1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include <asm/set_memory.h> 7 #include <asm/smp.h> 8 #include <linux/types.h> 9 #include <linux/stop_machine.h> 10 11 #include <drm/drm_managed.h> 12 #include <drm/i915_drm.h> 13 #include <drm/intel-gtt.h> 14 15 #include "display/intel_display.h" 16 #include "gem/i915_gem_lmem.h" 17 18 #include "intel_ggtt_gmch.h" 19 #include "intel_gt.h" 20 #include "intel_gt_regs.h" 21 #include "intel_pci_config.h" 22 #include "i915_drv.h" 23 #include "i915_pci.h" 24 #include "i915_scatterlist.h" 25 #include "i915_utils.h" 26 #include "i915_vgpu.h" 27 28 #include "intel_gtt.h" 29 #include "gen8_ppgtt.h" 30 31 static void i915_ggtt_color_adjust(const struct drm_mm_node *node, 32 unsigned long color, 33 u64 *start, 34 u64 *end) 35 { 36 if (i915_node_color_differs(node, color)) 37 *start += I915_GTT_PAGE_SIZE; 38 39 /* 40 * Also leave a space between the unallocated reserved node after the 41 * GTT and any objects within the GTT, i.e. we use the color adjustment 42 * to insert a guard page to prevent prefetches crossing over the 43 * GTT boundary. 44 */ 45 node = list_next_entry(node, node_list); 46 if (node->color != color) 47 *end -= I915_GTT_PAGE_SIZE; 48 } 49 50 static int ggtt_init_hw(struct i915_ggtt *ggtt) 51 { 52 struct drm_i915_private *i915 = ggtt->vm.i915; 53 54 i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT); 55 56 ggtt->vm.is_ggtt = true; 57 58 /* Only VLV supports read-only GGTT mappings */ 59 ggtt->vm.has_read_only = IS_VALLEYVIEW(i915); 60 61 if (!HAS_LLC(i915) && !HAS_PPGTT(i915)) 62 ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust; 63 64 if (ggtt->mappable_end) { 65 if (!io_mapping_init_wc(&ggtt->iomap, 66 ggtt->gmadr.start, 67 ggtt->mappable_end)) { 68 ggtt->vm.cleanup(&ggtt->vm); 69 return -EIO; 70 } 71 72 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, 73 ggtt->mappable_end); 74 } 75 76 intel_ggtt_init_fences(ggtt); 77 78 return 0; 79 } 80 81 /** 82 * i915_ggtt_init_hw - Initialize GGTT hardware 83 * @i915: i915 device 84 */ 85 int i915_ggtt_init_hw(struct drm_i915_private *i915) 86 { 87 int ret; 88 89 /* 90 * Note that we use page colouring to enforce a guard page at the 91 * end of the address space. This is required as the CS may prefetch 92 * beyond the end of the batch buffer, across the page boundary, 93 * and beyond the end of the GTT if we do not provide a guard. 94 */ 95 ret = ggtt_init_hw(to_gt(i915)->ggtt); 96 if (ret) 97 return ret; 98 99 return 0; 100 } 101 102 /** 103 * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM 104 * @vm: The VM to suspend the mappings for 105 * 106 * Suspend the memory mappings for all objects mapped to HW via the GGTT or a 107 * DPT page table. 108 */ 109 void i915_ggtt_suspend_vm(struct i915_address_space *vm) 110 { 111 struct i915_vma *vma, *vn; 112 int save_skip_rewrite; 113 114 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); 115 116 retry: 117 i915_gem_drain_freed_objects(vm->i915); 118 119 mutex_lock(&vm->mutex); 120 121 /* 122 * Skip rewriting PTE on VMA unbind. 123 * FIXME: Use an argument to i915_vma_unbind() instead? 124 */ 125 save_skip_rewrite = vm->skip_pte_rewrite; 126 vm->skip_pte_rewrite = true; 127 128 list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) { 129 struct drm_i915_gem_object *obj = vma->obj; 130 131 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 132 133 if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) 134 continue; 135 136 /* unlikely to race when GPU is idle, so no worry about slowpath.. */ 137 if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) { 138 /* 139 * No dead objects should appear here, GPU should be 140 * completely idle, and userspace suspended 141 */ 142 i915_gem_object_get(obj); 143 144 mutex_unlock(&vm->mutex); 145 146 i915_gem_object_lock(obj, NULL); 147 GEM_WARN_ON(i915_vma_unbind(vma)); 148 i915_gem_object_unlock(obj); 149 i915_gem_object_put(obj); 150 151 vm->skip_pte_rewrite = save_skip_rewrite; 152 goto retry; 153 } 154 155 if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) { 156 i915_vma_wait_for_bind(vma); 157 158 __i915_vma_evict(vma, false); 159 drm_mm_remove_node(&vma->node); 160 } 161 162 i915_gem_object_unlock(obj); 163 } 164 165 vm->clear_range(vm, 0, vm->total); 166 167 vm->skip_pte_rewrite = save_skip_rewrite; 168 169 mutex_unlock(&vm->mutex); 170 } 171 172 void i915_ggtt_suspend(struct i915_ggtt *ggtt) 173 { 174 struct intel_gt *gt; 175 176 i915_ggtt_suspend_vm(&ggtt->vm); 177 ggtt->invalidate(ggtt); 178 179 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) 180 intel_gt_check_and_clear_faults(gt); 181 } 182 183 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt) 184 { 185 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 186 187 spin_lock_irq(&uncore->lock); 188 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 189 intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6); 190 spin_unlock_irq(&uncore->lock); 191 } 192 193 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt) 194 { 195 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 196 197 /* 198 * Note that as an uncached mmio write, this will flush the 199 * WCB of the writes into the GGTT before it triggers the invalidate. 