1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24 #include "i915_drv.h" 25 #include "i915_scatterlist.h" 26 #include "i915_pvinfo.h" 27 #include "i915_vgpu.h" 28 29 /** 30 * DOC: fence register handling 31 * 32 * Important to avoid confusions: "fences" in the i915 driver are not execution 33 * fences used to track command completion but hardware detiler objects which 34 * wrap a given range of the global GTT. Each platform has only a fairly limited 35 * set of these objects. 36 * 37 * Fences are used to detile GTT memory mappings. They're also connected to the 38 * hardware frontbuffer render tracking and hence interact with frontbuffer 39 * compression. Furthermore on older platforms fences are required for tiled 40 * objects used by the display engine. They can also be used by the render 41 * engine - they're required for blitter commands and are optional for render 42 * commands. But on gen4+ both display (with the exception of fbc) and rendering 43 * have their own tiling state bits and don't need fences. 44 * 45 * Also note that fences only support X and Y tiling and hence can't be used for 46 * the fancier new tiling formats like W, Ys and Yf. 47 * 48 * Finally note that because fences are such a restricted resource they're 49 * dynamically associated with objects. Furthermore fence state is committed to 50 * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must 51 * explicitly call i915_gem_object_get_fence() to synchronize fencing status 52 * for cpu access. Also note that some code wants an unfenced view, for those 53 * cases the fence can be removed forcefully with i915_gem_object_put_fence(). 54 * 55 * Internally these functions will synchronize with userspace access by removing 56 * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed. 57 */ 58 59 #define pipelined 0 60 61 static struct drm_i915_private *fence_to_i915(struct i915_fence_reg *fence) 62 { 63 return fence->ggtt->vm.i915; 64 } 65 66 static struct intel_uncore *fence_to_uncore(struct i915_fence_reg *fence) 67 { 68 return fence->ggtt->vm.gt->uncore; 69 } 70 71 static void i965_write_fence_reg(struct i915_fence_reg *fence) 72 { 73 i915_reg_t fence_reg_lo, fence_reg_hi; 74 int fence_pitch_shift; 75 u64 val; 76 77 if (INTEL_GEN(fence_to_i915(fence)) >= 6) { 78 fence_reg_lo = FENCE_REG_GEN6_LO(fence->id); 79 fence_reg_hi = FENCE_REG_GEN6_HI(fence->id); 80 fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT; 81 82 } else { 83 fence_reg_lo = FENCE_REG_965_LO(fence->id); 84 fence_reg_hi = FENCE_REG_965_HI(fence->id); 85 fence_pitch_shift = I965_FENCE_PITCH_SHIFT; 86 } 87 88 val = 0; 89 if (fence->tiling) { 90 unsigned int stride = fence->stride; 91 92 GEM_BUG_ON(!IS_ALIGNED(stride, 128)); 93 94 val = fence->start + fence->size - I965_FENCE_PAGE; 95 val <<= 32; 96 val |= fence->start; 97 val |= (u64)((stride / 128) - 1) << fence_pitch_shift; 98 if (fence->tiling == I915_TILING_Y) 99 val |= BIT(I965_FENCE_TILING_Y_SHIFT); 100 val |= I965_FENCE_REG_VALID; 101 } 102 103 if (!pipelined) { 104 struct intel_uncore *uncore = fence_to_uncore(fence); 105 106 /* 107 * To w/a incoherency with non-atomic 64-bit register updates, 108 * we split the 64-bit update into two 32-bit writes. In order 109 * for a partial fence not to be evaluated between writes, we 110 * precede the update with write to turn off the fence register, 111 * and only enable the fence as the last step. 112 * 113 * For extra levels of paranoia, we make sure each step lands 114 * before applying the