mmio) seems to be ideal for the round-trip 435 * timing. This issue has only been observed when switching quickly 436 * between GTT writes and CPU reads from inside the kernel on recent hw, 437 * and it appears to only affect discrete GTT blocks (i.e. on LLC 438 * system agents we cannot reproduce this behaviour, until Cannonlake 439 * that was!). 440 */ 441 442 wmb(); 443 444 if (INTEL_INFO(gt->i915)->has_coherent_ggtt) 445 return; 446 447 intel_gt_chipset_flush(gt); 448 449 with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) { 450 unsigned long flags; 451 452 spin_lock_irqsave(&uncore->lock, flags); 453 intel_uncore_posting_read_fw(uncore, 454 RING_HEAD(RENDER_RING_BASE)); 455 spin_unlock_irqrestore(&uncore->lock, flags); 456 } 457 } 458 459 void intel_gt_chipset_flush(struct intel_gt *gt) 460 { 461 wmb(); 462 if (GRAPHICS_VER(gt->i915) < 6) 463 intel_ggtt_gmch_flush(); 464 } 465 466 void intel_gt_driver_register(struct intel_gt *gt) 467 { 468 intel_gsc_init(>->gsc, gt->i915); 469 470 intel_rps_driver_register(>->rps); 471 472 intel_gt_debugfs_register(gt); 473 intel_gt_sysfs_register(gt); 474 } 475 476 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size) 477 { 478 struct drm_i915_private *i915 = gt->i915; 479 struct drm_i915_gem_object *obj; 480 struct i915_vma *vma; 481 int ret; 482 483 obj = i915_gem_object_create_lmem(i915, size, 484 I915_BO_ALLOC_VOLATILE | 485 I915_BO_ALLOC_GPU_ONLY); 486 if (IS_ERR(obj) && !IS_METEORLAKE(i915)) /* Wa_22018444074 */ 487 obj = i915_gem_object_create_stolen(i915, size); 488 if (IS_ERR(obj)) 489 obj = i915_gem_object_create_internal(i915, size); 490 if (IS_ERR(obj)) { 491 gt_err(gt, "Failed to allocate scratch page\n"); 492 return PTR_ERR(obj); 493 } 494 495 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 496 if (IS_ERR(vma)) { 497 ret = PTR_ERR(vma); 498 goto err_unref; 499 } 500 501 ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH); 502 if (ret) 503 goto err_unref; 504 505 gt->scratch = i915_vma_make_unshrinkable(vma); 506 507 return 0; 508 509 err_unref: 510 i915_gem_object_put(obj); 511 return ret; 512 } 513 514 static void intel_gt_fini_scratch(struct intel_gt *gt) 515 { 516 i915_vma_unpin_and_release(>->scratch, 0); 517 } 518 519 static struct i915_address_space *kernel_vm(struct intel_gt *gt) 520 { 521 if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING) 522 return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm; 523 else 524 return i915_vm_get(>->ggtt->vm); 525 } 526 527 static int __engines_record_defaults(struct intel_gt *gt) 528 { 529 struct i915_request *requests[I915_NUM_ENGINES] = {}; 530 struct intel_engine_cs *engine; 531 enum intel_engine_id id; 532 int err = 0; 533 534 /* 535 * As we reset the gpu during very early sanitisation, the current 536 * register state on the GPU should reflect its defaults values. 537 * We load a context onto the hw (with restore-inhibit), then switch 538 * over to a second context to save that default register state. We 539 * can then prime every new context with that state so they all start 540 * from the same default HW values. 