200 */ 201 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 202 } 203 204 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt) 205 { 206 struct drm_i915_private *i915 = ggtt->vm.i915; 207 208 gen8_ggtt_invalidate(ggtt); 209 210 if (GRAPHICS_VER(i915) >= 12) { 211 struct intel_gt *gt; 212 213 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) 214 intel_uncore_write_fw(gt->uncore, 215 GEN12_GUC_TLB_INV_CR, 216 GEN12_GUC_TLB_INV_CR_INVALIDATE); 217 } else { 218 intel_uncore_write_fw(ggtt->vm.gt->uncore, 219 GEN8_GTCR, GEN8_GTCR_INVALIDATE); 220 } 221 } 222 223 static u64 mtl_ggtt_pte_encode(dma_addr_t addr, 224 unsigned int pat_index, 225 u32 flags) 226 { 227 gen8_pte_t pte = addr | GEN8_PAGE_PRESENT; 228 229 WARN_ON_ONCE(addr & ~GEN12_GGTT_PTE_ADDR_MASK); 230 231 if (flags & PTE_LM) 232 pte |= GEN12_GGTT_PTE_LM; 233 234 if (pat_index & BIT(0)) 235 pte |= MTL_GGTT_PTE_PAT0; 236 237 if (pat_index & BIT(1)) 238 pte |= MTL_GGTT_PTE_PAT1; 239 240 return pte; 241 } 242 243 u64 gen8_ggtt_pte_encode(dma_addr_t addr, 244 unsigned int pat_index, 245 u32 flags) 246 { 247 gen8_pte_t pte = addr | GEN8_PAGE_PRESENT; 248 249 if (flags & PTE_LM) 250 pte |= GEN12_GGTT_PTE_LM; 251 252 return pte; 253 } 254 255 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) 256 { 257 writeq(pte, addr); 258 } 259 260 static void gen8_ggtt_insert_page(struct i915_address_space *vm, 261 dma_addr_t addr, 262 u64 offset, 263 unsigned int pat_index, 264 u32 flags) 265 { 266 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 267 gen8_pte_t __iomem *pte = 268 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 269 270 gen8_set_pte(pte, ggtt->vm.pte_encode(addr, pat_index, flags)); 271 272 ggtt->invalidate(ggtt); 273 } 274 275 static void gen8_ggtt_insert_entries(struct i915_address_space *vm, 276 struct i915_vma_resource *vma_res, 277 unsigned int pat_index, 278 u32 flags) 279 { 280 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 281 const gen8_pte_t pte_encode = ggtt->vm.pte_encode(0, pat_index, flags); 282 gen8_pte_t __iomem *gte; 283 gen8_pte_t __iomem *end; 284 struct sgt_iter iter; 285 dma_addr_t addr; 286 287 /* 288 * Note that we ignore PTE_READ_ONLY here. The caller must be careful 289 * not to allow the user to override access to a read only page. 290 */ 291 292 gte = (gen8_pte_t __iomem *)ggtt->gsm; 293 gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE; 294 end = gte + vma_res->guard / I915_GTT_PAGE_SIZE; 295 while (gte < end) 296 gen8_set_pte(gte++, vm->scratch[0]->encode); 297 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE; 298 299 for_each_sgt_daddr(addr, iter, vma_res->bi.pages) 300 gen8_set_pte(gte++, pte_encode | addr); 301 GEM_BUG_ON(gte > end); 302 303 /* Fill the allocated but "unused" space beyond the end of the buffer */ 304 while (gte < end) 305 gen8_set_pte(gte++, vm->scratch[0]->encode); 306 307 /* 308 * We want to flush the TLBs only after we're certain all the PTE 309 * updates have finished. 310 */ 311 ggtt->invalidate(ggtt); 312 } 313 314 static void gen8_ggtt_clear_range(struct i915_address_space *vm, 315 u64 start, u64 length) 316 { 317 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 318 unsigned int first_entry = start / I915_GTT_PAGE_SIZE; 319 unsigned int num_entries = length / I915_GTT_PAGE_SIZE; 320 const gen8_pte_t scratch_pte = vm->scratch[0]->encode; 321 gen8_pte_t __iomem *gtt_base = 322 (gen8_pte_t __iomem *)ggtt->gsm + first_entry; 323 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 324 int i; 325 326 if (WARN(num_entries > max_entries, 327 "First entry = %d; Num entries = %d (max=%d)\n", 328 first_entry, num_entries, max_entries)) 329 num_entries = max_entries; 330 331 for (i = 0; i < num_entries; i++) 332 gen8_set_pte(>t_base[i], scratch_pte); 333 } 334 335 static void gen6_ggtt_insert_page(struct i915_address_space *vm, 336 dma_addr_t addr, 337 u64 offset, 338 unsigned int pat_index, 339 u32 flags) 340 { 341 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 342 gen6_pte_t __iomem *pte = 343 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 344 345 iowrite32(vm->pte_encode(addr, pat_index, flags), pte); 346 347 ggtt->invalidate(ggtt); 348 } 349 350 /* 351 * Binds an object into the global gtt with the specified cache level. 