xref: /linux/drivers/gpu/drm/i915/gt/intel_gt.c (revision 336b78c655c84ce9ce47219185171b3912109c0a)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <drm/drm_managed.h>
7 #include <drm/intel-gtt.h>
8 
9 #include "gem/i915_gem_internal.h"
10 #include "gem/i915_gem_lmem.h"
11 
12 #include "i915_drv.h"
13 #include "i915_perf_oa_regs.h"
14 #include "i915_reg.h"
15 #include "intel_context.h"
16 #include "intel_engine_pm.h"
17 #include "intel_engine_regs.h"
18 #include "intel_ggtt_gmch.h"
19 #include "intel_gt.h"
20 #include "intel_gt_buffer_pool.h"
21 #include "intel_gt_clock_utils.h"
22 #include "intel_gt_debugfs.h"
23 #include "intel_gt_mcr.h"
24 #include "intel_gt_pm.h"
25 #include "intel_gt_print.h"
26 #include "intel_gt_regs.h"
27 #include "intel_gt_requests.h"
28 #include "intel_migrate.h"
29 #include "intel_mocs.h"
30 #include "intel_pci_config.h"
31 #include "intel_rc6.h"
32 #include "intel_renderstate.h"
33 #include "intel_rps.h"
34 #include "intel_sa_media.h"
35 #include "intel_gt_sysfs.h"
36 #include "intel_uncore.h"
37 #include "shmem_utils.h"
38 
39 void intel_gt_common_init_early(struct intel_gt *gt)
40 {
41 	spin_lock_init(gt->irq_lock);
42 
43 	INIT_LIST_HEAD(&gt->closed_vma);
44 	spin_lock_init(&gt->closed_lock);
45 
46 	init_llist_head(&gt->watchdog.list);
47 	INIT_WORK(&gt->watchdog.work, intel_gt_watchdog_work);
48 
49 	intel_gt_init_buffer_pool(gt);
50 	intel_gt_init_reset(gt);
51 	intel_gt_init_requests(gt);
52 	intel_gt_init_timelines(gt);
53 	mutex_init(&gt->tlb.invalidate_lock);
54 	seqcount_mutex_init(&gt->tlb.seqno, &gt->tlb.invalidate_lock);
55 	intel_gt_pm_init_early(gt);
56 
57 	intel_wopcm_init_early(&gt->wopcm);
58 	intel_uc_init_early(&gt->uc);
59 	intel_rps_init_early(&gt->rps);
60 }
61 
62 /* Preliminary initialization of Tile 0 */
63 int intel_root_gt_init_early(struct drm_i915_private *i915)
64 {
65 	struct intel_gt *gt = to_gt(i915);
66 
67 	gt->i915 = i915;
68 	gt->uncore = &i915->uncore;
69 	gt->irq_lock = drmm_kzalloc(&i915->drm, sizeof(*gt->irq_lock), GFP_KERNEL);
70 	if (!gt->irq_lock)
71 		return -ENOMEM;
72 
73 	intel_gt_common_init_early(gt);
74 
75 	return 0;
76 }
77 
78 static int intel_gt_probe_lmem(struct intel_gt *gt)
79 {
80 	struct drm_i915_private *i915 = gt->i915;
81 	unsigned int instance = gt->info.id;
82 	int id = INTEL_REGION_LMEM_0 + instance;
83 	struct intel_memory_region *mem;
84 	int err;
85 
86 	mem = intel_gt_setup_lmem(gt);
87 	if (IS_ERR(mem)) {
88 		err = PTR_ERR(mem);
89 		if (err == -ENODEV)
90 			return 0;
91 
92 		gt_err(gt, "Failed to setup region(%d) type=%d\n",
93 		       err, INTEL_MEMORY_LOCAL);
94 		return err;
95 	}
96 
97 	mem->id = id;
98 	mem->instance = instance;
99 
100 	intel_memory_region_set_name(mem, "local%u", mem->instance);
101 
102 	GEM_BUG_ON(!HAS_REGION(i915, id));
103 	GEM_BUG_ON(i915->mm.regions[id]);
104 	i915->mm.regions[id] = mem;
105 
106 	return 0;
107 }
108 
109 int intel_gt_assign_ggtt(struct intel_gt *gt)
110 {
111 	/* Media GT shares primary GT's GGTT */
112 	if (gt->type == GT_MEDIA) {
113 		gt->ggtt = to_gt(gt->i915)->ggtt;
114 	} else {
115 		gt->ggtt = i915_ggtt_create(gt->i915);
116 		if (IS_ERR(gt->ggtt))
117 			return PTR_ERR(gt->ggtt);
118 	}
119 
120 	list_add_tail(&gt->ggtt_link, &gt->ggtt->gt_list);
121 
122 	return 0;
123 }
124 
125 int intel_gt_init_mmio(struct intel_gt *gt)
126 {
127 	intel_gt_init_clock_frequency(gt);
128 
129 	intel_uc_init_mmio(&gt->uc);
130 	intel_sseu_info_init(gt);
131 	intel_gt_mcr_init(gt);
132 
133 	return intel_engines_init_mmio(gt);
134 }
135 
136 static void init_unused_ring(struct intel_gt *gt, u32 base)
137 {
138 	struct intel_uncore *uncore = gt->uncore;
139 
140 	intel_uncore_write(uncore, RING_CTL(base), 0);
141 	intel_uncore_write(uncore, RING_HEAD(base), 0);
142 	intel_uncore_write(uncore, RING_TAIL(base), 0);
143 	intel_uncore_write(uncore, RING_START(base), 0);
144 }
145 
146 static void init_unused_rings(struct intel_gt *gt)
147 {
148 	struct drm_i915_private *i915 = gt->i915;
149 
150 	if (IS_I830(i915)) {
151 		init_unused_ring(gt, PRB1_BASE);
152 		init_unused_ring(gt, SRB0_BASE);
153 		init_unused_ring(gt, SRB1_BASE);
154 		init_unused_ring(gt, SRB2_BASE);
155 		init_unused_ring(gt, SRB3_BASE);
156 	} else if (GRAPHICS_VER(i915) == 2) {
157 		init_unused_ring(gt, SRB0_BASE);
158 		init_unused_ring(gt, SRB1_BASE);
159 	} else if (GRAPHICS_VER(i915) == 3) {
160 		init_unused_ring(gt, PRB1_BASE);
161 		init_unused_ring(gt, PRB2_BASE);
162 	}
163 }
164 
165 int intel_gt_init_hw(struct intel_gt *gt)
166 {
167 	struct drm_i915_private *i915 = gt->i915;
168 	struct intel_uncore *uncore = gt->uncore;
169 	int ret;
170 
171 	gt->last_init_time = ktime_get();
172 
173 	/* Double layer security blanket, see i915_gem_init() */
174 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
175 
176 	if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9)
177 		intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
178 
179 	if (IS_HASWELL(i915))