541 */ 542 543 for_each_engine(engine, gt, id) { 544 struct intel_renderstate so; 545 struct intel_context *ce; 546 struct i915_request *rq; 547 548 /* We must be able to switch to something! */ 549 GEM_BUG_ON(!engine->kernel_context); 550 551 ce = intel_context_create(engine); 552 if (IS_ERR(ce)) { 553 err = PTR_ERR(ce); 554 goto out; 555 } 556 557 err = intel_renderstate_init(&so, ce); 558 if (err) 559 goto err; 560 561 rq = i915_request_create(ce); 562 if (IS_ERR(rq)) { 563 err = PTR_ERR(rq); 564 goto err_fini; 565 } 566 567 err = intel_engine_emit_ctx_wa(rq); 568 if (err) 569 goto err_rq; 570 571 err = intel_renderstate_emit(&so, rq); 572 if (err) 573 goto err_rq; 574 575 err_rq: 576 requests[id] = i915_request_get(rq); 577 i915_request_add(rq); 578 err_fini: 579 intel_renderstate_fini(&so, ce); 580 err: 581 if (err) { 582 intel_context_put(ce); 583 goto out; 584 } 585 } 586 587 /* Flush the default context image to memory, and enable powersaving. */ 588 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) { 589 err = -EIO; 590 goto out; 591 } 592 593 for (id = 0; id < ARRAY_SIZE(requests); id++) { 594 struct i915_request *rq; 595 struct file *state; 596 597 rq = requests[id]; 598 if (!rq) 599 continue; 600 601 if (rq->fence.error) { 602 err = -EIO; 603 goto out; 604 } 605 606 GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags)); 607 if (!rq->context->state) 608 continue; 609 610 /* Keep a copy of the state's backing pages; free the obj */ 611 state = shmem_create_from_object(rq->context->state->obj); 612 if (IS_ERR(state)) { 613 err = PTR_ERR(state); 614 goto out; 615 } 616 rq->engine->default_state = state; 617 } 618 619 out: 620 /* 621 * If we have to abandon now, we expect the engines to be idle 622 * and ready to be torn-down. The quickest way we can accomplish 623 * this is by declaring ourselves wedged. 624 */ 625 if (err) 626 intel_gt_set_wedged(gt); 627 628 for (id = 0; id < ARRAY_SIZE(requests); id++) { 629 struct intel_context *ce; 630 struct i915_request *rq; 631 632 rq = requests[id]; 633 if (!rq) 634 continue; 635 636 ce = rq->context; 637 i915_request_put(rq); 638 intel_context_put(ce); 639 } 640 return err; 641 } 642 643 static int __engines_verify_workarounds(struct intel_gt *gt) 644 { 645 struct intel_engine_cs *engine; 646 enum intel_engine_id id; 647 int err = 0; 648 649 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 650 return 0; 651 652 for_each_engine(engine, gt, id) { 653 if (intel_engine_verify_workarounds(engine, "load")) 654 err = -EIO; 655 } 656 657 /* Flush and restore the kernel context for safety */ 658 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) 659 err = -EIO; 660 661 return err; 662 } 663 664 static void __intel_gt_disable(struct intel_gt *gt) 665 { 666 intel_gt_set_wedged_on_fini(gt); 667 668 intel_gt_suspend_prepare(gt); 669 intel_gt_suspend_late(gt); 670 671 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 672 } 673 674 int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout) 675 { 676 long remaining_timeout; 677 678 /* If the device is asleep, we have no requests outstanding */ 679 if (!intel_gt_pm_is_awake(gt)) 680 return 0; 681 682 while ((timeout = intel_gt_retire_requests_timeout(gt, timeout, 683 &remaining_timeout)) > 0) { 684 cond_resched(); 685 if (signal_pending(current)) 686 return -EINTR; 687 } 688 689 if (timeout) 690 return timeout; 691 692 if (remaining_timeout < 0) 693 remaining_timeout = 0; 694 695 return intel_uc_wait_for_idle(>->uc, remaining_timeout); 696 } 697 698 int intel_gt_init(struct intel_gt *gt) 699 { 700 int err; 701 702 err = i915_inject_probe_error(gt->i915, -ENODEV); 703 if (err) 704 return err; 705 706 intel_gt_init_workarounds(gt); 707 708 /* 709 * This is just a security blanket to placate dragons. 