next step. 115 */ 116 intel_uncore_write_fw(uncore, fence_reg_lo, 0); 117 intel_uncore_posting_read_fw(uncore, fence_reg_lo); 118 119 intel_uncore_write_fw(uncore, fence_reg_hi, upper_32_bits(val)); 120 intel_uncore_write_fw(uncore, fence_reg_lo, lower_32_bits(val)); 121 intel_uncore_posting_read_fw(uncore, fence_reg_lo); 122 } 123 } 124 125 static void i915_write_fence_reg(struct i915_fence_reg *fence) 126 { 127 u32 val; 128 129 val = 0; 130 if (fence->tiling) { 131 unsigned int stride = fence->stride; 132 unsigned int tiling = fence->tiling; 133 bool is_y_tiled = tiling == I915_TILING_Y; 134 135 if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence_to_i915(fence))) 136 stride /= 128; 137 else 138 stride /= 512; 139 GEM_BUG_ON(!is_power_of_2(stride)); 140 141 val = fence->start; 142 if (is_y_tiled) 143 val |= BIT(I830_FENCE_TILING_Y_SHIFT); 144 val |= I915_FENCE_SIZE_BITS(fence->size); 145 val |= ilog2(stride) << I830_FENCE_PITCH_SHIFT; 146 147 val |= I830_FENCE_REG_VALID; 148 } 149 150 if (!pipelined) { 151 struct intel_uncore *uncore = fence_to_uncore(fence); 152 i915_reg_t reg = FENCE_REG(fence->id); 153 154 intel_uncore_write_fw(uncore, reg, val); 155 intel_uncore_posting_read_fw(uncore, reg); 156 } 157 } 158 159 static void i830_write_fence_reg(struct i915_fence_reg *fence) 160 { 161 u32 val; 162 163 val = 0; 164 if (fence->tiling) { 165 unsigned int stride = fence->stride; 166 167 val = fence->start; 168 if (fence->tiling == I915_TILING_Y) 169 val |= BIT(I830_FENCE_TILING_Y_SHIFT); 170 val |= I830_FENCE_SIZE_BITS(fence->size); 171 val |= ilog2(stride / 128) << I830_FENCE_PITCH_SHIFT; 172 val |= I830_FENCE_REG_VALID; 173 } 174 175 if (!pipelined) { 176 struct intel_uncore *uncore = fence_to_uncore(fence); 177 i915_reg_t reg = FENCE_REG(fence->id); 178 179 intel_uncore_write_fw(uncore, reg, val); 180 intel_uncore_posting_read_fw(uncore, reg); 181 } 182 } 183 184 static void fence_write(struct i915_fence_reg *fence) 185 { 186 struct drm_i915_private *i915 = fence_to_i915(fence); 187 188 /* 189 * Previous access through the fence register is marshalled by 190 * the mb() inside the fault handlers (i915_gem_release_mmaps) 191 * and explicitly managed for internal users. 192 */ 193 194 if (IS_GEN(i915, 2)) 195 i830_write_fence_reg(fence); 196 else if (IS_GEN(i915, 3)) 197 i915_write_fence_reg(fence); 198 else 199 i965_write_fence_reg(fence); 200 201 /* 202 * Access through the fenced region afterwards is 203 * ordered by the posting reads whilst writing the registers. 204 */ 205 } 206 207 static bool gpu_uses_fence_registers(struct i915_fence_reg *fence) 208 { 209 return INTEL_GEN(fence_to_i915(fence)) < 4; 210 } 211 212 static int fence_update(struct i915_fence_reg *fence, 213 struct i915_vma *vma) 214 { 215 struct i915_ggtt *ggtt = fence->ggtt; 216 struct intel_uncore *uncore = fence_to_uncore(fence); 217 intel_wakeref_t wakeref; 218 struct i915_vma *old; 219 int ret; 220 221 fence->tiling = 0; 222 if (vma) { 223 GEM_BUG_ON(!i915_gem_object_get_stride(vma->obj) || 224 !i915_gem_object_get_tiling(vma->obj)); 225 226 if (!i915_vma_is_map_and_fenceable(vma)) 227 return -EINVAL; 228 229 if (gpu_uses_fence_registers(fence)) { 230 /* implicit 'unfenced' GPU blits */ 231 ret = i915_vma_sync(vma); 232 if (ret) 233 return ret; 234 } 235 236 fence->start = vma->node.start; 237 fence->size = vma->fence_size; 238 fence->stride = i915_gem_object_get_stride(vma->obj); 239 fence->tiling = i915_gem_object_get_tiling(vma->obj); 240 } 241 WRITE_ONCE(fence->dirty, false); 242 243 old = xchg(&fence->vma, NULL); 244 if (old) { 245 /* XXX Ideally we would move the waiting to outside the mutex */ 246 ret = i915_active_wait(&fence->active); 247 if (ret) { 248 fence->vma = old; 249 return ret; 250 } 251 252 i915_vma_flush_writes(old); 253 254 /* 255 * Ensure that all userspace CPU access is completed before 256 * stealing the fence. 