352 * The object will be accessible to the GPU via commands whose operands 353 * reference offsets within the global GTT as well as accessible by the GPU 354 * through the GMADR mapped BAR (i915->mm.gtt->gtt). 355 */ 356 static void gen6_ggtt_insert_entries(struct i915_address_space *vm, 357 struct i915_vma_resource *vma_res, 358 unsigned int pat_index, 359 u32 flags) 360 { 361 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 362 gen6_pte_t __iomem *gte; 363 gen6_pte_t __iomem *end; 364 struct sgt_iter iter; 365 dma_addr_t addr; 366 367 gte = (gen6_pte_t __iomem *)ggtt->gsm; 368 gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE; 369 370 end = gte + vma_res->guard / I915_GTT_PAGE_SIZE; 371 while (gte < end) 372 iowrite32(vm->scratch[0]->encode, gte++); 373 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE; 374 for_each_sgt_daddr(addr, iter, vma_res->bi.pages) 375 iowrite32(vm->pte_encode(addr, pat_index, flags), gte++); 376 GEM_BUG_ON(gte > end); 377 378 /* Fill the allocated but "unused" space beyond the end of the buffer */ 379 while (gte < end) 380 iowrite32(vm->scratch[0]->encode, gte++); 381 382 /* 383 * We want to flush the TLBs only after we're certain all the PTE 384 * updates have finished. 385 */ 386 ggtt->invalidate(ggtt); 387 } 388 389 static void nop_clear_range(struct i915_address_space *vm, 390 u64 start, u64 length) 391 { 392 } 393 394 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm) 395 { 396 /* 397 * Make sure the internal GAM fifo has been cleared of all GTT 398 * writes before exiting stop_machine(). This guarantees that 399 * any aperture accesses waiting to start in another process 400 * cannot back up behind the GTT writes causing a hang. 401 * The register can be any arbitrary GAM register. 402 */ 403 intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6); 404 } 405 406 struct insert_page { 407 struct i915_address_space *vm; 408 dma_addr_t addr; 409 u64 offset; 410 unsigned int pat_index; 411 }; 412 413 static int bxt_vtd_ggtt_insert_page__cb(void *_arg) 414 { 415 struct insert_page *arg = _arg; 416 417 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, 418 arg->pat_index, 0); 419 bxt_vtd_ggtt_wa(arg->vm); 420 421 return 0; 422 } 423 424 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm, 425 dma_addr_t addr, 426 u64 offset, 427 unsigned int pat_index, 428 u32 unused) 429 { 430 struct insert_page arg = { vm, addr, offset, pat_index }; 431 432 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL); 433 } 434 435 struct insert_entries { 436 struct i915_address_space *vm; 437 struct i915_vma_resource *vma_res; 438 unsigned int pat_index; 439 u32 flags; 440 }; 441 442 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg) 443 { 444 struct insert_entries *arg = _arg; 445 446 gen8_ggtt_insert_entries(arg->vm, arg->vma_res, 447 arg->pat_index, arg->flags); 448 bxt_vtd_ggtt_wa(arg->vm); 449 450 return 0; 451 } 452 453 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm, 454 struct i915_vma_resource *vma_res, 455 unsigned int pat_index, 456 u32 flags) 457 { 458 struct insert_entries arg = { vm, vma_res, pat_index, flags }; 459 460 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL); 461 } 462 463 static void gen6_ggtt_clear_range(struct i915_address_space *vm, 464 u64 start, u64 length) 465 { 466 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 467 unsigned int first_entry = start / I915_GTT_PAGE_SIZE; 468 unsigned int num_entries = length / I915_GTT_PAGE_SIZE; 469 gen6_pte_t scratch_pte, __iomem *gtt_base = 470 (gen6_pte_t __iomem *)ggtt->gsm + first_entry; 471 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 472 int i; 473 474 if (WARN(num_entries > max_entries, 475 "First entry = %d; Num entries = %d (max=%d)\n", 476 first_entry, num_entries, max_entries)) 477 num_entries = max_entries; 478 479 scratch_pte = vm->scratch[0]->encode; 480 for (i = 0; i < num_entries; i++) 481 iowrite32(scratch_pte, >t_base[i]); 482 } 483 484 void intel_ggtt_bind_vma(struct i915_address_space *vm, 485 struct i915_vm_pt_stash *stash, 486 struct i915_vma_resource *vma_res, 487 unsigned int pat_index, 488 u32 flags) 489 { 490 u32 pte_flags; 491 492 if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK)) 493 return; 494 495 vma_res->bound_flags |= flags; 496 497 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */ 498 pte_flags = 0; 499 if (vma_res->bi.readonly) 500 pte_flags |= PTE_READ_ONLY; 501 if (vma_res->bi.lmem) 502 pte_flags |= PTE_LM; 503 504 vm->insert_entries(vm, vma_res, pat_index, pte_flags); 505 vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE; 506 } 507 508 void intel_ggtt_unbind_vma(struct i915_address_space *vm, 509 struct i915_vma_resource *vma_res) 510 { 511 vm->clear_range(vm, vma_res->start, vma_res->vma_size); 512 } 513 514 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt) 515 { 516 u64 size; 517 int