710 * On some systems, we very sporadically observe that the first TLBs 711 * used by the CS may be stale, despite us poking the TLB reset. If 712 * we hold the forcewake during initialisation these problems 713 * just magically go away. 714 */ 715 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 716 717 err = intel_gt_init_scratch(gt, 718 GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K); 719 if (err) 720 goto out_fw; 721 722 intel_gt_pm_init(gt); 723 724 gt->vm = kernel_vm(gt); 725 if (!gt->vm) { 726 err = -ENOMEM; 727 goto err_pm; 728 } 729 730 intel_set_mocs_index(gt); 731 732 err = intel_engines_init(gt); 733 if (err) 734 goto err_engines; 735 736 err = intel_uc_init(>->uc); 737 if (err) 738 goto err_engines; 739 740 err = intel_gt_resume(gt); 741 if (err) 742 goto err_uc_init; 743 744 err = intel_gt_init_hwconfig(gt); 745 if (err) 746 gt_err(gt, "Failed to retrieve hwconfig table: %pe\n", ERR_PTR(err)); 747 748 err = __engines_record_defaults(gt); 749 if (err) 750 goto err_gt; 751 752 err = __engines_verify_workarounds(gt); 753 if (err) 754 goto err_gt; 755 756 err = i915_inject_probe_error(gt->i915, -EIO); 757 if (err) 758 goto err_gt; 759 760 intel_uc_init_late(>->uc); 761 762 intel_migrate_init(>->migrate, gt); 763 764 goto out_fw; 765 err_gt: 766 __intel_gt_disable(gt); 767 intel_uc_fini_hw(>->uc); 768 err_uc_init: 769 intel_uc_fini(>->uc); 770 err_engines: 771 intel_engines_release(gt); 772 i915_vm_put(fetch_and_zero(>->vm)); 773 err_pm: 774 intel_gt_pm_fini(gt); 775 intel_gt_fini_scratch(gt); 776 out_fw: 777 if (err) 778 intel_gt_set_wedged_on_init(gt); 779 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 780 return err; 781 } 782 783 void intel_gt_driver_remove(struct intel_gt *gt) 784 { 785 __intel_gt_disable(gt); 786 787 intel_migrate_fini(>->migrate); 788 intel_uc_driver_remove(>->uc); 789 790 intel_engines_release(gt); 791 792 intel_gt_flush_buffer_pool(gt); 793 } 794 795 void intel_gt_driver_unregister(struct intel_gt *gt) 796 { 797 intel_wakeref_t wakeref; 798 799 intel_gt_sysfs_unregister(gt); 800 intel_rps_driver_unregister(>->rps); 801 intel_gsc_fini(>->gsc); 802 803 /* 804 * If we unload the driver and wedge before the GSC worker is complete, 805 * the worker will hit an error on its submission to the GSC engine and 806 * then exit. This is hard to hit for a user, but it is reproducible 807 * with skipping selftests. The error is handled gracefully by the 808 * worker, so there are no functional issues, but we still end up with 809 * an error message in dmesg, which is something we want to avoid as 810 * this is a supported scenario. We could modify the worker to better 811 * handle a wedging occurring during its execution, but that gets 812 * complicated for a couple of reasons: 813 * - We do want the error on runtime wedging, because there are 814 * implications for subsystems outside of GT (i.e., PXP, HDCP), it's 815 * only the error on driver unload that we want to silence. 816 * - The worker is responsible for multiple submissions (GSC FW load, 817 * HuC auth, SW proxy), so all of those will have to be adapted to 818 * handle the wedged_on_fini scenario. 819 * Therefore, it's much simpler to just wait for the worker to be done 820 * before wedging on driver removal, also considering that the worker 821 * will likely already be idle in the great majority of non-selftest 822 * scenarios. 