180 		intel_uncore_write(uncore,
181 				   HSW_MI_PREDICATE_RESULT_2,
182 				   IS_HSW_GT3(i915) ?
183 				   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
184 
185 	/* Apply the GT workarounds... */
186 	intel_gt_apply_workarounds(gt);
187 	/* ...and determine whether they are sticking. */
188 	intel_gt_verify_workarounds(gt, "init");
189 
190 	intel_gt_init_swizzling(gt);
191 
192 	/*
193 	 * At least 830 can leave some of the unused rings
194 	 * "active" (ie. head != tail) after resume which
195 	 * will prevent c3 entry. Makes sure all unused rings
196 	 * are totally idle.
197 	 */
198 	init_unused_rings(gt);
199 
200 	ret = i915_ppgtt_init_hw(gt);
201 	if (ret) {
202 		gt_err(gt, "Enabling PPGTT failed (%d)\n", ret);
203 		goto out;
204 	}
205 
206 	/* We can't enable contexts until all firmware is loaded */
207 	ret = intel_uc_init_hw(&gt->uc);
208 	if (ret) {
209 		gt_probe_error(gt, "Enabling uc failed (%d)\n", ret);
210 		goto out;
211 	}
212 
213 	intel_mocs_init(gt);
214 
215 out:
216 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
217 	return ret;
218 }
219 
220 static void gen6_clear_engine_error_register(struct intel_engine_cs *engine)
221 {
222 	GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
223 	GEN6_RING_FAULT_REG_POSTING_READ(engine);
224 }
225 
226 i915_reg_t intel_gt_perf_limit_reasons_reg(struct intel_gt *gt)
227 {
228 	/* GT0_PERF_LIMIT_REASONS is available only for Gen11+ */
229 	if (GRAPHICS_VER(gt->i915) < 11)
230 		return INVALID_MMIO_REG;
231 
232 	return gt->type == GT_MEDIA ?
233 		MTL_MEDIA_PERF_LIMIT_REASONS : GT0_PERF_LIMIT_REASONS;
234 }
235 
236 void
237 intel_gt_clear_error_registers(struct intel_gt *gt,
238 			       intel_engine_mask_t engine_mask)
239 {
240 	struct drm_i915_private *i915 = gt->i915;
241 	struct intel_uncore *uncore = gt->uncore;
242 	u32 eir;
243 
244 	if (GRAPHICS_VER(i915) != 2)
245 		intel_uncore_write(uncore, PGTBL_ER, 0);
246 
247 	if (GRAPHICS_VER(i915) < 4)
248 		intel_uncore_write(uncore, IPEIR(RENDER_RING_BASE), 0);
249 	else
250 		intel_uncore_write(uncore, IPEIR_I965, 0);
251 
252 	intel_uncore_write(uncore, EIR, 0);
253 	eir = intel_uncore_read(uncore, EIR);
254 	if (eir) {
255 		/*
256 		 * some errors might have become stuck,
257 		 * mask them.
258 		 */
259 		gt_dbg(gt, "EIR stuck: 0x%08x, masking\n", eir);
260 		intel_uncore_rmw(uncore, EMR, 0, eir);
261 		intel_uncore_write(uncore, GEN2_IIR,
262 				   I915_MASTER_ERROR_INTERRUPT);
263 	}
264 
265 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
266 		intel_gt_mcr_multicast_rmw(gt, XEHP_RING_FAULT_REG,
267 					   RING_FAULT_VALID, 0);
268 		intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG);
269 	} else if (GRAPHICS_VER(i915) >= 12) {
270 		intel_uncore_rmw(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID, 0);
271 		intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
272 	} else if (GRAPHICS_VER(i915) >= 8) {
273 		intel_uncore_rmw(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID, 0);
274 		intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
275 	} else if (GRAPHICS_VER(i915) >= 6) {
276 		struct intel_engine_cs *engine;
277 		enum intel_engine_id id;
278 
279 		for_each_engine_masked(engine, gt, engine_mask, id)
280 			gen6_clear_engine_error_register(engine);
281 	}
282 }
283 
284 static void gen6_check_faults(struct intel_gt *gt)
285 {
286 	struct intel_engine_cs *engine;
287 	enum intel_engine_id id;
288 	u32 fault;
289 
290 	for_each_engine(engine, gt, id) {
291 		fault = GEN6_RING_FAULT_REG_READ(engine);
292 		if (fault & RING_FAULT_VALID) {
293 			gt_dbg(gt, "Unexpected fault\n"
294 			       "\tAddr: 0x%08lx\n"
295 			       "\tAddress space: %s\n"
296 			       "\tSource ID: %d\n"
297 			       "\tType: %d\n",
298 			       fault & PAGE_MASK,
299 			       fault & RING_FAULT_GTTSEL_MASK ?