ret; 518 519 if (!intel_uc_uses_guc(&ggtt->vm.gt->uc)) 520 return 0; 521 522 GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP); 523 size = ggtt->vm.total - GUC_GGTT_TOP; 524 525 ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw, size, 526 GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE, 527 PIN_NOEVICT); 528 if (ret) 529 drm_dbg(&ggtt->vm.i915->drm, 530 "Failed to reserve top of GGTT for GuC\n"); 531 532 return ret; 533 } 534 535 static void ggtt_release_guc_top(struct i915_ggtt *ggtt) 536 { 537 if (drm_mm_node_allocated(&ggtt->uc_fw)) 538 drm_mm_remove_node(&ggtt->uc_fw); 539 } 540 541 static void cleanup_init_ggtt(struct i915_ggtt *ggtt) 542 { 543 ggtt_release_guc_top(ggtt); 544 if (drm_mm_node_allocated(&ggtt->error_capture)) 545 drm_mm_remove_node(&ggtt->error_capture); 546 mutex_destroy(&ggtt->error_mutex); 547 } 548 549 static int init_ggtt(struct i915_ggtt *ggtt) 550 { 551 /* 552 * Let GEM Manage all of the aperture. 553 * 554 * However, leave one page at the end still bound to the scratch page. 555 * There are a number of places where the hardware apparently prefetches 556 * past the end of the object, and we've seen multiple hangs with the 557 * GPU head pointer stuck in a batchbuffer bound at the last page of the 558 * aperture. One page should be enough to keep any prefetching inside 559 * of the aperture. 560 */ 561 unsigned long hole_start, hole_end; 562 struct drm_mm_node *entry; 563 int ret; 564 565 /* 566 * GuC requires all resources that we're sharing with it to be placed in 567 * non-WOPCM memory. If GuC is not present or not in use we still need a 568 * small bias as ring wraparound at offset 0 sometimes hangs. No idea 569 * why. 570 */ 571 ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE, 572 intel_wopcm_guc_size(&ggtt->vm.gt->wopcm)); 573 574 ret = intel_vgt_balloon(ggtt); 575 if (ret) 576 return ret; 577 578 mutex_init(&ggtt->error_mutex); 579 if (ggtt->mappable_end) { 580 /* 581 * Reserve a mappable slot for our lockless error capture. 582 * 583 * We strongly prefer taking address 0x0 in order to protect 584 * other critical buffers against accidental overwrites, 585 * as writing to address 0 is a very common mistake. 586 * 587 * Since 0 may already be in use by the system (e.g. the BIOS 588 * framebuffer), we let the reservation fail quietly and hope 589 * 0 remains reserved always. 590 * 591 * If we fail to reserve 0, and then fail to find any space 592 * for an error-capture, remain silent. We can afford not 593 * to reserve an error_capture node as we have fallback 594 * paths, and we trust that 0 will remain reserved. However, 595 * the only likely reason for failure to insert is a driver 596 * bug, which we expect to cause other failures... 597 * 598 * Since CPU can perform speculative reads on error capture 599 * (write-combining allows it) add scratch page after error 600 * capture to avoid DMAR errors. 601 */ 602 ggtt->error_capture.size = 2 * I915_GTT_PAGE_SIZE; 603 ggtt->error_capture.color = I915_COLOR_UNEVICTABLE; 604 if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture)) 605 drm_mm_insert_node_in_range(&ggtt->vm.mm, 606 &ggtt->error_capture, 607 ggtt->error_capture.size, 0, 608 ggtt->error_capture.color, 609 0, ggtt->mappable_end, 610 DRM_MM_INSERT_LOW); 611 } 612 if (drm_mm_node_allocated(&ggtt->error_capture)) { 613 u64 start = ggtt->error_capture.start; 614 u64 size = ggtt->error_capture.size; 615 616 ggtt->vm.scratch_range(&ggtt->vm, start, size); 617 drm_dbg(&ggtt->vm.i915->drm, 618 "Reserved GGTT:[%llx, %llx] for use by error capture\n", 619 start, start + size); 620 } 621 622 /* 623 * The upper portion of the GuC address space has a sizeable hole 624 * (several MB) that is inaccessible by GuC. Reserve this range within 625 * GGTT as it can comfortably hold GuC/HuC firmware images. 626 */ 627 ret = ggtt_reserve_guc_top(ggtt); 628 if (ret) 629 goto err; 630 631 /* Clear any non-preallocated blocks */ 632 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) { 633 drm_dbg(&ggtt->vm.i915->drm, 634 "clearing unused GTT space: [%lx, %lx]\n", 635 hole_start, hole_end); 636 ggtt->vm.clear_range(&ggtt->vm, hole_start, 637 hole_end - hole_start); 638 } 639 640 /* And finally clear the reserved guard page */ 641 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE); 642 643 return 0; 644 645 err: 646 cleanup_init_ggtt(ggtt); 647 return ret; 648 } 649 650 static void aliasing_gtt_bind_vma(struct i915_address_space *vm, 651 struct i915_vm_pt_stash *stash, 652 struct i915_vma_resource *vma_res, 653 unsigned int pat_index, 654 u32 flags) 655 { 656 u32 pte_flags; 657 658 /* Currently applicable only to VLV */ 659 pte_flags = 0; 660 if (vma_res->bi.readonly) 661 pte_flags |= PTE_READ_ONLY; 662 663 if (flags & I915_VMA_LOCAL_BIND) 664 ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm, 665 stash, vma_res, pat_index, flags); 666 667 if (flags & I915_VMA_GLOBAL_BIND) 668 vm->insert_entries(vm, vma_res, pat_index, pte_flags); 669 670 vma_res->bound_flags |= flags; 671 } 672 673 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm, 674 struct i915_vma_resource *vma_res) 675 { 676 if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND) 677 vm->clear_range(vm, vma_res->start, vma_res->vma_size); 678 679 if (vma_res->bound_flags & I915_VMA_LOCAL_BIND) 680 ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res); 681 } 682 683 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt) 684 { 685 struct i915_vm_pt_stash stash = {}; 686 struct i915_ppgtt *ppgtt; 687 int err; 688 689 ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0); 690 if (IS_ERR(ppgtt)) 691 return PTR_ERR(ppgtt); 692 693 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) { 694 err = -ENODEV; 695 goto err_ppgtt; 696 } 697 698 err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total); 699 if (err) 700 goto err_ppgtt; 701 702 i915_gem_object_lock(ppgtt->vm.scratch[0], NULL); 703 err = i915_vm_map_pt_stash(&ppgtt->vm, &stash); 704 i915_gem_object_unlock(ppgtt->vm.scratch[0]); 705 if (err) 706 goto err_stash; 707 708 /* 709 * Note we only pre-allocate as far as the end of the global 710 * GTT. On 48b / 4-level page-tables, the difference is very, 711 * very significant! We have to preallocate as GVT/vgpu does 712 * not like the page directory disappearing. 713 */ 714 ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total); 715 716 ggtt->alias = ppgtt; 717 ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags; 718 719 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != intel_ggtt_bind_vma); 720 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma; 721 722 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != intel_ggtt_unbind_vma); 723 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma; 724 725 i915_vm_free_pt_stash(&ppgtt->vm, &stash); 726 return 0; 727 728 err_stash: 729 i915_vm_free_pt_stash(&ppgtt->vm, &stash); 730 err_ppgtt: 731 i915_vm_put(&ppgtt->vm); 732 return err; 733 } 734 735 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt) 736 { 737 struct i915_ppgtt *ppgtt; 738 739 ppgtt = fetch_and_zero(&ggtt->alias); 740 if (!ppgtt) 741 return; 742 743 i915_vm_put(&ppgtt->vm); 744 745 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; 746 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; 747 } 748 749 int i915_init_ggtt(struct drm_i915_private *i915) 750 { 751 int ret; 752 753 ret = init_ggtt(to_gt(i915)->ggtt); 754 if (ret) 755 return ret; 756 757 if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) { 758 ret = init_aliasing_ppgtt(to_gt(i915)->ggtt); 759 if (ret) 760 cleanup_init_ggtt(to_gt(i915)->ggtt); 761 } 762 763 return 0; 764 } 765 766 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt) 767 { 768 struct i915_vma *vma, *vn; 769 770 flush_workqueue(ggtt->vm.i915->wq); 771 i915_gem_drain_freed_objects(ggtt->vm.i915); 772 773 mutex_lock(&ggtt->vm.mutex); 774 775 ggtt->vm.skip_pte_rewrite = true; 776 777 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) { 778 struct drm_i915_gem_object *obj = vma->obj; 779 bool trylock; 780 781 trylock = i915_gem_object_trylock(obj, NULL); 782 WARN_ON(!trylock); 783 784 WARN_ON(__i915_vma_unbind(vma)); 785 if (trylock) 786 i915_gem_object_unlock(obj); 787 } 788 789 if (drm_mm_node_allocated(&ggtt->error_capture)) 790 drm_mm_remove_node(&ggtt->error_capture); 791 mutex_destroy(&ggtt->error_mutex); 792 793 ggtt_release_guc_top(ggtt); 794 intel_vgt_deballoon(ggtt); 795 796 ggtt->vm.cleanup(&ggtt->vm); 797 798 mutex_unlock(&ggtt->vm.mutex); 799 i915_address_space_fini(&ggtt->vm); 800 801 arch_phys_wc_del(ggtt->mtrr); 802 803 if (ggtt->iomap.size) 804 io_mapping_fini(&ggtt->iomap); 805 } 806 807 /** 808 * i915_ggtt_driver_release - Clean up GGTT hardware initialization 809 * @i915: i915 device 810 */ 811 void i915_ggtt_driver_release(struct drm_i915_private *i915) 812 { 813 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 814 815 fini_aliasing_ppgtt(ggtt); 816 817 intel_ggtt_fini_fences(ggtt); 818 ggtt_cleanup_hw(ggtt); 819 } 820 821 /** 822 * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after 823 * all free objects have been drained. 