823 */ 824 intel_gsc_uc_flush_work(>->uc.gsc); 825 826 /* 827 * Upon unregistering the device to prevent any new users, cancel 828 * all in-flight requests so that we can quickly unbind the active 829 * resources. 830 */ 831 intel_gt_set_wedged_on_fini(gt); 832 833 /* Scrub all HW state upon release */ 834 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 835 __intel_gt_reset(gt, ALL_ENGINES); 836 } 837 838 void intel_gt_driver_release(struct intel_gt *gt) 839 { 840 struct i915_address_space *vm; 841 842 vm = fetch_and_zero(>->vm); 843 if (vm) /* FIXME being called twice on error paths :( */ 844 i915_vm_put(vm); 845 846 intel_wa_list_free(>->wa_list); 847 intel_gt_pm_fini(gt); 848 intel_gt_fini_scratch(gt); 849 intel_gt_fini_buffer_pool(gt); 850 intel_gt_fini_hwconfig(gt); 851 } 852 853 void intel_gt_driver_late_release_all(struct drm_i915_private *i915) 854 { 855 struct intel_gt *gt; 856 unsigned int id; 857 858 /* We need to wait for inflight RCU frees to release their grip */ 859 rcu_barrier(); 860 861 for_each_gt(gt, i915, id) { 862 intel_uc_driver_late_release(>->uc); 863 intel_gt_fini_requests(gt); 864 intel_gt_fini_reset(gt); 865 intel_gt_fini_timelines(gt); 866 intel_gt_fini_tlb(gt); 867 intel_engines_free(gt); 868 } 869 } 870 871 static int intel_gt_tile_setup(struct intel_gt *gt, phys_addr_t phys_addr) 872 { 873 int ret; 874 875 if (!gt_is_root(gt)) { 876 struct intel_uncore *uncore; 877 spinlock_t *irq_lock; 878 879 uncore = drmm_kzalloc(>->i915->drm, sizeof(*uncore), GFP_KERNEL); 880 if (!uncore) 881 return -ENOMEM; 882 883 irq_lock = drmm_kzalloc(>->i915->drm, sizeof(*irq_lock), GFP_KERNEL); 884 if (!irq_lock) 885 return -ENOMEM; 886 887 gt->uncore = uncore; 888 gt->irq_lock = irq_lock; 889 890 intel_gt_common_init_early(gt); 891 } 892 893 intel_uncore_init_early(gt->uncore, gt); 894 895 ret = intel_uncore_setup_mmio(gt->uncore, phys_addr); 896 if (ret) 897 return ret; 898 899 gt->phys_addr = phys_addr; 900 901 return 0; 902 } 903 904 int intel_gt_probe_all(struct drm_i915_private *i915) 905 { 906 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 907 struct intel_gt *gt = to_gt(i915); 908 const struct intel_gt_definition *gtdef; 909 phys_addr_t phys_addr; 910 unsigned int mmio_bar; 911 unsigned int i; 912 int ret; 913 914 mmio_bar = intel_mmio_bar(GRAPHICS_VER(i915)); 915 phys_addr = pci_resource_start(pdev, mmio_bar); 916 917 /* 918 * We always have at least one primary GT on any device 919 * and it has been already initialized early during probe 920 * in i915_driver_probe() 921 */ 922 gt->i915 = i915; 923 gt->name = "Primary GT"; 924 gt->info.engine_mask = INTEL_INFO(i915)->platform_engine_mask; 925 926 gt_dbg(gt, "Setting up %s\n", gt->name); 927 ret = intel_gt_tile_setup(gt, phys_addr); 928 if (ret) 929 return ret; 930 931 if (!HAS_EXTRA_GT_LIST(i915)) 932 return 0; 933 934 for (i = 1, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1]; 935 gtdef->name != NULL; 936 i++, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1]) { 937 gt = drmm_kzalloc(&i915->drm, sizeof(*gt), GFP_KERNEL); 938 if (!gt) { 939 ret = -ENOMEM; 940 goto err; 941 } 942 943 gt->i915 = i915; 944 gt->name = gtdef->name; 945 gt->type = gtdef->type; 946 gt->info.engine_mask = gtdef->engine_mask; 947 gt->info.id = i; 948 949 gt_dbg(gt, "Setting up %s\n", gt->name); 950 if (GEM_WARN_ON(range_overflows_t(resource_size_t, 