257 */ 258 if (old != vma) { 259 GEM_BUG_ON(old->fence != fence); 260 i915_vma_revoke_mmap(old); 261 old->fence = NULL; 262 } 263 264 list_move(&fence->link, &ggtt->fence_list); 265 } 266 267 /* 268 * We only need to update the register itself if the device is awake. 269 * If the device is currently powered down, we will defer the write 270 * to the runtime resume, see intel_ggtt_restore_fences(). 271 * 272 * This only works for removing the fence register, on acquisition 273 * the caller must hold the rpm wakeref. The fence register must 274 * be cleared before we can use any other fences to ensure that 275 * the new fences do not overlap the elided clears, confusing HW. 276 */ 277 wakeref = intel_runtime_pm_get_if_in_use(uncore->rpm); 278 if (!wakeref) { 279 GEM_BUG_ON(vma); 280 return 0; 281 } 282 283 WRITE_ONCE(fence->vma, vma); 284 fence_write(fence); 285 286 if (vma) { 287 vma->fence = fence; 288 list_move_tail(&fence->link, &ggtt->fence_list); 289 } 290 291 intel_runtime_pm_put(uncore->rpm, wakeref); 292 return 0; 293 } 294 295 /** 296 * i915_vma_revoke_fence - force-remove fence for a VMA 297 * @vma: vma to map linearly (not through a fence reg) 298 * 299 * This function force-removes any fence from the given object, which is useful 300 * if the kernel wants to do untiled GTT access. 301 */ 302 void i915_vma_revoke_fence(struct i915_vma *vma) 303 { 304 struct i915_fence_reg *fence = vma->fence; 305 intel_wakeref_t wakeref; 306 307 lockdep_assert_held(&vma->vm->mutex); 308 if (!fence) 309 return; 310 311 GEM_BUG_ON(fence->vma != vma); 312 GEM_BUG_ON(!i915_active_is_idle(&fence->active)); 313 GEM_BUG_ON(atomic_read(&fence->pin_count)); 314 315 fence->tiling = 0; 316 WRITE_ONCE(fence->vma, NULL); 317 vma->fence = NULL; 318 319 with_intel_runtime_pm_if_in_use(fence_to_uncore(fence)->rpm, wakeref) 320 fence_write(fence); 321 } 322 323 static struct i915_fence_reg *fence_find(struct i915_ggtt *ggtt) 324 { 325 struct i915_fence_reg *fence; 326 327 list_for_each_entry(fence, &ggtt->fence_list, link) { 328 GEM_BUG_ON(fence->vma && fence->vma->fence != fence); 329 330 if (atomic_read(&fence->pin_count)) 331 continue; 332 333 return fence; 334 } 335 336 /* Wait for completion of pending flips which consume fences */ 337 if (intel_has_pending_fb_unpin(ggtt->vm.i915)) 338 return ERR_PTR(-EAGAIN); 339 340 return ERR_PTR(-EDEADLK); 341 } 342 343 int __i915_vma_pin_fence(struct i915_vma *vma) 344 { 345 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm); 346 struct i915_fence_reg *fence; 347 struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL; 348 int err; 349 350 lockdep_assert_held(&vma->vm->mutex); 351 352 /* Just update our place in the LRU if our fence is getting reused. */ 353 if (vma->fence) { 354 fence = vma->fence; 355 GEM_BUG_ON(fence->vma != vma); 356 atomic_inc(&fence->pin_count); 357 if (!fence->dirty) { 358 list_move_tail(&fence->link, &ggtt->fence_list); 359 return 0; 360 } 361 } else if (set) { 362 fence = fence_find(ggtt); 363 if (IS_ERR(fence)) 364 return PTR_ERR(fence); 365 366 GEM_BUG_ON(atomic_read(&fence->pin_count)); 367 