300 			       "GGTT" : "PPGTT",
301 			       RING_FAULT_SRCID(fault),
302 			       RING_FAULT_FAULT_TYPE(fault));
303 		}
304 	}
305 }
306 
307 static void xehp_check_faults(struct intel_gt *gt)
308 {
309 	u32 fault;
310 
311 	/*
312 	 * Although the fault register now lives in an MCR register range,
313 	 * the GAM registers are special and we only truly need to read
314 	 * the "primary" GAM instance rather than handling each instance
315 	 * individually.  intel_gt_mcr_read_any() will automatically steer
316 	 * toward the primary instance.
317 	 */
318 	fault = intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG);
319 	if (fault & RING_FAULT_VALID) {
320 		u32 fault_data0, fault_data1;
321 		u64 fault_addr;
322 
323 		fault_data0 = intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA0);
324 		fault_data1 = intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA1);
325 
326 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
327 			     ((u64)fault_data0 << 12);
328 
329 		gt_dbg(gt, "Unexpected fault\n"
330 		       "\tAddr: 0x%08x_%08x\n"
331 		       "\tAddress space: %s\n"
332 		       "\tEngine ID: %d\n"
333 		       "\tSource ID: %d\n"
334 		       "\tType: %d\n",
335 		       upper_32_bits(fault_addr), lower_32_bits(fault_addr),
336 		       fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
337 		       GEN8_RING_FAULT_ENGINE_ID(fault),
338 		       RING_FAULT_SRCID(fault),
339 		       RING_FAULT_FAULT_TYPE(fault));
340 	}
341 }
342 
343 static void gen8_check_faults(struct intel_gt *gt)
344 {
345 	struct intel_uncore *uncore = gt->uncore;
346 	i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
347 	u32 fault;
348 
349 	if (GRAPHICS_VER(gt->i915) >= 12) {
350 		fault_reg = GEN12_RING_FAULT_REG;
351 		fault_data0_reg = GEN12_FAULT_TLB_DATA0;
352 		fault_data1_reg = GEN12_FAULT_TLB_DATA1;
353 	} else {
354 		fault_reg = GEN8_RING_FAULT_REG;
355 		fault_data0_reg = GEN8_FAULT_TLB_DATA0;
356 		fault_data1_reg = GEN8_FAULT_TLB_DATA1;
357 	}
358 
359 	fault = intel_uncore_read(uncore, fault_reg);
360 	if (fault & RING_FAULT_VALID) {
361 		u32 fault_data0, fault_data1;
362 		u64 fault_addr;
363 
364 		fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
365 		fault_data1 = intel_uncore_read(uncore, fault_data1_reg);
366 
367 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
368 			     ((u64)fault_data0 << 12);
369 
370 		gt_dbg(gt, "Unexpected fault\n"
371 		       "\tAddr: 0x%08x_%08x\n"
372 		       "\tAddress space: %s\n"
373 		       "\tEngine ID: %d\n"
374 		       "\tSource ID: %d\n"
375 		       "\tType: %d\n",
376 		       upper_32_bits(fault_addr), lower_32_bits(fault_addr),
377 		       fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
378 		       GEN8_RING_FAULT_ENGINE_ID(fault),
379 		       RING_FAULT_SRCID(fault),
380 		       RING_FAULT_FAULT_TYPE(fault));
381 	}
382 }
383 
384 void intel_gt_check_and_clear_faults(struct intel_gt *gt)
385 {
386 	struct drm_i915_private *i915 = gt->i915;
387 
388 	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
389 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
390 		xehp_check_faults(gt);
391 	else if (GRAPHICS_VER(i915) >= 8)
392 		gen8_check_faults(gt);
393 	else if (GRAPHICS_VER(i915) >= 6)
394 		gen6_check_faults(gt);
395 	else
396 		return;
397 
398 	intel_gt_clear_error_registers(gt, ALL_ENGINES);
399 }
400 
401 void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
402 {
403 	struct intel_uncore *uncore = gt->uncore;
404 	intel_wakeref_t wakeref;
405 
406 	/*
407 	 * No actual flushing is required for the GTT write domain for reads
408 	 * from the GTT domain. Writes to it "immediately" go to main memory
409 	 * as far as we know, so there's no chipset flush. It also doesn't
410 	 * land in the GPU render cache.
411 	 *
412 	 * However, we do have to enforce the order so that all writes through
413 	 * the GTT land before any writes to the device, such as updates to
414 	 * the GATT itself.
415 	 *
416 	 * We also have to wait a bit for the writes to land from the GTT.
417 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
418 	 * timing. This issue has only been observed when switching quickly
419 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
420 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
421 	 * system agents we cannot reproduce this behaviour, until Cannonlake
422 	 * that was!).