824 * @i915: i915 device 825 */ 826 void i915_ggtt_driver_late_release(struct drm_i915_private *i915) 827 { 828 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 829 830 GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1); 831 dma_resv_fini(&ggtt->vm._resv); 832 } 833 834 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) 835 { 836 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; 837 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; 838 return snb_gmch_ctl << 20; 839 } 840 841 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) 842 { 843 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; 844 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; 845 if (bdw_gmch_ctl) 846 bdw_gmch_ctl = 1 << bdw_gmch_ctl; 847 848 #ifdef CONFIG_X86_32 849 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */ 850 if (bdw_gmch_ctl > 4) 851 bdw_gmch_ctl = 4; 852 #endif 853 854 return bdw_gmch_ctl << 20; 855 } 856 857 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) 858 { 859 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; 860 gmch_ctrl &= SNB_GMCH_GGMS_MASK; 861 862 if (gmch_ctrl) 863 return 1 << (20 + gmch_ctrl); 864 865 return 0; 866 } 867 868 static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915) 869 { 870 /* 871 * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset 872 * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset 873 */ 874 GEM_BUG_ON(GRAPHICS_VER(i915) < 6); 875 return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M; 876 } 877 878 static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915) 879 { 880 return gen6_gttmmadr_size(i915) / 2; 881 } 882 883 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) 884 { 885 struct drm_i915_private *i915 = ggtt->vm.i915; 886 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 887 phys_addr_t phys_addr; 888 u32 pte_flags; 889 int ret; 890 891 GEM_WARN_ON(pci_resource_len(pdev, GEN4_GTTMMADR_BAR) != gen6_gttmmadr_size(i915)); 892 phys_addr = pci_resource_start(pdev, GEN4_GTTMMADR_BAR) + gen6_gttadr_offset(i915); 893 894 /* 895 * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range 896 * will be dropped. For WC mappings in general we have 64 byte burst 897 * writes when the WC buffer is flushed, so we can't use it, but have to 898 * resort to an uncached mapping. The WC issue is easily caught by the 899 * readback check when writing GTT PTE entries. 900 */ 901 if (IS_GEN9_LP(i915) || GRAPHICS_VER(i915) >= 11) 902 ggtt->gsm = ioremap(phys_addr, size); 903 else 904 ggtt->gsm = ioremap_wc(phys_addr, size); 905 if (!ggtt->gsm) { 906 drm_err(&i915->drm, "Failed to map the ggtt page table\n"); 907 return -ENOMEM; 908 } 909 910 kref_init(&ggtt->vm.resv_ref); 911 ret = setup_scratch_page(&ggtt->vm); 912 if (ret) { 913 drm_err(&i915->drm, "Scratch setup failed\n"); 914 /* iounmap will also get called at remove, but meh */ 915 iounmap(ggtt->gsm); 916 return ret; 917 } 918 919 pte_flags = 0; 920 if (i915_gem_object_is_lmem(ggtt->vm.scratch[0])) 921 pte_flags |= PTE_LM; 922 923 ggtt->vm.scratch[0]->encode = 924 ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]), 925 i915_gem_get_pat_index(i915, 926 I915_CACHE_NONE), 927 pte_flags); 928 929 return 0; 930 } 931 932 static void gen6_gmch_remove(struct i915_address_space *vm) 933 { 934 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 935 936 iounmap(ggtt->gsm); 937 free_scratch(vm); 938 } 939 940 static struct resource pci_resource(struct pci_dev *pdev, int bar) 941 { 942 return DEFINE_RES_MEM(pci_resource_start(pdev, bar), 943 pci_resource_len(pdev, bar)); 944 } 945 946 static int gen8_gmch_probe(struct i915_ggtt *ggtt) 947 { 948 struct drm_i915_private *i915 = ggtt->vm.i915; 949 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 950 unsigned int size; 951 u16 snb_gmch_ctl; 952 953 if (!HAS_LMEM(i915) && !HAS_LMEMBAR_SMEM_STOLEN(i915)) { 954 if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR)) 955 return -ENXIO; 956 957 ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR); 958 ggtt->mappable_end = resource_size(&ggtt->gmadr); 959 } 960 961 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 962 if (IS_CHERRYVIEW(i915)) 963 size = chv_get_total_gtt_size(snb_gmch_ctl); 964 else 965 size = gen8_get_total_gtt_size(snb_gmch_ctl); 966 967 ggtt->vm.alloc_pt_dma = alloc_pt_dma; 968 ggtt->vm.alloc_scratch_dma = alloc_pt_dma; 969 ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY; 970 971 ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE; 972 ggtt->vm.cleanup = gen6_gmch_remove; 973 ggtt->vm.insert_page = gen8_ggtt_insert_page; 974 ggtt->vm.clear_range = nop_clear_range; 975 ggtt->vm.scratch_range = gen8_ggtt_clear_range; 976 977 ggtt->vm.insert_entries = gen8_ggtt_insert_entries; 978 979 /* 980 * Serialize GTT updates with aperture access on BXT if VT-d is on, 981 * and always on CHV. 982 */ 983 if (intel_vm_no_concurrent_access_wa(i915)) { 984 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL; 985 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL; 986 987 /* 988 * Calling stop_machine() version of GGTT update function 989 * at error capture/reset path will raise lockdep warning. 990 * Allow calling gen8_ggtt_insert_* directly at reset path 991 * which is safe from parallel GGTT updates. 