atomic_inc(&fence->pin_count); 368 } else { 369 return 0; 370 } 371 372 err = fence_update(fence, set); 373 if (err) 374 goto out_unpin; 375 376 GEM_BUG_ON(fence->vma != set); 377 GEM_BUG_ON(vma->fence != (set ? fence : NULL)); 378 379 if (set) 380 return 0; 381 382 out_unpin: 383 atomic_dec(&fence->pin_count); 384 return err; 385 } 386 387 /** 388 * i915_vma_pin_fence - set up fencing for a vma 389 * @vma: vma to map through a fence reg 390 * 391 * When mapping objects through the GTT, userspace wants to be able to write 392 * to them without having to worry about swizzling if the object is tiled. 393 * This function walks the fence regs looking for a free one for @obj, 394 * stealing one if it can't find any. 395 * 396 * It then sets up the reg based on the object's properties: address, pitch 397 * and tiling format. 398 * 399 * For an untiled surface, this removes any existing fence. 400 * 401 * Returns: 402 * 403 * 0 on success, negative error code on failure. 404 */ 405 int i915_vma_pin_fence(struct i915_vma *vma) 406 { 407 int err; 408 409 if (!vma->fence && !i915_gem_object_is_tiled(vma->obj)) 410 return 0; 411 412 /* 413 * Note that we revoke fences on runtime suspend. Therefore the user 414 * must keep the device awake whilst using the fence. 415 */ 416 assert_rpm_wakelock_held(vma->vm->gt->uncore->rpm); 417 GEM_BUG_ON(!i915_vma_is_pinned(vma)); 418 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 419 420 err = mutex_lock_interruptible(&vma->vm->mutex); 421 if (err) 422 return err; 423 424 err = __i915_vma_pin_fence(vma); 425 mutex_unlock(&vma->vm->mutex); 426 427 return err; 428 } 429 430 /** 431 * i915_reserve_fence - Reserve a fence for vGPU 432 * @ggtt: Global GTT 433 * 434 * This function walks the fence regs looking for a free one and remove 435 * it from the fence_list. It is used to reserve fence for vGPU to use. 436 */ 437 struct i915_fence_reg *i915_reserve_fence(struct i915_ggtt *ggtt) 438 { 439 struct i915_fence_reg *fence; 440 int count; 441 int ret; 442 443 lockdep_assert_held(&ggtt->vm.mutex); 444 445 /* Keep at least one fence available for the display engine. */ 446 count = 0; 447 list_for_each_entry(fence, &ggtt->fence_list, link) 448 count += !atomic_read(&fence->pin_count); 449 if (count <= 1) 450 return ERR_PTR(-ENOSPC); 451 452 fence = fence_find(ggtt); 453 if (IS_ERR(fence)) 454 return fence; 455 456 if (fence->vma) { 457 /* Force-remove fence from VMA */ 458 ret = fence_update(fence, NULL); 459 if (ret) 460 return ERR_PTR(ret); 461 } 462 463 list_del(&fence->link); 464 465 return fence; 466 } 467 468 /** 469 * i915_unreserve_fence - Reclaim a reserved fence 470 * @fence: the fence reg 471 * 472 * This function add a reserved fence register from vGPU to the fence_list. 473 */ 474 void i915_unreserve_fence(struct i915_fence_reg *fence) 475 { 476 struct i915_ggtt *ggtt = fence->ggtt; 477 478 lockdep_assert_held(&ggtt->vm.mutex); 479 480 list_add(&fence->link, &ggtt->fence_list); 481 } 482 483 /** 484 * intel_ggtt_restore_fences - restore fence state 485 * @ggtt: Global GTT 486 * 487 * Restore the hw fence state to match the software tracking again, to be called 488 * after a gpu reset and on resume. Note that on runtime suspend we only cancel 489 * the fences, to be reacquired by the user later. 490 */ 491 void intel_ggtt_restore_fences(struct i915_ggtt *ggtt) 492 { 493 int i; 494 495 for (i = 0; i < ggtt->num_fences; i++) 496 fence_write(&ggtt->fence_regs[i]); 497 } 498 499 /** 500 * DOC: tiling swizzling details 501 * 502 * The idea behind tiling is to increase cache hit rates by rearranging 503 * pixel data so that a group of pixel accesses are in the same cacheline. 