423 	 */
424 
425 	wmb();
426 
427 	if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
428 		return;
429 
430 	intel_gt_chipset_flush(gt);
431 
432 	with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
433 		unsigned long flags;
434 
435 		spin_lock_irqsave(&uncore->lock, flags);
436 		intel_uncore_posting_read_fw(uncore,
437 					     RING_HEAD(RENDER_RING_BASE));
438 		spin_unlock_irqrestore(&uncore->lock, flags);
439 	}
440 }
441 
442 void intel_gt_chipset_flush(struct intel_gt *gt)
443 {
444 	wmb();
445 	if (GRAPHICS_VER(gt->i915) < 6)
446 		intel_ggtt_gmch_flush();
447 }
448 
449 void intel_gt_driver_register(struct intel_gt *gt)
450 {
451 	intel_gsc_init(&gt->gsc, gt->i915);
452 
453 	intel_rps_driver_register(&gt->rps);
454 
455 	intel_gt_debugfs_register(gt);
456 	intel_gt_sysfs_register(gt);
457 }
458 
459 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
460 {
461 	struct drm_i915_private *i915 = gt->i915;
462 	struct drm_i915_gem_object *obj;
463 	struct i915_vma *vma;
464 	int ret;
465 
466 	obj = i915_gem_object_create_lmem(i915, size,
467 					  I915_BO_ALLOC_VOLATILE |
468 					  I915_BO_ALLOC_GPU_ONLY);
469 	if (IS_ERR(obj))
470 		obj = i915_gem_object_create_stolen(i915, size);
471 	if (IS_ERR(obj))
472 		obj = i915_gem_object_create_internal(i915, size);
473 	if (IS_ERR(obj)) {
474 		gt_err(gt, "Failed to allocate scratch page\n");
475 		return PTR_ERR(obj);
476 	}
477 
478 	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
479 	if (IS_ERR(vma)) {
480 		ret = PTR_ERR(vma);
481 		goto err_unref;
482 	}
483 
484 	ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
485 	if (ret)
486 		goto err_unref;
487 
488 	gt->scratch = i915_vma_make_unshrinkable(vma);
489 
490 	return 0;
491 
492 err_unref:
493 	i915_gem_object_put(obj);
494 	return ret;
495 }
496 
497 static void intel_gt_fini_scratch(struct intel_gt *gt)
498 {
499 	i915_vma_unpin_and_release(&gt->scratch, 0);
500 }
501 
502 static struct i915_address_space *kernel_vm(struct intel_gt *gt)
503 {
504 	if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
505 		return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm;
506 	else
507 		return i915_vm_get(&gt->ggtt->vm);
508 }
509 
510 static int __engines_record_defaults(struct intel_gt *gt)
511 {
512 	struct i915_request *requests[I915_NUM_ENGINES] = {};
513 	struct intel_engine_cs *engine;
514 	enum intel_engine_id id;
515 	int err = 0;
516 
517 	/*
518 	 * As we reset the gpu during very early sanitisation, the current
519 	 * register state on the GPU should reflect its defaults values.
520 	 * We load a context onto the hw (with restore-inhibit), then switch
521 	 * over to a second context to save that default register state. We
522 	 * can then prime every new context with that state so they all start
523 	 * from the same default HW values.
524 	 */
525 
526 	for_each_engine(engine, gt, id) {
527 		struct intel_renderstate so;
528 		struct intel_context *ce;
529 		struct i915_request *rq;
530 
531 		/* We must be able to switch to something! */
532 		GEM_BUG_ON(!engine->kernel_context);
533 
534 		ce = intel_context_create(engine);
535 		if (IS_ERR(ce)) {
536 			err = PTR_ERR(ce);
537 			goto out;
538 		}
539 
540 		err = intel_renderstate_init(&so, ce);
541 		if (err)
542 			goto err;
543 
544 		rq = i915_request_create(ce);
545 		if (IS_ERR(rq)) {
546 			err = PTR_ERR(rq);
547 			goto err_fini;
548 		}
549 
550 		err = intel_engine_emit_ctx_wa(rq);
551 		if (err)
552 			goto err_rq;
553 
554 		err = intel_renderstate_emit(&so, rq);
555 		if (err)
556 			goto err_rq;
557 
558 err_rq:
559 		requests[id] = i915_request_get(rq);
560 		i915_request_add(rq);
561 err_fini:
562 		intel_renderstate_fini(&so, ce);
563 err:
564 		if (err) {
565 			intel_context_put(ce);
566 			goto out;
567 		}
568 	}
569 
570 	/* Flush the default context image to memory, and enable powersaving. */
571 	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
572 		err = -EIO;
573 		goto out;
574 	}
575 
576 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
577 		struct i915_request *rq;
578 		struct file *state;
579 
580 		rq = requests[id];
581 		if (!rq)
582 			continue;
583 
584 		if (rq->fence.error) {
585 			err = -EIO;
586 			goto out;
587 		}
588 
589 		GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
590 		if (!rq->context->state)
591 			continue;
592 
593 		/* Keep a copy of the state's backing pages; free the obj */
594 		state = shmem_create_from_object(rq->context->state->obj);
595 		if (IS_ERR(state)) {
596 			err = PTR_ERR(state);
597 			goto out;
598 		}
599 		rq->engine->default_state = state;
600 	}
601 
602 out:
603 	/*
604 	 * If we have to abandon now, we expect the engines to be idle
605 	 * and ready to be torn-down. The quickest way we can accomplish
606 	 * this is by declaring ourselves wedged.
