xref: /linux/drivers/gpu/drm/i915/gt/intel_gt.c (revision 061834624c87282c6d9d8c5395aaff4380e5e1fc)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <drm/drm_managed.h>
7 #include <drm/intel-gtt.h>
8 
9 #include "gem/i915_gem_internal.h"
10 #include "gem/i915_gem_lmem.h"
11 #include "pxp/intel_pxp.h"
12 
13 #include "i915_drv.h"
14 #include "i915_perf_oa_regs.h"
15 #include "intel_context.h"
16 #include "intel_engine_pm.h"
17 #include "intel_engine_regs.h"
18 #include "intel_ggtt_gmch.h"
19 #include "intel_gt.h"
20 #include "intel_gt_buffer_pool.h"
21 #include "intel_gt_clock_utils.h"
22 #include "intel_gt_debugfs.h"
23 #include "intel_gt_mcr.h"
24 #include "intel_gt_pm.h"
25 #include "intel_gt_regs.h"
26 #include "intel_gt_requests.h"
27 #include "intel_migrate.h"
28 #include "intel_mocs.h"
29 #include "intel_pm.h"
30 #include "intel_rc6.h"
31 #include "intel_renderstate.h"
32 #include "intel_rps.h"
33 #include "intel_gt_sysfs.h"
34 #include "intel_uncore.h"
35 #include "shmem_utils.h"
36 
37 static void __intel_gt_init_early(struct intel_gt *gt)
38 {
39 	spin_lock_init(&gt->irq_lock);
40 
41 	INIT_LIST_HEAD(&gt->closed_vma);
42 	spin_lock_init(&gt->closed_lock);
43 
44 	init_llist_head(&gt->watchdog.list);
45 	INIT_WORK(&gt->watchdog.work, intel_gt_watchdog_work);
46 
47 	intel_gt_init_buffer_pool(gt);
48 	intel_gt_init_reset(gt);
49 	intel_gt_init_requests(gt);
50 	intel_gt_init_timelines(gt);
51 	mutex_init(&gt->tlb.invalidate_lock);
52 	seqcount_mutex_init(&gt->tlb.seqno, &gt->tlb.invalidate_lock);
53 	intel_gt_pm_init_early(gt);
54 
55 	intel_uc_init_early(&gt->uc);
56 	intel_rps_init_early(&gt->rps);
57 }
58 
59 /* Preliminary initialization of Tile 0 */
60 void intel_root_gt_init_early(struct drm_i915_private *i915)
61 {
62 	struct intel_gt *gt = to_gt(i915);
63 
64 	gt->i915 = i915;
65 	gt->uncore = &i915->uncore;
66 
67 	__intel_gt_init_early(gt);
68 }
69 
70 static int intel_gt_probe_lmem(struct intel_gt *gt)
71 {
72 	struct drm_i915_private *i915 = gt->i915;
73 	unsigned int instance = gt->info.id;
74 	int id = INTEL_REGION_LMEM_0 + instance;
75 	struct intel_memory_region *mem;
76 	int err;
77 
78 	mem = intel_gt_setup_lmem(gt);
79 	if (IS_ERR(mem)) {
80 		err = PTR_ERR(mem);
81 		if (err == -ENODEV)
82 			return 0;
83 
84 		drm_err(&i915->drm,
85 			"Failed to setup region(%d) type=%d\n",
86 			err, INTEL_MEMORY_LOCAL);
87 		return err;
88 	}
89 
90 	mem->id = id;
91 	mem->instance = instance;
92 
93 	intel_memory_region_set_name(mem, "local%u", mem->instance);
94 
95 	GEM_BUG_ON(!HAS_REGION(i915, id));
96 	GEM_BUG_ON(i915->mm.regions[id]);
97 	i915->mm.regions[id] = mem;
98 
99 	return 0;
100 }
101 
102 int intel_gt_assign_ggtt(struct intel_gt *gt)
103 {
104 	gt->ggtt = drmm_kzalloc(&gt->i915->drm, sizeof(*gt->ggtt), GFP_KERNEL);
105 
106 	return gt->ggtt ? 0 : -ENOMEM;
107 }
108 
109 int intel_gt_init_mmio(struct intel_gt *gt)
110 {
111 	intel_gt_init_clock_frequency(gt);
112 
113 	intel_uc_init_mmio(&gt->uc);
114 	intel_sseu_info_init(gt);
115 	intel_gt_mcr_init(gt);
116 
117 	return intel_engines_init_mmio(gt);
118 }
119 
120 static void init_unused_ring(struct intel_gt *gt, u32 base)
121 {
122 	struct intel_uncore *uncore = gt->uncore;
123 
124 	intel_uncore_write(uncore, RING_CTL(base), 0);
125 	intel_uncore_write(uncore, RING_HEAD(base), 0);
126 	intel_uncore_write(uncore, RING_TAIL(base), 0);
127 	intel_uncore_write(uncore, RING_START(base), 0);