504 * Performance improvement from doing this on the back/depth buffer are on 505 * the order of 30%. 506 * 507 * Intel architectures make this somewhat more complicated, though, by 508 * adjustments made to addressing of data when the memory is in interleaved 509 * mode (matched pairs of DIMMS) to improve memory bandwidth. 510 * For interleaved memory, the CPU sends every sequential 64 bytes 511 * to an alternate memory channel so it can get the bandwidth from both. 512 * 513 * The GPU also rearranges its accesses for increased bandwidth to interleaved 514 * memory, and it matches what the CPU does for non-tiled. However, when tiled 515 * it does it a little differently, since one walks addresses not just in the 516 * X direction but also Y. So, along with alternating channels when bit 517 * 6 of the address flips, it also alternates when other bits flip -- Bits 9 518 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines) 519 * are common to both the 915 and 965-class hardware. 520 * 521 * The CPU also sometimes XORs in higher bits as well, to improve 522 * bandwidth doing strided access like we do so frequently in graphics. This 523 * is called "Channel XOR Randomization" in the MCH documentation. The result 524 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address 525 * decode. 526 * 527 * All of this bit 6 XORing has an effect on our memory management, 528 * as we need to make sure that the 3d driver can correctly address object 529 * contents. 530 * 531 * If we don't have interleaved memory, all tiling is safe and no swizzling is 532 * required. 533 * 534 * When bit 17 is XORed in, we simply refuse to tile at all. Bit 535 * 17 is not just a page offset, so as we page an object out and back in, 536 * individual pages in it will have different bit 17 addresses, resulting in 537 * each 64 bytes being swapped with its neighbor! 538 * 539 * Otherwise, if interleaved, we have to tell the 3d driver what the address 540 * swizzling it needs to do is, since it's writing with the CPU to the pages 541 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the 542 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling 543 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order 544 * to match what the GPU expects. 545 */ 546 547 /** 548 * detect_bit_6_swizzle - detect bit 6 swizzling pattern 549 * @ggtt: Global GGTT 550 * 551 * Detects bit 6 swizzling of address lookup between IGD access and CPU 552 * access through main memory. 553 */ 554 static void detect_bit_6_swizzle(struct i915_ggtt *ggtt) 555 { 556 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 557 struct drm_i915_private *i915 = ggtt->vm.i915; 558 u32 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN; 559 u32 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN; 560 561 if (INTEL_GEN(i915) >= 8 || IS_VALLEYVIEW(i915)) { 562 /* 563 * On BDW+, swizzling is not used. We leave the CPU memory 564 * controller in charge of optimizing memory accesses without 565 * the extra address manipulation GPU side. 566 * 567 * VLV and CHV don't have GPU swizzling. 