607 	 */
608 	if (err)
609 		intel_gt_set_wedged(gt);
610 
611 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
612 		struct intel_context *ce;
613 		struct i915_request *rq;
614 
615 		rq = requests[id];
616 		if (!rq)
617 			continue;
618 
619 		ce = rq->context;
620 		i915_request_put(rq);
621 		intel_context_put(ce);
622 	}
623 	return err;
624 }
625 
626 static int __engines_verify_workarounds(struct intel_gt *gt)
627 {
628 	struct intel_engine_cs *engine;
629 	enum intel_engine_id id;
630 	int err = 0;
631 
632 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
633 		return 0;
634 
635 	for_each_engine(engine, gt, id) {
636 		if (intel_engine_verify_workarounds(engine, "load"))
637 			err = -EIO;
638 	}
639 
640 	/* Flush and restore the kernel context for safety */
641 	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
642 		err = -EIO;
643 
644 	return err;
645 }
646 
647 static void __intel_gt_disable(struct intel_gt *gt)
648 {
649 	intel_gt_set_wedged_on_fini(gt);
650 
651 	intel_gt_suspend_prepare(gt);
652 	intel_gt_suspend_late(gt);
653 
654 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
655 }
656 
657 int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout)
658 {
659 	long remaining_timeout;
660 
661 	/* If the device is asleep, we have no requests outstanding */
662 	if (!intel_gt_pm_is_awake(gt))
663 		return 0;
664 
665 	while ((timeout = intel_gt_retire_requests_timeout(gt, timeout,
666 							   &remaining_timeout)) > 0) {
667 		cond_resched();
668 		if (signal_pending(current))
669 			return -EINTR;
670 	}
671 
672 	if (timeout)
673 		return timeout;
674 
675 	if (remaining_timeout < 0)
676 		remaining_timeout = 0;
677 
678 	return intel_uc_wait_for_idle(&gt->uc, remaining_timeout);
679 }
680 
681 int intel_gt_init(struct intel_gt *gt)
682 {
683 	int err;
684 
685 	err = i915_inject_probe_error(gt->i915, -ENODEV);
686 	if (err)
687 		return err;
688 
689 	intel_gt_init_workarounds(gt);
690 
691 	/*
692 	 * This is just a security blanket to placate dragons.
693 	 * On some systems, we very sporadically observe that the first TLBs
694 	 * used by the CS may be stale, despite us poking the TLB reset. If
695 	 * we hold the forcewake during initialisation these problems
696 	 * just magically go away.
697 	 */
698 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
699 
700 	err = intel_gt_init_scratch(gt,
701 				    GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K);
702 	if (err)
703 		goto out_fw;
704 
705 	intel_gt_pm_init(gt);
706 
707 	gt->vm = kernel_vm(gt);
708 	if (!gt->vm) {
709 		err = -ENOMEM;
710 		goto err_pm;
711 	}
712 
713 	intel_set_mocs_index(gt);
714 
715 	err = intel_engines_init(gt);
716 	if (err)
717 		goto err_engines;
718 
719 	err = intel_uc_init(&gt->uc);
720 	if (err)
721 		goto err_engines;
722 
723 	err = intel_gt_resume(gt);
724 	if (err)
725 		goto err_uc_init;
726 
727 	err = intel_gt_init_hwconfig(gt);
728 	if (err)
729 		gt_err(gt, "Failed to retrieve hwconfig table: %pe\n", ERR_PTR(err));
730 
731 	err = __engines_record_defaults(gt);
732 	if (err)
733 		goto err_gt;
734 
735 	err = __engines_verify_workarounds(gt);
736 	if (err)
737 		goto err_gt;
738 
739 	intel_uc_init_late(&gt->uc);
740 
741 	err = i915_inject_probe_error(gt->i915, -EIO);
742 	if (err)
743 		goto err_gt;
744 
745 	intel_migrate_init(&gt->migrate, gt);
746 
747 	goto out_fw;
748 err_gt:
749 	__intel_gt_disable(gt);
750 	intel_uc_fini_hw(&gt->uc);
751 err_uc_init:
752 	intel_uc_fini(&gt->uc);
753 err_engines:
754 	intel_engines_release(gt);
755 	i915_vm_put(fetch_and_zero(&gt->vm));
756 err_pm:
757 	intel_gt_pm_fini(gt);
758 	intel_gt_fini_scratch(gt);
759 out_fw:
760 	if (err)
761 		intel_gt_set_wedged_on_init(gt);
762 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
763 	return err;
764 }
765 
766 void intel_gt_driver_remove(struct intel_gt *gt)
767 {
768 	__intel_gt_disable(gt);
769 
770 	intel_migrate_fini(&gt->migrate);
771 	intel_uc_driver_remove(&gt->uc);
772 
773 	intel_engines_release(gt);
774 
775 	intel_gt_flush_buffer_pool(gt);
776 }
777 
778 void intel_gt_driver_unregister(struct intel_gt *gt)
779 {
780 	intel_wakeref_t wakeref;
781 
782 	intel_gt_sysfs_unregister(gt);
783 	intel_rps_driver_unregister(&gt->rps);
784 	intel_gsc_fini(&gt->gsc);
785 
786 	/*
787 	 * Upon unregistering the device to prevent any new users, cancel
788 	 * all in-flight requests so that we can quickly unbind the active
789 	 * resources.