128 }
129 
130 static void init_unused_rings(struct intel_gt *gt)
131 {
132 	struct drm_i915_private *i915 = gt->i915;
133 
134 	if (IS_I830(i915)) {
135 		init_unused_ring(gt, PRB1_BASE);
136 		init_unused_ring(gt, SRB0_BASE);
137 		init_unused_ring(gt, SRB1_BASE);
138 		init_unused_ring(gt, SRB2_BASE);
139 		init_unused_ring(gt, SRB3_BASE);
140 	} else if (GRAPHICS_VER(i915) == 2) {
141 		init_unused_ring(gt, SRB0_BASE);
142 		init_unused_ring(gt, SRB1_BASE);
143 	} else if (GRAPHICS_VER(i915) == 3) {
144 		init_unused_ring(gt, PRB1_BASE);
145 		init_unused_ring(gt, PRB2_BASE);
146 	}
147 }
148 
149 int intel_gt_init_hw(struct intel_gt *gt)
150 {
151 	struct drm_i915_private *i915 = gt->i915;
152 	struct intel_uncore *uncore = gt->uncore;
153 	int ret;
154 
155 	gt->last_init_time = ktime_get();
156 
157 	/* Double layer security blanket, see i915_gem_init() */
158 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
159 
160 	if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9)
161 		intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
162 
163 	if (IS_HASWELL(i915))
164 		intel_uncore_write(uncore,
165 				   HSW_MI_PREDICATE_RESULT_2,
166 				   IS_HSW_GT3(i915) ?
167 				   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
168 
169 	/* Apply the GT workarounds... */
170 	intel_gt_apply_workarounds(gt);
171 	/* ...and determine whether they are sticking. */
172 	intel_gt_verify_workarounds(gt, "init");
173 
174 	intel_gt_init_swizzling(gt);
175 
176 	/*
177 	 * At least 830 can leave some of the unused rings
178 	 * "active" (ie. head != tail) after resume which
179 	 * will prevent c3 entry. Makes sure all unused rings
180 	 * are totally idle.
181 	 */
182 	init_unused_rings(gt);
183 
184 	ret = i915_ppgtt_init_hw(gt);
185 	if (ret) {
186 		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
187 		goto out;
188 	}
189 
190 	/* We can't enable contexts until all firmware is loaded */
191 	ret = intel_uc_init_hw(&gt->uc);
192 	if (ret) {
193 		i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
194 		goto out;
195 	}
196 
197 	intel_mocs_init(gt);
198 
199 out:
200 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
201 	return ret;
202 }
203 
204 static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
205 {
206 	intel_uncore_rmw(uncore, reg, 0, set);
207 }
208 
209 static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
210 {
211 	intel_uncore_rmw(uncore, reg, clr, 0);
212 }
213 
214 static void clear_register(struct intel_uncore *uncore, i915_reg_t reg)
215 {
216 	intel_uncore_rmw(uncore, reg, 0, 0);
217 }
218 
219 static void gen6_clear_engine_error_register(struct intel_engine_cs *engine)
220 {
221 	GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
222 	GEN6_RING_FAULT_REG_POSTING_READ(engine);
223 }
224 
225 void
226 intel_gt_clear_error_registers(struct intel_gt *gt,
227 			       intel_engine_mask_t engine_mask)
228 {
229 	struct drm_i915_private *i915 = gt->i915;
230 	struct intel_uncore *uncore = gt->uncore;
231 	u32 eir;
232 
233 	if (GRAPHICS_VER(i915) != 2)
234 		clear_register(uncore, PGTBL_ER);
235 
236 	if (GRAPHICS_VER(i915) < 4)
237 		clear_register(uncore, IPEIR(RENDER_RING_BASE));
238 	else
239 		clear_register(uncore, IPEIR_I965);
240 
241 	clear_register(uncore, EIR);
242 	eir = intel_uncore_read(uncore, EIR);
243 	if (eir) {
244 		/*
245 		 * some errors might have become stuck,
246 		 * mask them.