951 gtdef->mapping_base, 952 SZ_16M, 953 pci_resource_len(pdev, mmio_bar)))) { 954 ret = -ENODEV; 955 goto err; 956 } 957 958 switch (gtdef->type) { 959 case GT_TILE: 960 ret = intel_gt_tile_setup(gt, phys_addr + gtdef->mapping_base); 961 break; 962 963 case GT_MEDIA: 964 ret = intel_sa_mediagt_setup(gt, phys_addr + gtdef->mapping_base, 965 gtdef->gsi_offset); 966 break; 967 968 case GT_PRIMARY: 969 /* Primary GT should not appear in extra GT list */ 970 default: 971 MISSING_CASE(gtdef->type); 972 ret = -ENODEV; 973 } 974 975 if (ret) 976 goto err; 977 978 i915->gt[i] = gt; 979 } 980 981 return 0; 982 983 err: 984 i915_probe_error(i915, "Failed to initialize %s! (%d)\n", gtdef->name, ret); 985 intel_gt_release_all(i915); 986 987 return ret; 988 } 989 990 int intel_gt_tiles_init(struct drm_i915_private *i915) 991 { 992 struct intel_gt *gt; 993 unsigned int id; 994 int ret; 995 996 for_each_gt(gt, i915, id) { 997 ret = intel_gt_probe_lmem(gt); 998 if (ret) 999 return ret; 1000 } 1001 1002 return 0; 1003 } 1004 1005 void intel_gt_release_all(struct drm_i915_private *i915) 1006 { 1007 struct intel_gt *gt; 1008 unsigned int id; 1009 1010 for_each_gt(gt, i915, id) 1011 i915->gt[id] = NULL; 1012 } 1013 1014 void intel_gt_info_print(const struct intel_gt_info *info, 1015 struct drm_printer *p) 1016 { 1017 drm_printf(p, "available engines: %x\n", info->engine_mask); 1018 1019 intel_sseu_dump(&info->sseu, p); 1020 } 1021 1022 enum i915_map_type intel_gt_coherent_map_type(struct intel_gt *gt, 1023 struct drm_i915_gem_object *obj, 1024 bool always_coherent) 1025 { 1026 /* 1027 * Wa_22016122933: always return I915_MAP_WC for Media 1028 * version 13.0 when the object is on the Media GT 1029 */ 1030 if (i915_gem_object_is_lmem(obj) || intel_gt_needs_wa_22016122933(gt)) 1031 return I915_MAP_WC; 1032 if (HAS_LLC(gt->i915) || always_coherent) 1033 return I915_MAP_WB; 1034 else 1035 return I915_MAP_WC; 1036 } 1037 1038 bool intel_gt_needs_wa_22016122933(struct intel_gt *gt) 1039 { 1040 return MEDIA_VER_FULL(gt->i915) == IP_VER(13, 0) && gt->type == GT_MEDIA; 1041 } 1042 1043 static void __intel_gt_bind_context_set_ready(struct intel_gt *gt, bool ready) 1044 { 1045 struct intel_engine_cs *engine = gt->engine[BCS0]; 1046 1047 if (engine && engine->bind_context) 1048 engine->bind_context_ready = ready; 1049 } 1050 1051 /** 1052 * intel_gt_bind_context_set_ready - Set the context binding as ready 1053 * 1054 * @gt: GT structure 1055 * 1056 * This function marks the binder context as ready. 1057 */ 1058 void intel_gt_bind_context_set_ready(struct intel_gt *gt) 1059 { 1060 __intel_gt_bind_context_set_ready(gt, true); 1061 } 1062 1063 /** 1064 * intel_gt_bind_context_set_unready - Set the context binding as ready 1065 * @gt: GT structure 1066 * 1067 * This function marks the binder context as not ready. 1068 */ 1069 1070 void intel_gt_bind_context_set_unready(struct intel_gt *gt) 1071 { 1072 __intel_gt_bind_context_set_ready(gt, false); 1073 } 1074 1075 /** 1076 * intel_gt_is_bind_context_ready - Check if context binding is ready 1077 * 1078 * @gt: GT structure 1079 * 1080 * This function returns binder context's ready status. 1081 */ 1082 bool intel_gt_is_bind_context_ready(struct intel_gt *gt) 1083 { 1084 struct intel_engine_cs *engine = gt->engine[BCS0]; 1085 1086 if (engine) 1087 return engine->bind_context_ready; 1088 1089 return false; 1090 } 1091