568 */ 569 swizzle_x = I915_BIT_6_SWIZZLE_NONE; 570 swizzle_y = I915_BIT_6_SWIZZLE_NONE; 571 } else if (INTEL_GEN(i915) >= 6) { 572 if (i915->preserve_bios_swizzle) { 573 if (intel_uncore_read(uncore, DISP_ARB_CTL) & 574 DISP_TILE_SURFACE_SWIZZLING) { 575 swizzle_x = I915_BIT_6_SWIZZLE_9_10; 576 swizzle_y = I915_BIT_6_SWIZZLE_9; 577 } else { 578 swizzle_x = I915_BIT_6_SWIZZLE_NONE; 579 swizzle_y = I915_BIT_6_SWIZZLE_NONE; 580 } 581 } else { 582 u32 dimm_c0, dimm_c1; 583 dimm_c0 = intel_uncore_read(uncore, MAD_DIMM_C0); 584 dimm_c1 = intel_uncore_read(uncore, MAD_DIMM_C1); 585 dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK; 586 dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK; 587 /* 588 * Enable swizzling when the channels are populated 589 * with identically sized dimms. We don't need to check 590 * the 3rd channel because no cpu with gpu attached 591 * ships in that configuration. Also, swizzling only 592 * makes sense for 2 channels anyway. 593 */ 594 if (dimm_c0 == dimm_c1) { 595 swizzle_x = I915_BIT_6_SWIZZLE_9_10; 596 swizzle_y = I915_BIT_6_SWIZZLE_9; 597 } else { 598 swizzle_x = I915_BIT_6_SWIZZLE_NONE; 599 swizzle_y = I915_BIT_6_SWIZZLE_NONE; 600 } 601 } 602 } else if (IS_GEN(i915, 5)) { 603 /* 604 * On Ironlake whatever DRAM config, GPU always do 605 * same swizzling setup. 606 */ 607 swizzle_x = I915_BIT_6_SWIZZLE_9_10; 608 swizzle_y = I915_BIT_6_SWIZZLE_9; 609 } else if (IS_GEN(i915, 2)) { 610 /* 611 * As far as we know, the 865 doesn't have these bit 6 612 * swizzling issues. 613 */ 614 swizzle_x = I915_BIT_6_SWIZZLE_NONE; 615 swizzle_y = I915_BIT_6_SWIZZLE_NONE; 616 } else if (IS_G45(i915) || IS_I965G(i915) || IS_G33(i915)) { 617 /* 618 * The 965, G33, and newer, have a very flexible memory 619 * configuration. It will enable dual-channel mode 620 * (interleaving) on as much memory as it can, and the GPU 621 * will additionally sometimes enable different bit 6 622 * swizzling for tiled objects from the CPU. 623 * 624 * Here's what I found on the G965: 625 * slot fill memory size swizzling 626 * 0A 0B 1A 1B 1-ch 2-ch 627 * 512 0 0 0 512 0 O 628 * 512 0 512 0 16 1008 X 629 * 512 0 0 512 16 1008 X 630 * 0 512 0 512 16 1008 X 631 * 1024 1024 1024 0 2048 1024 O 632 * 633 * We could probably detect this based on either the DRB 634 * matching, which was the case for the swizzling required in 635 * the table above, or from the 1-ch value being less than 636 * the minimum size of a rank. 637 * 638 * Reports indicate that the swizzling actually 639 * varies depending upon page placement inside the 640 * channels, i.e. we see swizzled pages where the 641 * banks of memory are paired and unswizzled on the 642 * uneven portion, so leave that as unknown. 643 */ 644 if (intel_uncore_read(uncore, C0DRB3) == 645 intel_uncore_read(uncore, C1DRB3)) { 646 swizzle_x = I915_BIT_6_SWIZZLE_9_10; 647 swizzle_y = I915_BIT_6_SWIZZLE_9; 648 } 649 } else { 650 u32 dcc = intel_uncore_read(uncore, DCC); 651 652 /* 653 * On 9xx chipsets, channel interleave by the CPU is 654 * determined by DCC. For single-channel, neither the CPU 655 * nor the GPU do swizzling. For dual channel interleaved, 656 * the GPU's interleave is bit 9 and 10 for X tiled, and bit 657 * 9 for Y tiled. The CPU's interleave is independent, and 658 * can be based on either bit 11 (haven't seen this yet) or 659 * bit 17 (common). 660 */ 661 switch (dcc & DCC_ADDRESSING_MODE_MASK) { 662 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL: 663 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC: 664 swizzle_x = I915_BIT_6_SWIZZLE_NONE; 665 swizzle_y = I915_BIT_6_SWIZZLE_NONE; 666 break; 667 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED: 668 if (dcc & DCC_CHANNEL_XOR_DISABLE) { 669 /* 670 * This is the base swizzling by the GPU for 671 * tiled buffers. 