247 		 */
248 		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
249 		rmw_set(uncore, EMR, eir);
250 		intel_uncore_write(uncore, GEN2_IIR,
251 				   I915_MASTER_ERROR_INTERRUPT);
252 	}
253 
254 	if (GRAPHICS_VER(i915) >= 12) {
255 		rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID);
256 		intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
257 	} else if (GRAPHICS_VER(i915) >= 8) {
258 		rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID);
259 		intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
260 	} else if (GRAPHICS_VER(i915) >= 6) {
261 		struct intel_engine_cs *engine;
262 		enum intel_engine_id id;
263 
264 		for_each_engine_masked(engine, gt, engine_mask, id)
265 			gen6_clear_engine_error_register(engine);
266 	}
267 }
268 
269 static void gen6_check_faults(struct intel_gt *gt)
270 {
271 	struct intel_engine_cs *engine;
272 	enum intel_engine_id id;
273 	u32 fault;
274 
275 	for_each_engine(engine, gt, id) {
276 		fault = GEN6_RING_FAULT_REG_READ(engine);
277 		if (fault & RING_FAULT_VALID) {
278 			drm_dbg(&engine->i915->drm, "Unexpected fault\n"
279 				"\tAddr: 0x%08lx\n"
280 				"\tAddress space: %s\n"
281 				"\tSource ID: %d\n"
282 				"\tType: %d\n",
283 				fault & PAGE_MASK,
284 				fault & RING_FAULT_GTTSEL_MASK ?
285 				"GGTT" : "PPGTT",
286 				RING_FAULT_SRCID(fault),
287 				RING_FAULT_FAULT_TYPE(fault));
288 		}
289 	}
290 }
291 
292 static void gen8_check_faults(struct intel_gt *gt)
293 {
294 	struct intel_uncore *uncore = gt->uncore;
295 	i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
296 	u32 fault;
297 
298 	if (GRAPHICS_VER(gt->i915) >= 12) {
299 		fault_reg = GEN12_RING_FAULT_REG;
300 		fault_data0_reg = GEN12_FAULT_TLB_DATA0;
301 		fault_data1_reg = GEN12_FAULT_TLB_DATA1;
302 	} else {
303 		fault_reg = GEN8_RING_FAULT_REG;
304 		fault_data0_reg = GEN8_FAULT_TLB_DATA0;
305 		fault_data1_reg = GEN8_FAULT_TLB_DATA1;
306 	}
307 
308 	fault = intel_uncore_read(uncore, fault_reg);
309 	if (fault & RING_FAULT_VALID) {
310 		u32 fault_data0, fault_data1;
311 		u64 fault_addr;
312 
313 		fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
314 		fault_data1 = intel_uncore_read(uncore, fault_data1_reg);
315 
316 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
317 			     ((u64)fault_data0 << 12);
318 
319 		drm_dbg(&uncore->i915->drm, "Unexpected fault\n"
320 			"\tAddr: 0x%08x_%08x\n"
321 			"\tAddress space: %s\n"
322 			"\tEngine ID: %d\n"
323 			"\tSource ID: %d\n"
324 			"\tType: %d\n",
325 			upper_32_bits(fault_addr), lower_32_bits(fault_addr),
326 			fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
327 			GEN8_RING_FAULT_ENGINE_ID(fault),
328 			RING_FAULT_SRCID(fault),
329 			RING_FAULT_FAULT_TYPE(fault));
330 	}
331 }
332 
333 void intel_gt_check_and_clear_faults(struct intel_gt *gt)
334 {
335 	struct drm_i915_private *i915 = gt->i915;
336 
337 	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
338 	if (GRAPHICS_VER(i915) >= 8)
339 		gen8_check_faults(gt);
340 	else if (GRAPHICS_VER(i915) >= 6)
341 		gen6_check_faults(gt);
342 	else
343 		return;
344 
345 	intel_gt_clear_error_registers(gt, ALL_ENGINES);
346 }
347 
348 void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
349 {
350 	struct intel_uncore *uncore = gt->uncore;
351 	intel_wakeref_t wakeref;
352 
353 	/*
354 	 * No actual flushing is required for the GTT write domain for reads
355 	 * from the GTT domain. Writes to it "immediately" go to main memory
356 	 * as far as we know, so there's no chipset flush. It also doesn't
357 	 * land in the GPU render cache.
358 	 *
359 	 * However, we do have to enforce the order so that all writes through
360 	 * the GTT land before any writes to the device, such as updates to
361 	 * the GATT itself.
362 	 *
363 	 * We also have to wait a bit for the writes to land from the GTT.