790 	 */
791 	intel_gt_set_wedged_on_fini(gt);
792 
793 	/* Scrub all HW state upon release */
794 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
795 		__intel_gt_reset(gt, ALL_ENGINES);
796 }
797 
798 void intel_gt_driver_release(struct intel_gt *gt)
799 {
800 	struct i915_address_space *vm;
801 
802 	vm = fetch_and_zero(&gt->vm);
803 	if (vm) /* FIXME being called twice on error paths :( */
804 		i915_vm_put(vm);
805 
806 	intel_wa_list_free(&gt->wa_list);
807 	intel_gt_pm_fini(gt);
808 	intel_gt_fini_scratch(gt);
809 	intel_gt_fini_buffer_pool(gt);
810 	intel_gt_fini_hwconfig(gt);
811 }
812 
813 void intel_gt_driver_late_release_all(struct drm_i915_private *i915)
814 {
815 	struct intel_gt *gt;
816 	unsigned int id;
817 
818 	/* We need to wait for inflight RCU frees to release their grip */
819 	rcu_barrier();
820 
821 	for_each_gt(gt, i915, id) {
822 		intel_uc_driver_late_release(&gt->uc);
823 		intel_gt_fini_requests(gt);
824 		intel_gt_fini_reset(gt);
825 		intel_gt_fini_timelines(gt);
826 		mutex_destroy(&gt->tlb.invalidate_lock);
827 		intel_engines_free(gt);
828 	}
829 }
830 
831 static int intel_gt_tile_setup(struct intel_gt *gt, phys_addr_t phys_addr)
832 {
833 	int ret;
834 
835 	if (!gt_is_root(gt)) {
836 		struct intel_uncore *uncore;
837 		spinlock_t *irq_lock;
838 
839 		uncore = drmm_kzalloc(&gt->i915->drm, sizeof(*uncore), GFP_KERNEL);
840 		if (!uncore)
841 			return -ENOMEM;
842 
843 		irq_lock = drmm_kzalloc(&gt->i915->drm, sizeof(*irq_lock), GFP_KERNEL);
844 		if (!irq_lock)
845 			return -ENOMEM;
846 
847 		gt->uncore = uncore;
848 		gt->irq_lock = irq_lock;
849 
850 		intel_gt_common_init_early(gt);
851 	}
852 
853 	intel_uncore_init_early(gt->uncore, gt);
854 
855 	ret = intel_uncore_setup_mmio(gt->uncore, phys_addr);
856 	if (ret)
857 		return ret;
858 
859 	gt->phys_addr = phys_addr;
860 
861 	return 0;
862 }
863 
864 int intel_gt_probe_all(struct drm_i915_private *i915)
865 {
866 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
867 	struct intel_gt *gt = &i915->gt0;
868 	const struct intel_gt_definition *gtdef;
869 	phys_addr_t phys_addr;
870 	unsigned int mmio_bar;
871 	unsigned int i;
872 	int ret;
873 
874 	mmio_bar = intel_mmio_bar(GRAPHICS_VER(i915));
875 	phys_addr = pci_resource_start(pdev, mmio_bar);
876 
877 	/*
878 	 * We always have at least one primary GT on any device
879 	 * and it has been already initialized early during probe
880 	 * in i915_driver_probe()
881 	 */
882 	gt->i915 = i915;
883 	gt->name = "Primary GT";
884 	gt->info.engine_mask = RUNTIME_INFO(i915)->platform_engine_mask;
885 
886 	gt_dbg(gt, "Setting up %s\n", gt->name);
887 	ret = intel_gt_tile_setup(gt, phys_addr);
888 	if (ret)
889 		return ret;
890 
891 	i915->gt[0] = gt;
892 
893 	if (!HAS_EXTRA_GT_LIST(i915))
894 		return 0;
895 
896 	for (i = 1, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1];
897 	     gtdef->name != NULL;
898 	     i++, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1]) {
899 		gt = drmm_kzalloc(&i915->drm, sizeof(*gt), GFP_KERNEL);
900 		if (!gt) {
901 			ret = -ENOMEM;
902 			goto err;
903 		}
904 
905 		gt->i915 = i915;
906 		gt->name = gtdef->name;
907 		gt->type = gtdef->type;
908 		gt->info.engine_mask = gtdef->engine_mask;
909 		gt->info.id = i;
910 
911 		gt_dbg(gt, "Setting up %s\n", gt->name);
912 		if (GEM_WARN_ON(range_overflows_t(resource_size_t,
913 						  gtdef->mapping_base,
914 						  SZ_16M,
915 						  pci_resource_len(pdev, mmio_bar)))) {
916 			ret = -ENODEV;
917 			goto err;
918 		}
919 
920 		switch (gtdef->type) {
921 		case GT_TILE:
922 			ret = intel_gt_tile_setup(gt, phys_addr + gtdef->mapping_base);
923 			break;
924 
925 		case GT_MEDIA:
926 			ret = intel_sa_mediagt_setup(gt, phys_addr + gtdef->mapping_base,
927 						     gtdef->gsi_offset);
928 			break;
929 
930 		case GT_PRIMARY:
931 			/* Primary GT should not appear in extra GT list */
932 		default:
933 			MISSING_CASE(gtdef->type);
934 			ret = -ENODEV;
935 		}
936 
937 		if (ret)
938 			goto err;
939 
940 		i915->gt[i] = gt;
941 	}
942 
943 	return 0;
944 
945 err:
946 	i915_probe_error(i915, "Failed to initialize %s! (%d)\n", gtdef->name, ret);
947 	intel_gt_release_all(i915);
948 
949 	return ret;
950 }
951 
952 int intel_gt_tiles_init(struct drm_i915_private *i915)
953 {
954 	struct intel_gt *gt;
955 	unsigned int id;
956 	int ret;
957 
958 	for_each_gt(gt, i915, id) {
959 		ret = intel_gt_probe_lmem(gt);
960 		if (ret)
961 			return ret;
962 	}
963 
964 	return 0;
965 }
966 
967 void intel_gt_release_all(struct drm_i915_private *i915)
968 {
969 	struct intel_gt *gt;
970 	unsigned int id;
971 
972 	for_each_gt(gt, i915, id)
973 		i915->gt[id] = NULL;
974 }
975 
976 void intel_gt_info_print(const struct intel_gt_info *info,
977 			 struct drm_printer *p)
978 {
979 	drm_printf(p, "available engines: %x\n", info->engine_mask);
980 
981 	intel_sseu_dump(&info->sseu, p);
982 }
983 
984 struct reg_and_bit {
985 	union {
986 		i915_reg_t reg;
987 		i915_mcr_reg_t mcr_reg;
988 	};
989 	u32 bit;
990 };
991 
992 static struct reg_and_bit
993 get_reg_and_bit(const struct intel_engine_cs *engine, const bool gen8,
994 		const i915_reg_t *regs, const unsigned int num)
995 {
996 	const unsigned int class = engine->class;
997 	struct reg_and_bit rb = { };
998 
999 	if (gt_WARN_ON_ONCE(engine->gt, class >= num || !regs[class].reg))
1000 		return rb;
1001 
1002 	rb.reg = regs[class];
1003 	if (gen8 && class == VIDEO_DECODE_CLASS)
1004 		rb.reg.reg += 4 * engine->instance; /* GEN8_M2TCR */
1005 	else
1006 		rb.bit = engine->instance;
1007 
1008 	rb.bit = BIT(rb.bit);
1009 
1010 	return rb;
1011 }
1012 
1013 /*
1014  * HW architecture suggest typical invalidation time at 40us,
1015  * with pessimistic cases up to 100us and a recommendation to
1016  * cap at 1ms. We go a bit higher just in case.
1017  */
1018 #define TLB_INVAL_TIMEOUT_US 100
1019 #define TLB_INVAL_TIMEOUT_MS 4
1020 
1021 /*
1022  * On Xe_HP the TLB invalidation registers are located at the same MMIO offsets
1023  * but are now considered MCR registers.  Since they exist within a GAM range,
1024  * the primary instance of the register rolls up the status from each unit.
1025  */
1026 static int wait_for_invalidate(struct intel_gt *gt, struct reg_and_bit rb)
1027 {
1028 	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50))
1029 		return intel_gt_mcr_wait_for_reg(gt, rb.mcr_reg, rb.bit, 0,
1030 						 TLB_INVAL_TIMEOUT_US,
1031 						 TLB_INVAL_TIMEOUT_MS);
1032 	else
1033 		return __intel_wait_for_register_fw(gt->uncore, rb.reg, rb.bit, 0,
1034 						    TLB_INVAL_TIMEOUT_US,
1035 						    TLB_INVAL_TIMEOUT_MS,
1036 						    NULL);
1037 }
1038 
1039 static void mmio_invalidate_full(struct intel_gt *gt)
1040 {
1041 	static const i915_reg_t gen8_regs[] = {
1042 		[RENDER_CLASS]			= GEN8_RTCR,
1043 		[VIDEO_DECODE_CLASS]		= GEN8_M1TCR, /* , GEN8_M2TCR */
1044 		[VIDEO_ENHANCEMENT_CLASS]	= GEN8_VTCR,
1045 		[COPY_ENGINE_CLASS]		= GEN8_BTCR,
1046 	};
1047 	static const i915_reg_t gen12_regs[] = {
1048 		[RENDER_CLASS]			= GEN12_GFX_TLB_INV_CR,
1049 		[VIDEO_DECODE_CLASS]		= GEN12_VD_TLB_INV_CR,
1050 		[VIDEO_ENHANCEMENT_CLASS]	= GEN12_VE_TLB_INV_CR,
1051 		[COPY_ENGINE_CLASS]		= GEN12_BLT_TLB_INV_CR,
1052 		[COMPUTE_CLASS]			= GEN12_COMPCTX_TLB_INV_CR,
1053 	};
1054 	static const i915_mcr_reg_t xehp_regs[] = {
1055 		[RENDER_CLASS]			= XEHP_GFX_TLB_INV_CR,
1056 		[VIDEO_DECODE_CLASS]		= XEHP_VD_TLB_INV_CR,
1057 		[VIDEO_ENHANCEMENT_CLASS]	= XEHP_VE_TLB_INV_CR,
1058 		[COPY_ENGINE_CLASS]		= XEHP_BLT_TLB_INV_CR,
1059 		[COMPUTE_CLASS]			= XEHP_COMPCTX_TLB_INV_CR,
1060 	};
1061 	struct drm_i915_private *i915 = gt->i915;
1062 	struct intel_uncore *uncore = gt->uncore;
1063 	struct intel_engine_cs *engine;
1064 	intel_engine_mask_t awake, tmp;
1065 	enum intel_engine_id id;
1066 	const i915_reg_t *regs;
1067 	unsigned int num = 0;
1068 	unsigned long flags;
1069 
1070 	/*
1071 	 * New platforms should not be added with catch-all-newer (>=)
1072 	 * condition so that any later platform added triggers the below warning
1073 	 * and in turn mandates a human cross-check of whether the invalidation
1074 	 * flows have compatible semantics.