672 */ 673 swizzle_x = I915_BIT_6_SWIZZLE_9_10; 674 swizzle_y = I915_BIT_6_SWIZZLE_9; 675 } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) { 676 /* Bit 11 swizzling by the CPU in addition. */ 677 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11; 678 swizzle_y = I915_BIT_6_SWIZZLE_9_11; 679 } else { 680 /* Bit 17 swizzling by the CPU in addition. */ 681 swizzle_x = I915_BIT_6_SWIZZLE_9_10_17; 682 swizzle_y = I915_BIT_6_SWIZZLE_9_17; 683 } 684 break; 685 } 686 687 /* check for L-shaped memory aka modified enhanced addressing */ 688 if (IS_GEN(i915, 4) && 689 !(intel_uncore_read(uncore, DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) { 690 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN; 691 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN; 692 } 693 694 if (dcc == 0xffffffff) { 695 drm_err(&i915->drm, "Couldn't read from MCHBAR. " 696 "Disabling tiling.\n"); 697 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN; 698 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN; 699 } 700 } 701 702 if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN || 703 swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) { 704 /* 705 * Userspace likes to explode if it sees unknown swizzling, 706 * so lie. We will finish the lie when reporting through 707 * the get-tiling-ioctl by reporting the physical swizzle 708 * mode as unknown instead. 709 * 710 * As we don't strictly know what the swizzling is, it may be 711 * bit17 dependent, and so we need to also prevent the pages 712 * from being moved. 713 */ 714 i915->quirks |= QUIRK_PIN_SWIZZLED_PAGES; 715 swizzle_x = I915_BIT_6_SWIZZLE_NONE; 716 swizzle_y = I915_BIT_6_SWIZZLE_NONE; 717 } 718 719 i915->ggtt.bit_6_swizzle_x = swizzle_x; 720 i915->ggtt.bit_6_swizzle_y = swizzle_y; 721 } 722 723 /* 724 * Swap every 64 bytes of this page around, to account for it having a new 725 * bit 17 of its physical address and therefore being interpreted differently 726 * by the GPU. 727 */ 728 static void swizzle_page(struct page *page) 729 { 730 char temp[64]; 731 char *vaddr; 732 int i; 733 734 vaddr = kmap(page); 735 736 for (i = 0; i < PAGE_SIZE; i += 128) { 737 memcpy(temp, &vaddr[i], 64); 738 memcpy(&vaddr[i], &vaddr[i + 64], 64); 739 memcpy(&vaddr[i + 64], temp, 64); 740 } 741 742 kunmap(page); 743 } 744 745 /** 746 * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling 747 * @obj: i915 GEM buffer object 748 * @pages: the scattergather list of physical pages 749 * 750 * This function fixes up the swizzling in case any page frame number for this 751 * object has changed in bit 17 since that state has been saved with 752 * i915_gem_object_save_bit_17_swizzle(). 753 * 754 * This is called when pinning backing storage again, since the kernel is free 755 * to move unpinned backing storage around (either by directly moving pages or 756 * by swapping them out and back in again). 757 */ 758 void 759 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj, 760 struct sg_table *pages) 761 { 762 struct sgt_iter sgt_iter; 763 struct page *page; 764 int i; 765 766 if (obj->bit_17 == NULL) 767 return; 768 769 i = 0; 770 for_each_sgt_page(page, sgt_iter, pages) { 771 char new_bit_17 = page_to_phys(page) >> 17; 772 if ((new_bit_17 & 0x1) != (test_bit(i, obj->bit_17) != 0)) { 773 swizzle_page(page); 774 set_page_dirty(page); 775 } 776 i++; 777 } 778 } 779 780 /** 781 * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling 782 * @obj: i915 GEM buffer object 783 * @pages: the scattergather list of physical pages 784 * 785 * This function saves the bit 17 of each page frame number so that swizzling 786 * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must 787 * be called before the backing storage can be unpinned. 