364 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
365 	 * timing. This issue has only been observed when switching quickly
366 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
367 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
368 	 * system agents we cannot reproduce this behaviour, until Cannonlake
369 	 * that was!).
370 	 */
371 
372 	wmb();
373 
374 	if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
375 		return;
376 
377 	intel_gt_chipset_flush(gt);
378 
379 	with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
380 		unsigned long flags;
381 
382 		spin_lock_irqsave(&uncore->lock, flags);
383 		intel_uncore_posting_read_fw(uncore,
384 					     RING_HEAD(RENDER_RING_BASE));
385 		spin_unlock_irqrestore(&uncore->lock, flags);
386 	}
387 }
388 
389 void intel_gt_chipset_flush(struct intel_gt *gt)
390 {
391 	wmb();
392 	if (GRAPHICS_VER(gt->i915) < 6)
393 		intel_ggtt_gmch_flush();
394 }
395 
396 void intel_gt_driver_register(struct intel_gt *gt)
397 {
398 	intel_gsc_init(&gt->gsc, gt->i915);
399 
400 	intel_rps_driver_register(&gt->rps);
401 
402 	intel_gt_debugfs_register(gt);
403 	intel_gt_sysfs_register(gt);
404 }
405 
406 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
407 {
408 	struct drm_i915_private *i915 = gt->i915;
409 	struct drm_i915_gem_object *obj;
410 	struct i915_vma *vma;
411 	int ret;
412 
413 	obj = i915_gem_object_create_lmem(i915, size,
414 					  I915_BO_ALLOC_VOLATILE |
415 					  I915_BO_ALLOC_GPU_ONLY);
416 	if (IS_ERR(obj))
417 		obj = i915_gem_object_create_stolen(i915, size);
418 	if (IS_ERR(obj))
419 		obj = i915_gem_object_create_internal(i915, size);
420 	if (IS_ERR(obj)) {
421 		drm_err(&i915->drm, "Failed to allocate scratch page\n");
422 		return PTR_ERR(obj);
423 	}
424 
425 	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
426 	if (IS_ERR(vma)) {
427 		ret = PTR_ERR(vma);
428 		goto err_unref;
429 	}
430 
431 	ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
432 	if (ret)
433 		goto err_unref;
434 
435 	gt->scratch = i915_vma_make_unshrinkable(vma);
436 
437 	return 0;
438 
439 err_unref:
440 	i915_gem_object_put(obj);
441 	return ret;
442 }
443 
444 static void intel_gt_fini_scratch(struct intel_gt *gt)
445 {
446 	i915_vma_unpin_and_release(&gt->scratch, 0);
447 }
448 
449 static struct i915_address_space *kernel_vm(struct intel_gt *gt)
450 {
451 	if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
452 		return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm;
453 	else
454 		return i915_vm_get(&gt->ggtt->vm);
455 }
456 
457 static int __engines_record_defaults(struct intel_gt *gt)
458 {
459 	struct i915_request *requests[I915_NUM_ENGINES] = {};
460 	struct intel_engine_cs *engine;
461 	enum intel_engine_id id;
462 	int err = 0;
463 
464 	/*
465 	 * As we reset the gpu during very early sanitisation, the current
466 	 * register state on the GPU should reflect its defaults values.
467 	 * We load a context onto the hw (with restore-inhibit), then switch
468 	 * over to a second context to save that default register state. We
469 	 * can then prime every new context with that state so they all start
470 	 * from the same default HW values.