992 */ 993 ggtt->vm.raw_insert_page = gen8_ggtt_insert_page; 994 ggtt->vm.raw_insert_entries = gen8_ggtt_insert_entries; 995 996 ggtt->vm.bind_async_flags = 997 I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 998 } 999 1000 if (intel_uc_wants_guc(&ggtt->vm.gt->uc)) 1001 ggtt->invalidate = guc_ggtt_invalidate; 1002 else 1003 ggtt->invalidate = gen8_ggtt_invalidate; 1004 1005 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; 1006 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; 1007 1008 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) 1009 ggtt->vm.pte_encode = mtl_ggtt_pte_encode; 1010 else 1011 ggtt->vm.pte_encode = gen8_ggtt_pte_encode; 1012 1013 return ggtt_probe_common(ggtt, size); 1014 } 1015 1016 /* 1017 * For pre-gen8 platforms pat_index is the same as enum i915_cache_level, 1018 * so the switch-case statements in these PTE encode functions are still valid. 1019 * See translation table LEGACY_CACHELEVEL. 1020 */ 1021 static u64 snb_pte_encode(dma_addr_t addr, 1022 unsigned int pat_index, 1023 u32 flags) 1024 { 1025 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1026 1027 switch (pat_index) { 1028 case I915_CACHE_L3_LLC: 1029 case I915_CACHE_LLC: 1030 pte |= GEN6_PTE_CACHE_LLC; 1031 break; 1032 case I915_CACHE_NONE: 1033 pte |= GEN6_PTE_UNCACHED; 1034 break; 1035 default: 1036 MISSING_CASE(pat_index); 1037 } 1038 1039 return pte; 1040 } 1041 1042 static u64 ivb_pte_encode(dma_addr_t addr, 1043 unsigned int pat_index, 1044 u32 flags) 1045 { 1046 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1047 1048 switch (pat_index) { 1049 case I915_CACHE_L3_LLC: 1050 pte |= GEN7_PTE_CACHE_L3_LLC; 1051 break; 1052 case I915_CACHE_LLC: 1053 pte |= GEN6_PTE_CACHE_LLC; 1054 break; 1055 case I915_CACHE_NONE: 1056 pte |= GEN6_PTE_UNCACHED; 1057 break; 1058 default: 1059 MISSING_CASE(pat_index); 1060 } 1061 1062 return pte; 1063 } 1064 1065 static u64 byt_pte_encode(dma_addr_t addr, 1066 unsigned int pat_index, 1067 u32 flags) 1068 { 1069 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1070 1071 if (!(flags & PTE_READ_ONLY)) 1072 pte |= BYT_PTE_WRITEABLE; 1073 1074 if (pat_index != I915_CACHE_NONE) 1075 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; 1076 1077 return pte; 1078 } 1079 1080 static u64 hsw_pte_encode(dma_addr_t addr, 1081 unsigned int pat_index, 1082 u32 flags) 1083 { 1084 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1085 1086 if (pat_index != I915_CACHE_NONE) 1087 pte |= HSW_WB_LLC_AGE3; 1088 1089 return pte; 1090 } 1091 1092 static u64 iris_pte_encode(dma_addr_t addr, 1093 unsigned int pat_index, 1094 u32 flags) 1095 { 1096 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1097 1098 switch (pat_index) { 1099 case I915_CACHE_NONE: 1100 break; 1101 case I915_CACHE_WT: 1102 pte |= HSW_WT_ELLC_LLC_AGE3; 1103 break; 1104 default: 1105 pte |= HSW_WB_ELLC_LLC_AGE3; 1106 break; 1107 } 1108 1109 return pte; 1110 } 1111 1112 static int gen6_gmch_probe(struct i915_ggtt *ggtt) 1113 { 1114 struct drm_i915_private *i915 = ggtt->vm.i915; 1115 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 1116 unsigned int size; 1117 u16 snb_gmch_ctl; 1118 1119 if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR)) 1120 return -ENXIO; 1121 1122 ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR); 1123 ggtt->mappable_end = resource_size(&ggtt->gmadr); 1124 1125 /* 1126 * 64/512MB is the current min/max we actually know of, but this is 1127 * just a coarse sanity check. 1128 */ 1129 if (ggtt->mappable_end < (64 << 20) || 1130 ggtt->mappable_end > (512 << 20)) { 1131 drm_err(&i915->drm, "Unknown GMADR size (%pa)\n", 1132 &ggtt->mappable_end); 1133 return -ENXIO; 1134 } 1135 1136 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 1137 1138 size = gen6_get_total_gtt_size(snb_gmch_ctl); 1139 ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE; 1140 1141 ggtt->vm.alloc_pt_dma = alloc_pt_dma; 1142 ggtt->vm.alloc_scratch_dma = alloc_pt_dma; 1143 1144 ggtt->vm.clear_range = nop_clear_range; 1145 if (!HAS_FULL_PPGTT(i915)) 1146 ggtt->vm.clear_range = gen6_ggtt_clear_range; 1147 ggtt->vm.scratch_range = gen6_ggtt_clear_range; 1148 ggtt->vm.insert_page = gen6_ggtt_insert_page; 1149 ggtt->vm.insert_entries = gen6_ggtt_insert_entries; 1150 ggtt->vm.cleanup = gen6_gmch_remove; 1151 1152 ggtt->invalidate = gen6_ggtt_invalidate; 1153 1154 if (HAS_EDRAM(i915)) 1155 ggtt->vm.pte_encode = iris_pte_encode; 1156 else if (IS_HASWELL(i915)) 1157 ggtt->vm.pte_encode = hsw_pte_encode; 1158 else if (IS_VALLEYVIEW(i915)) 1159 ggtt->vm.pte_encode = byt_pte_encode; 1160 else if (GRAPHICS_VER(i915) >= 7) 1161 ggtt->vm.pte_encode = ivb_pte_encode; 1162 else 1163 ggtt->vm.pte_encode = snb_pte_encode; 1164 1165 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; 