788 */ 789 void 790 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj, 791 struct sg_table *pages) 792 { 793 const unsigned int page_count = obj->base.size >> PAGE_SHIFT; 794 struct sgt_iter sgt_iter; 795 struct page *page; 796 int i; 797 798 if (obj->bit_17 == NULL) { 799 obj->bit_17 = bitmap_zalloc(page_count, GFP_KERNEL); 800 if (obj->bit_17 == NULL) { 801 DRM_ERROR("Failed to allocate memory for bit 17 " 802 "record\n"); 803 return; 804 } 805 } 806 807 i = 0; 808 809 for_each_sgt_page(page, sgt_iter, pages) { 810 if (page_to_phys(page) & (1 << 17)) 811 __set_bit(i, obj->bit_17); 812 else 813 __clear_bit(i, obj->bit_17); 814 i++; 815 } 816 } 817 818 void intel_ggtt_init_fences(struct i915_ggtt *ggtt) 819 { 820 struct drm_i915_private *i915 = ggtt->vm.i915; 821 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 822 int num_fences; 823 int i; 824 825 INIT_LIST_HEAD(&ggtt->fence_list); 826 INIT_LIST_HEAD(&ggtt->userfault_list); 827 intel_wakeref_auto_init(&ggtt->userfault_wakeref, uncore->rpm); 828 829 detect_bit_6_swizzle(ggtt); 830 831 if (!i915_ggtt_has_aperture(ggtt)) 832 num_fences = 0; 833 else if (INTEL_GEN(i915) >= 7 && 834 !(IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))) 835 num_fences = 32; 836 else if (INTEL_GEN(i915) >= 4 || 837 IS_I945G(i915) || IS_I945GM(i915) || 838 IS_G33(i915) || IS_PINEVIEW(i915)) 839 num_fences = 16; 840 else 841 num_fences = 8; 842 843 if (intel_vgpu_active(i915)) 844 num_fences = intel_uncore_read(uncore, 845 vgtif_reg(avail_rs.fence_num)); 846 ggtt->fence_regs = kcalloc(num_fences, 847 sizeof(*ggtt->fence_regs), 848 GFP_KERNEL); 849 if (!ggtt->fence_regs) 850 num_fences = 0; 851 852 /* Initialize fence registers to zero */ 853 for (i = 0; i < num_fences; i++) { 854 struct i915_fence_reg *fence = &ggtt->fence_regs[i]; 855 856 i915_active_init(&fence->active, NULL, NULL); 857 fence->ggtt = ggtt; 858 fence->id = i; 859 list_add_tail(&fence->link, &ggtt->fence_list); 860 } 861 ggtt->num_fences = num_fences; 862 863 intel_ggtt_restore_fences(ggtt); 864 } 865 866 void intel_ggtt_fini_fences(struct i915_ggtt *ggtt) 867 { 868 int i; 869 870 for (i = 0; i < ggtt->num_fences; i++) { 871 struct i915_fence_reg *fence = &ggtt->fence_regs[i]; 872 873 i915_active_fini(&fence->active); 874 } 875 876 kfree(ggtt->fence_regs); 877 } 878 879 void intel_gt_init_swizzling(struct intel_gt *gt) 880 { 881 struct drm_i915_private *i915 = gt->i915; 882 struct intel_uncore *uncore = gt->uncore; 883 884 if (INTEL_GEN(i915) < 5 || 885 i915->ggtt.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 886 return; 887 888 intel_uncore_rmw(uncore, DISP_ARB_CTL, 0, DISP_TILE_SURFACE_SWIZZLING); 889 890 if (IS_GEN(i915, 5)) 891 return; 892 893 intel_uncore_rmw(uncore, TILECTL, 0, TILECTL_SWZCTL); 894 895 if (IS_GEN(i915, 6)) 896 intel_uncore_write(uncore, 897 ARB_MODE, 898 _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 899 else if (IS_GEN(i915, 7)) 900 intel_uncore_write(uncore, 901 ARB_MODE, 902 _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 903 else if (IS_GEN(i915, 8)) 904 intel_uncore_write(uncore, 905 GAMTARBMODE, 906 _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW)); 907 else 908 MISSING_CASE(INTEL_GEN(i915)); 909 } 910