471 	 */
472 
473 	for_each_engine(engine, gt, id) {
474 		struct intel_renderstate so;
475 		struct intel_context *ce;
476 		struct i915_request *rq;
477 
478 		/* We must be able to switch to something! */
479 		GEM_BUG_ON(!engine->kernel_context);
480 
481 		ce = intel_context_create(engine);
482 		if (IS_ERR(ce)) {
483 			err = PTR_ERR(ce);
484 			goto out;
485 		}
486 
487 		err = intel_renderstate_init(&so, ce);
488 		if (err)
489 			goto err;
490 
491 		rq = i915_request_create(ce);
492 		if (IS_ERR(rq)) {
493 			err = PTR_ERR(rq);
494 			goto err_fini;
495 		}
496 
497 		err = intel_engine_emit_ctx_wa(rq);
498 		if (err)
499 			goto err_rq;
500 
501 		err = intel_renderstate_emit(&so, rq);
502 		if (err)
503 			goto err_rq;
504 
505 err_rq:
506 		requests[id] = i915_request_get(rq);
507 		i915_request_add(rq);
508 err_fini:
509 		intel_renderstate_fini(&so, ce);
510 err:
511 		if (err) {
512 			intel_context_put(ce);
513 			goto out;
514 		}
515 	}
516 
517 	/* Flush the default context image to memory, and enable powersaving. */
518 	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
519 		err = -EIO;
520 		goto out;
521 	}
522 
523 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
524 		struct i915_request *rq;
525 		struct file *state;
526 
527 		rq = requests[id];
528 		if (!rq)
529 			continue;
530 
531 		if (rq->fence.error) {
532 			err = -EIO;
533 			goto out;
534 		}
535 
536 		GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
537 		if (!rq->context->state)
538 			continue;
539 
540 		/* Keep a copy of the state's backing pages; free the obj */
541 		state = shmem_create_from_object(rq->context->state->obj);
542 		if (IS_ERR(state)) {
543 			err = PTR_ERR(state);
544 			goto out;
545 		}
546 		rq->engine->default_state = state;
547 	}
548 
549 out:
550 	/*
551 	 * If we have to abandon now, we expect the engines to be idle
552 	 * and ready to be torn-down. The quickest way we can accomplish
553 	 * this is by declaring ourselves wedged.
554 	 */
555 	if (err)
556 		intel_gt_set_wedged(gt);
557 
558 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
559 		struct intel_context *ce;
560 		struct i915_request *rq;
561 
562 		rq = requests[id];
563 		if (!rq)
564 			continue;
565 
566 		ce = rq->context;
567 		i915_request_put(rq);
568 		intel_context_put(ce);
569 	}
570 	return err;
571 }
572 
573 static int __engines_verify_workarounds(struct intel_gt *gt)
574 {
575 	struct intel_engine_cs *engine;
576 	enum intel_engine_id id;
577 	int err = 0;
578 
579 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
580 		return 0;
581 
582 	for_each_engine(engine, gt, id) {
583 		if (intel_engine_verify_workarounds(engine, "load"))
584 			err = -EIO;
585 	}
586 
587 	/* Flush and restore the kernel context for safety */
588 	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
589 		err = -EIO;
590 
591 	return err;
592 }
593 
594 static void __intel_gt_disable(struct intel_gt *gt)
595 {
596 	intel_gt_set_wedged_on_fini(gt);
597 
598 	intel_gt_suspend_prepare(gt);
599 	intel_gt_suspend_late(gt);
600 
601 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
602 }
603 
604 int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout)
605 {
606 	long remaining_timeout;
607 
608 	/* If the device is asleep, we have no requests outstanding */
609 	if (!intel_gt_pm_is_awake(gt))
610 		return 0;
611 
612 	while ((timeout = intel_gt_retire_requests_timeout(gt, timeout,
613 							   &remaining_timeout)) > 0) {
614 		cond_resched();
615 		if (signal_pending(current))
616 			return -EINTR;
617 	}
618 
619 	return timeout ? timeout : intel_uc_wait_for_idle(&gt->uc,
620 							  remaining_timeout);
621 }
622 
623 int intel_gt_init(struct intel_gt *gt)
624 {
625 	int err;
626 
627 	err = i915_inject_probe_error(gt->i915, -ENODEV);
628 	if (err)
629 		return err;
630 
631 	intel_gt_init_workarounds(gt);
632 
633 	/*
634 	 * This is just a security blanket to placate dragons.
635 	 * On some systems, we very sporadically observe that the first TLBs
636 	 * used by the CS may be stale, despite us poking the TLB reset. If
637 	 * we hold the forcewake during initialisation these problems
638 	 * just magically go away.