1166 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; 1167 1168 return ggtt_probe_common(ggtt, size); 1169 } 1170 1171 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt) 1172 { 1173 struct drm_i915_private *i915 = gt->i915; 1174 int ret; 1175 1176 ggtt->vm.gt = gt; 1177 ggtt->vm.i915 = i915; 1178 ggtt->vm.dma = i915->drm.dev; 1179 dma_resv_init(&ggtt->vm._resv); 1180 1181 if (GRAPHICS_VER(i915) >= 8) 1182 ret = gen8_gmch_probe(ggtt); 1183 else if (GRAPHICS_VER(i915) >= 6) 1184 ret = gen6_gmch_probe(ggtt); 1185 else 1186 ret = intel_ggtt_gmch_probe(ggtt); 1187 1188 if (ret) { 1189 dma_resv_fini(&ggtt->vm._resv); 1190 return ret; 1191 } 1192 1193 if ((ggtt->vm.total - 1) >> 32) { 1194 drm_err(&i915->drm, 1195 "We never expected a Global GTT with more than 32bits" 1196 " of address space! Found %lldM!\n", 1197 ggtt->vm.total >> 20); 1198 ggtt->vm.total = 1ULL << 32; 1199 ggtt->mappable_end = 1200 min_t(u64, ggtt->mappable_end, ggtt->vm.total); 1201 } 1202 1203 if (ggtt->mappable_end > ggtt->vm.total) { 1204 drm_err(&i915->drm, 1205 "mappable aperture extends past end of GGTT," 1206 " aperture=%pa, total=%llx\n", 1207 &ggtt->mappable_end, ggtt->vm.total); 1208 ggtt->mappable_end = ggtt->vm.total; 1209 } 1210 1211 /* GMADR is the PCI mmio aperture into the global GTT. */ 1212 drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20); 1213 drm_dbg(&i915->drm, "GMADR size = %lluM\n", 1214 (u64)ggtt->mappable_end >> 20); 1215 drm_dbg(&i915->drm, "DSM size = %lluM\n", 1216 (u64)resource_size(&intel_graphics_stolen_res) >> 20); 1217 1218 return 0; 1219 } 1220 1221 /** 1222 * i915_ggtt_probe_hw - Probe GGTT hardware location 1223 * @i915: i915 device 1224 */ 1225 int i915_ggtt_probe_hw(struct drm_i915_private *i915) 1226 { 1227 struct intel_gt *gt; 1228 int ret, i; 1229 1230 for_each_gt(gt, i915, i) { 1231 ret = intel_gt_assign_ggtt(gt); 1232 if (ret) 1233 return ret; 1234 } 1235 1236 ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915)); 1237 if (ret) 1238 return ret; 1239 1240 if (i915_vtd_active(i915)) 1241 drm_info(&i915->drm, "VT-d active for gfx access\n"); 1242 1243 return 0; 1244 } 1245 1246 struct i915_ggtt *i915_ggtt_create(struct drm_i915_private *i915) 1247 { 1248 struct i915_ggtt *ggtt; 1249 1250 ggtt = drmm_kzalloc(&i915->drm, sizeof(*ggtt), GFP_KERNEL); 1251 if (!ggtt) 1252 return ERR_PTR(-ENOMEM); 1253 1254 INIT_LIST_HEAD(&ggtt->gt_list); 1255 1256 return ggtt; 1257 } 1258 1259 int i915_ggtt_enable_hw(struct drm_i915_private *i915) 1260 { 1261 if (GRAPHICS_VER(i915) < 6) 1262 return intel_ggtt_gmch_enable_hw(i915); 1263 1264 return 0; 1265 } 1266 1267 /** 1268 * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM 1269 * @vm: The VM to restore the mappings for 1270 * 1271 * Restore the memory mappings for all objects mapped to HW via the GGTT or a 1272 * DPT page table. 1273 * 1274 * Returns %true if restoring the mapping for any object that was in a write 1275 * domain before suspend. 1276 */ 1277 bool i915_ggtt_resume_vm(struct i915_address_space *vm) 1278 { 1279 struct i915_vma *vma; 1280 bool write_domain_objs = false; 1281 1282 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); 1283 1284 /* First fill our portion of the GTT with scratch pages */ 1285 vm->clear_range(vm, 0, vm->total); 1286 1287 /* clflush objects bound into the GGTT and rebind them. */ 1288 list_for_each_entry(vma, &vm->bound_list, vm_link) { 1289 struct drm_i915_gem_object *obj = vma->obj; 1290 unsigned int was_bound = 1291 atomic_read(&vma->flags) & I915_VMA_BIND_MASK; 1292 1293 GEM_BUG_ON(!was_bound); 1294 1295 /* 1296 * Clear the bound flags of the vma resource to allow 1297 * ptes to be repopulated. 1298 */ 1299 vma->resource->bound_flags = 0; 1300 vma->ops->bind_vma(vm, NULL, vma->resource, 1301 obj ? obj->pat_index : 1302 i915_gem_get_pat_index(vm->i915, 1303 I915_CACHE_NONE), 1304 was_bound); 1305 1306 if (obj) { /* only used during resume => exclusive access */ 1307 write_domain_objs |= fetch_and_zero(&obj->write_domain); 1308 obj->read_domains |= I915_GEM_DOMAIN_GTT; 1309 } 1310 } 1311 1312 return write_domain_objs; 1313 } 1314 1315 void i915_ggtt_resume(struct i915_ggtt *ggtt) 1316 { 1317 struct intel_gt *gt; 1318 bool flush; 1319 1320 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) 1321 intel_gt_check_and_clear_faults(gt); 1322 1323 flush = i915_ggtt_resume_vm(&ggtt->vm); 1324 1325 if (drm_mm_node_allocated(&ggtt->error_capture)) 1326 ggtt->vm.scratch_range(&ggtt->vm, ggtt->error_capture.start, 1327 ggtt->error_capture.size); 1328 1329 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) 1330 intel_uc_resume_mappings(>->uc); 1331 1332 ggtt->invalidate(ggtt); 1333 1334 if (flush) 1335 wbinvd_on_all_cpus(); 1336 1337 intel_ggtt_restore_fences(ggtt); 1338 } 1339