1075 	 *
1076 	 * For instance with the 11.00 -> 12.00 transition three out of five
1077 	 * respective engine registers were moved to masked type. Then after the
1078 	 * 12.00 -> 12.50 transition multi cast handling is required too.
1079 	 */
1080 
1081 	if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 50) ||
1082 	    GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) {
1083 		regs = NULL;
1084 		num = ARRAY_SIZE(xehp_regs);
1085 	} else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) ||
1086 		   GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) {
1087 		regs = gen12_regs;
1088 		num = ARRAY_SIZE(gen12_regs);
1089 	} else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
1090 		regs = gen8_regs;
1091 		num = ARRAY_SIZE(gen8_regs);
1092 	} else if (GRAPHICS_VER(i915) < 8) {
1093 		return;
1094 	}
1095 
1096 	if (gt_WARN_ONCE(gt, !num, "Platform does not implement TLB invalidation!"))
1097 		return;
1098 
1099 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1100 
1101 	intel_gt_mcr_lock(gt, &flags);
1102 	spin_lock(&uncore->lock); /* serialise invalidate with GT reset */
1103 
1104 	awake = 0;
1105 	for_each_engine(engine, gt, id) {
1106 		struct reg_and_bit rb;
1107 
1108 		if (!intel_engine_pm_is_awake(engine))
1109 			continue;
1110 
1111 		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
1112 			u32 val = BIT(engine->instance);
1113 
1114 			if (engine->class == VIDEO_DECODE_CLASS ||
1115 			    engine->class == VIDEO_ENHANCEMENT_CLASS ||
1116 			    engine->class == COMPUTE_CLASS)
1117 				val = _MASKED_BIT_ENABLE(val);
1118 			intel_gt_mcr_multicast_write_fw(gt,
1119 							xehp_regs[engine->class],
1120 							val);
1121 		} else {
1122 			rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num);
1123 			if (!i915_mmio_reg_offset(rb.reg))
1124 				continue;
1125 
1126 			if (GRAPHICS_VER(i915) == 12 && (engine->class == VIDEO_DECODE_CLASS ||
1127 			    engine->class == VIDEO_ENHANCEMENT_CLASS ||
1128 			    engine->class == COMPUTE_CLASS))
1129 				rb.bit = _MASKED_BIT_ENABLE(rb.bit);
1130 
1131 			intel_uncore_write_fw(uncore, rb.reg, rb.bit);
1132 		}
1133 		awake |= engine->mask;
1134 	}
1135 
1136 	GT_TRACE(gt, "invalidated engines %08x\n", awake);
1137 
1138 	/* Wa_2207587034:tgl,dg1,rkl,adl-s,adl-p */
1139 	if (awake &&
1140 	    (IS_TIGERLAKE(i915) ||
1141 	     IS_DG1(i915) ||
1142 	     IS_ROCKETLAKE(i915) ||
1143 	     IS_ALDERLAKE_S(i915) ||
1144 	     IS_ALDERLAKE_P(i915)))
1145 		intel_uncore_write_fw(uncore, GEN12_OA_TLB_INV_CR, 1);
1146 
1147 	spin_unlock(&uncore->lock);
1148 	intel_gt_mcr_unlock(gt, flags);
1149 
1150 	for_each_engine_masked(engine, gt, awake, tmp) {
1151 		struct reg_and_bit rb;
1152 
1153 		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
1154 			rb.mcr_reg = xehp_regs[engine->class];
1155 			rb.bit = BIT(engine->instance);
1156 		} else {
1157 			rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num);
1158 		}
1159 
1160 		if (wait_for_invalidate(gt, rb))
1161 			gt_err_ratelimited(gt, "%s TLB invalidation did not complete in %ums!\n",
1162 					   engine->name, TLB_INVAL_TIMEOUT_MS);
1163 	}
1164 
1165 	/*
1166 	 * Use delayed put since a) we mostly expect a flurry of TLB
1167 	 * invalidations so it is good to avoid paying the forcewake cost and
1168 	 * b) it works around a bug in Icelake which cannot cope with too rapid
1169 	 * transitions.
1170 	 */
1171 	intel_uncore_forcewake_put_delayed(uncore, FORCEWAKE_ALL);
1172 }
1173 
1174 static bool tlb_seqno_passed(const struct intel_gt *gt, u32 seqno)
1175 {
1176 	u32 cur = intel_gt_tlb_seqno(gt);
1177 
1178 	/* Only skip if a *full* TLB invalidate barrier has passed */
1179 	return (s32)(cur - ALIGN(seqno, 2)) > 0;
1180 }
1181 
1182 void intel_gt_invalidate_tlb(struct intel_gt *gt, u32 seqno)
1183 {
1184 	intel_wakeref_t wakeref;
1185 
1186 	if (I915_SELFTEST_ONLY(gt->awake == -ENODEV))
1187 		return;
1188 
1189 	if (intel_gt_is_wedged(gt))
1190 		return;
1191 
1192 	if (tlb_seqno_passed(gt, seqno))
1193 		return;
1194 
1195 	with_intel_gt_pm_if_awake(gt, wakeref) {
1196 		mutex_lock(&gt->tlb.invalidate_lock);
1197 		if (tlb_seqno_passed(gt, seqno))
1198 			goto unlock;
1199 
1200 		mmio_invalidate_full(gt);
1201 
1202 		write_seqcount_invalidate(&gt->tlb.seqno);
1203 unlock:
1204 		mutex_unlock(&gt->tlb.invalidate_lock);
1205 	}
1206 }
1207