639 	 */
640 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
641 
642 	err = intel_gt_init_scratch(gt,
643 				    GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K);
644 	if (err)
645 		goto out_fw;
646 
647 	intel_gt_pm_init(gt);
648 
649 	gt->vm = kernel_vm(gt);
650 	if (!gt->vm) {
651 		err = -ENOMEM;
652 		goto err_pm;
653 	}
654 
655 	intel_set_mocs_index(gt);
656 
657 	err = intel_engines_init(gt);
658 	if (err)
659 		goto err_engines;
660 
661 	err = intel_uc_init(&gt->uc);
662 	if (err)
663 		goto err_engines;
664 
665 	err = intel_gt_resume(gt);
666 	if (err)
667 		goto err_uc_init;
668 
669 	err = intel_gt_init_hwconfig(gt);
670 	if (err)
671 		drm_err(&gt->i915->drm, "Failed to retrieve hwconfig table: %pe\n",
672 			ERR_PTR(err));
673 
674 	err = __engines_record_defaults(gt);
675 	if (err)
676 		goto err_gt;
677 
678 	err = __engines_verify_workarounds(gt);
679 	if (err)
680 		goto err_gt;
681 
682 	intel_uc_init_late(&gt->uc);
683 
684 	err = i915_inject_probe_error(gt->i915, -EIO);
685 	if (err)
686 		goto err_gt;
687 
688 	intel_migrate_init(&gt->migrate, gt);
689 
690 	intel_pxp_init(&gt->pxp);
691 
692 	goto out_fw;
693 err_gt:
694 	__intel_gt_disable(gt);
695 	intel_uc_fini_hw(&gt->uc);
696 err_uc_init:
697 	intel_uc_fini(&gt->uc);
698 err_engines:
699 	intel_engines_release(gt);
700 	i915_vm_put(fetch_and_zero(&gt->vm));
701 err_pm:
702 	intel_gt_pm_fini(gt);
703 	intel_gt_fini_scratch(gt);
704 out_fw:
705 	if (err)
706 		intel_gt_set_wedged_on_init(gt);
707 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
708 	return err;
709 }
710 
711 void intel_gt_driver_remove(struct intel_gt *gt)
712 {
713 	__intel_gt_disable(gt);
714 
715 	intel_migrate_fini(&gt->migrate);
716 	intel_uc_driver_remove(&gt->uc);
717 
718 	intel_engines_release(gt);
719 
720 	intel_gt_flush_buffer_pool(gt);
721 }
722 
723 void intel_gt_driver_unregister(struct intel_gt *gt)
724 {
725 	intel_wakeref_t wakeref;
726 
727 	intel_gt_sysfs_unregister(gt);
728 	intel_rps_driver_unregister(&gt->rps);
729 	intel_gsc_fini(&gt->gsc);
730 
731 	intel_pxp_fini(&gt->pxp);
732 
733 	/*
734 	 * Upon unregistering the device to prevent any new users, cancel
735 	 * all in-flight requests so that we can quickly unbind the active
736 	 * resources.
737 	 */
738 	intel_gt_set_wedged_on_fini(gt);
739 
740 	/* Scrub all HW state upon release */
741 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
742 		__intel_gt_reset(gt, ALL_ENGINES);
743 }
744 
745 void intel_gt_driver_release(struct intel_gt *gt)
746 {
747 	struct i915_address_space *vm;
748 
749 	vm = fetch_and_zero(&gt->vm);
750 	if (vm) /* FIXME being called twice on error paths :( */
751 		i915_vm_put(vm);
752 
753 	intel_wa_list_free(&gt->wa_list);
754 	intel_gt_pm_fini(gt);
755 	intel_gt_fini_scratch(gt);
756 	intel_gt_fini_buffer_pool(gt);
757 	intel_gt_fini_hwconfig(gt);
758 }
759 
760 void intel_gt_driver_late_release_all(struct drm_i915_private *i915)
761 {
762 	struct intel_gt *gt;
763 	unsigned int id;
764 
765 	/* We need to wait for inflight RCU frees to release their grip */
766 	rcu_barrier();
767 
768 	for_each_gt(gt, i915, id) {
769 		intel_uc_driver_late_release(&gt->uc);
770 		intel_gt_fini_requests(gt);
771 		intel_gt_fini_reset(gt);
772 		intel_gt_fini_timelines(gt);
773 		mutex_destroy(&gt->tlb.invalidate_lock);
774 		intel_engines_free(gt);
775 	}
776 }
777 
778 static int intel_gt_tile_setup(struct intel_gt *gt, phys_addr_t phys_addr)
779 {
780 	int ret;
781 
782 	if (!gt_is_root(gt)) {
783 		struct intel_uncore_mmio_debug *mmio_debug;
784 		struct intel_uncore *uncore;
785 
786 		uncore = kzalloc(sizeof(*uncore), GFP_KERNEL);
787 		if (!uncore)
788 			return -ENOMEM;
789 
790 		mmio_debug = kzalloc(sizeof(*mmio_debug), GFP_KERNEL);
791 		if (!mmio_debug) {
792 			kfree(uncore);
793 			return -ENOMEM;
794 		}
795 
796 		gt->uncore = uncore;
797 		gt->uncore->debug = mmio_debug;
798 
799 		__intel_gt_init_early(gt);
800 	}
801 
802 	intel_uncore_init_early(gt->uncore, gt);
803 
804 	ret = intel_uncore_setup_mmio(gt->uncore, phys_addr);
805 	if (ret)
806 		return ret;
807 
808 	gt->phys_addr = phys_addr;
809 
810 	return 0;
811 }
812 
813 static void
814 intel_gt_tile_cleanup(struct intel_gt *gt)
815 {
816 	intel_uncore_cleanup_mmio(gt->uncore);
817 
818 	if (!gt_is_root(gt)) {
819 		kfree(gt->uncore->debug);
820 		kfree(gt->uncore);
821 		kfree(gt);
822 	}
823 }
824 
825 int intel_gt_probe_all(struct drm_i915_private *i915)
826 {
827 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
828 	struct intel_gt *gt = &i915->gt0;
829 	phys_addr_t phys_addr;
830 	unsigned int mmio_bar;
831 	int ret;
832 
833 	mmio_bar = GRAPHICS_VER(i915) == 2 ? 1 : 0;
834 	phys_addr = pci_resource_start(pdev, mmio_bar);
835 
836 	/*
837 	 * We always have at least one primary GT on any device
838 	 * and it has been already initialized early during probe
839 	 * in i915_driver_probe()
840 	 */
841 	ret = intel_gt_tile_setup(gt, phys_addr);
842 	if (ret)
843 		return ret;
844 
845 	i915->gt[0] = gt;
846 
847 	/* TODO: add more tiles */
848 	return 0;
849 }
850 
851 int intel_gt_tiles_init(struct drm_i915_private *i915)
852 {
853 	struct intel_gt *gt;
854 	unsigned int id;
855 	int ret;
856 
857 	for_each_gt(gt, i915, id) {
858 		ret = intel_gt_probe_lmem(gt);
859 		if (ret)
860 			return ret;
861 	}
862 
863 	return 0;
864 }
865 
866 void intel_gt_release_all(struct drm_i915_private *i915)
867 {
868 	struct intel_gt *gt;
869 	unsigned int id;
870 
871 	for_each_gt(gt, i915, id) {
872 		intel_gt_tile_cleanup(gt);
873 		i915->gt[id] = NULL;
874 	}
875 }
876 
877 void intel_gt_info_print(const struct intel_gt_info *info,
878 			 struct drm_printer *p)
879 {
880 	drm_printf(p, "available engines: %x\n", info->engine_mask);
881 
882 	intel_sseu_dump(&info->sseu, p);
883 }
884 
885 struct reg_and_bit {
886 	i915_reg_t reg;
887 	u32 bit;
888 };
889 
890 static struct reg_and_bit
891 get_reg_and_bit(const struct intel_engine_cs *engine, const bool gen8,
892 		const i915_reg_t *regs, const unsigned int num)
893 {
894 	const unsigned int class = engine->class;
895 	struct reg_and_bit rb = { };
896 
897 	if (drm_WARN_ON_ONCE(&engine->i915->drm,
898 			     class >= num || !regs[class].reg))
899 		return rb;
900 
901 	rb.reg = regs[class];
902 	if (gen8 && class == VIDEO_DECODE_CLASS)
903 		rb.reg.reg += 4 * engine->instance; /* GEN8_M2TCR */
904 	else
905 		rb.bit = engine->instance;
906 
907 	rb.bit = BIT(rb.bit);
908 
909 	return rb;
910 }
911 
912 static void mmio_invalidate_full(struct intel_gt *gt)
913 {
914 	static const i915_reg_t gen8_regs[] = {
915 		[RENDER_CLASS]			= GEN8_RTCR,
916 		[VIDEO_DECODE_CLASS]		= GEN8_M1TCR, /* , GEN8_M2TCR */
917 		[VIDEO_ENHANCEMENT_CLASS]	= GEN8_VTCR,
918 		[COPY_ENGINE_CLASS]		= GEN8_BTCR,
919 	};
920 	static const i915_reg_t gen12_regs[] = {
921 		[RENDER_CLASS]			= GEN12_GFX_TLB_INV_CR,
922 		[VIDEO_DECODE_CLASS]		= GEN12_VD_TLB_INV_CR,
923 		[VIDEO_ENHANCEMENT_CLASS]	= GEN12_VE_TLB_INV_CR,
924 		[COPY_ENGINE_CLASS]		= GEN12_BLT_TLB_INV_CR,
925 		[COMPUTE_CLASS]			= GEN12_COMPCTX_TLB_INV_CR,
926 	};
927 	struct drm_i915_private *i915 = gt->i915;
928 	struct intel_uncore *uncore = gt->uncore;
929 	struct intel_engine_cs *engine;
930 	intel_engine_mask_t awake, tmp;
931 	enum intel_engine_id id;
932 	const i915_reg_t *regs;
933 	unsigned int num = 0;
934 
935 	if (GRAPHICS_VER(i915) == 12) {
936 		regs = gen12_regs;
937 		num = ARRAY_SIZE(gen12_regs);
938 	} else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
939 		regs = gen8_regs;
940 		num = ARRAY_SIZE(gen8_regs);
941 	} else if (GRAPHICS_VER(i915) < 8) {
942 		return;
943 	}
944 
945 	if (drm_WARN_ONCE(&i915->drm, !num,
946 			  "Platform does not implement TLB invalidation!"))
947 		return;
948 
949 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
950 
951 	spin_lock_irq(&uncore->lock); /* serialise invalidate with GT reset */
952 
953 	awake = 0;
954 	for_each_engine(engine, gt, id) {
955 		struct reg_and_bit rb;
956 
957 		if (!intel_engine_pm_is_awake(engine))
958 			continue;
959 
960 		rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num);
961 		if (!i915_mmio_reg_offset(rb.reg))
962 			continue;
963 
964 		intel_uncore_write_fw(uncore, rb.reg, rb.bit);
965 		awake |= engine->mask;
966 	}
967 
968 	GT_TRACE(gt, "invalidated engines %08x\n", awake);
969 
970 	/* Wa_2207587034:tgl,dg1,rkl,adl-s,adl-p */
971 	if (awake &&
972 	    (IS_TIGERLAKE(i915) ||
973 	     IS_DG1(i915) ||
974 	     IS_ROCKETLAKE(i915) ||
975 	     IS_ALDERLAKE_S(i915) ||
976 	     IS_ALDERLAKE_P(i915)))
977 		intel_uncore_write_fw(uncore, GEN12_OA_TLB_INV_CR, 1);
978 
979 	spin_unlock_irq(&uncore->lock);
980 
981 	for_each_engine_masked(engine, gt, awake, tmp) {
982 		struct reg_and_bit rb;
983 
984 		/*
985 		 * HW architecture suggest typical invalidation time at 40us,
986 		 * with pessimistic cases up to 100us and a recommendation to
987 		 * cap at 1ms. We go a bit higher just in case.
988 		 */
989 		const unsigned int timeout_us = 100;
990 		const unsigned int timeout_ms = 4;
991 
992 		rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num);
993 		if (__intel_wait_for_register_fw(uncore,
994 						 rb.reg, rb.bit, 0,
995 						 timeout_us, timeout_ms,
996 						 NULL))
997 			drm_err_ratelimited(&gt->i915->drm,
998 					    "%s TLB invalidation did not complete in %ums!\n",
999 					    engine->name, timeout_ms);
1000 	}
1001 
1002 	/*
1003 	 * Use delayed put since a) we mostly expect a flurry of TLB
1004 	 * invalidations so it is good to avoid paying the forcewake cost and
1005 	 * b) it works around a bug in Icelake which cannot cope with too rapid
1006 	 * transitions.
1007 	 */
1008 	intel_uncore_forcewake_put_delayed(uncore, FORCEWAKE_ALL);
1009 }
1010 
1011 static bool tlb_seqno_passed(const struct intel_gt *gt, u32 seqno)
1012 {
1013 	u32 cur = intel_gt_tlb_seqno(gt);
1014 
1015 	/* Only skip if a *full* TLB invalidate barrier has passed */
1016 	return (s32)(cur - ALIGN(seqno, 2)) > 0;
1017 }
1018 
1019 void intel_gt_invalidate_tlb(struct intel_gt *gt, u32 seqno)
1020 {
1021 	intel_wakeref_t wakeref;
1022 
1023 	if (I915_SELFTEST_ONLY(gt->awake == -ENODEV))
1024 		return;
1025 
1026 	if (intel_gt_is_wedged(gt))
1027 		return;
1028 
1029 	if (tlb_seqno_passed(gt, seqno))
1030 		return;
1031 
1032 	with_intel_gt_pm_if_awake(gt, wakeref) {
1033 		mutex_lock(&gt->tlb.invalidate_lock);
1034 		if (tlb_seqno_passed(gt, seqno))
1035 			goto unlock;
1036 
1037 		mmio_invalidate_full(gt);
1038 
1039 		write_seqcount_invalidate(&gt->tlb.seqno);
1040 unlock:
1041 		mutex_unlock(&gt->tlb.invalidate_lock);
1042 	}
1043 }
1044