xref: /linux/drivers/gpu/drm/i915/gt/intel_ggtt.c (revision f6e8dc9edf963dbc99085e54f6ced6da9daa6100)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <asm/set_memory.h>
7 #include <asm/smp.h>
8 #include <linux/types.h>
9 #include <linux/stop_machine.h>
10 
11 #include <drm/drm_managed.h>
12 #include <drm/drm_print.h>
13 #include <drm/intel/i915_drm.h>
14 #include <drm/intel/intel-gtt.h>
15 
16 #include "gem/i915_gem_lmem.h"
17 
18 #include "intel_context.h"
19 #include "intel_ggtt_gmch.h"
20 #include "intel_gpu_commands.h"
21 #include "intel_gt.h"
22 #include "intel_gt_regs.h"
23 #include "intel_pci_config.h"
24 #include "intel_ring.h"
25 #include "i915_drv.h"
26 #include "i915_pci.h"
27 #include "i915_reg.h"
28 #include "i915_request.h"
29 #include "i915_scatterlist.h"
30 #include "i915_utils.h"
31 #include "i915_vgpu.h"
32 
33 #include "intel_gtt.h"
34 #include "gen8_ppgtt.h"
35 #include "intel_engine_pm.h"
36 
37 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
38 				   unsigned long color,
39 				   u64 *start,
40 				   u64 *end)
41 {
42 	if (i915_node_color_differs(node, color))
43 		*start += I915_GTT_PAGE_SIZE;
44 
45 	/*
46 	 * Also leave a space between the unallocated reserved node after the
47 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
48 	 * to insert a guard page to prevent prefetches crossing over the
49 	 * GTT boundary.
50 	 */
51 	node = list_next_entry(node, node_list);
52 	if (node->color != color)
53 		*end -= I915_GTT_PAGE_SIZE;
54 }
55 
56 static int ggtt_init_hw(struct i915_ggtt *ggtt)
57 {
58 	struct drm_i915_private *i915 = ggtt->vm.i915;
59 
60 	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
61 
62 	ggtt->vm.is_ggtt = true;
63 
64 	/* Only VLV supports read-only GGTT mappings */
65 	ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
66 
67 	if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
68 		ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
69 
70 	if (ggtt->mappable_end) {
71 		if (!io_mapping_init_wc(&ggtt->iomap,
72 					ggtt->gmadr.start,
73 					ggtt->mappable_end)) {
74 			ggtt->vm.cleanup(&ggtt->vm);
75 			return -EIO;
76 		}
77 
78 		ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
79 					      ggtt->mappable_end);
80 	}
81 
82 	intel_ggtt_init_fences(ggtt);
83 
84 	return 0;
85 }
86 
87 /**
88  * i915_ggtt_init_hw - Initialize GGTT hardware
89  * @i915: i915 device
90  */
91 int i915_ggtt_init_hw(struct drm_i915_private *i915)
92 {
93 	int ret;
94 
95 	/*
96 	 * Note that we use page colouring to enforce a guard page at the
97 	 * end of the address space. This is required as the CS may prefetch
98 	 * beyond the end of the batch buffer, across the page boundary,
99 	 * and beyond the end of the GTT if we do not provide a guard.
100 	 */
101 	ret = ggtt_init_hw(to_gt(i915)->ggtt);
102 	if (ret)
103 		return ret;
104 
105 	return 0;
106 }
107 
108 /**
109  * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM
110  * @vm: The VM to suspend the mappings for
111  * @evict_all: Evict all VMAs
112  *
113  * Suspend the memory mappings for all objects mapped to HW via the GGTT or a
114  * DPT page table.
115  */
116 void i915_ggtt_suspend_vm(struct i915_address_space *vm, bool evict_all)
117 {
118 	struct i915_vma *vma, *vn;
119 	int save_skip_rewrite;
120 
121 	drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
122 
123 retry:
124 	i915_gem_drain_freed_objects(vm->i915);
125 
126 	mutex_lock(&vm->mutex);
127 
128 	/*
129 	 * Skip rewriting PTE on VMA unbind.
130 	 * FIXME: Use an argument to i915_vma_unbind() instead?
131 	 */
132 	save_skip_rewrite = vm->skip_pte_rewrite;
133 	vm->skip_pte_rewrite = true;
134 
135 	list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
136 		struct drm_i915_gem_object *obj = vma->obj;
137 
138 		GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
139 
140 		if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
141 			continue;
142 
143 		/* unlikely to race when GPU is idle, so no worry about slowpath.. */
144 		if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) {
145 			/*
146 			 * No dead objects should appear here, GPU should be
147 			 * completely idle, and userspace suspended
148 			 */
149 			i915_gem_object_get(obj);
150 
151 			mutex_unlock(&vm->mutex);
152 
153 			i915_gem_object_lock(obj, NULL);
154 			GEM_WARN_ON(i915_vma_unbind(vma));
155 			i915_gem_object_unlock(obj);
156 			i915_gem_object_put(obj);
157 
158 			vm->skip_pte_rewrite = save_skip_rewrite;
159 			goto retry;
160 		}
161 
162 		if (evict_all || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
163 			i915_vma_wait_for_bind(vma);
164 
165 			__i915_vma_evict(vma, false);
166 			drm_mm_remove_node(&vma->node);
167 		}
168 
169 		i915_gem_object_unlock(obj);
170 	}
171 
172 	vm->clear_range(vm, 0, vm->total);
173 
174 	vm->skip_pte_rewrite = save_skip_rewrite;
175 
176 	mutex_unlock(&vm->mutex);
177 
178 	drm_WARN_ON(&vm->i915->drm, evict_all && !list_empty(&vm->bound_list));
179 }
180 
181 void i915_ggtt_suspend(struct i915_ggtt *ggtt)
182 {
183 	struct intel_gt *gt;
184 
185 	i915_ggtt_suspend_vm(&ggtt->vm, false);
186 	ggtt->invalidate(ggtt);
187 
188 	list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
189 		intel_gt_check_and_clear_faults(gt);
190 }
191 
192 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
193 {
194 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
195 
196 	spin_lock_irq(&uncore->lock);
197 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
198 	intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
199 	spin_unlock_irq(&uncore->lock);
200 }
201 
202 static bool needs_wc_ggtt_mapping(struct drm_i915_private *i915)
203 {
204 	/*
205 	 * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range
206 	 * will be dropped. For WC mappings in general we have 64 byte burst
207 	 * writes when the WC buffer is flushed, so we can't use it, but have to
208 	 * resort to an uncached mapping. The WC issue is easily caught by the
209 	 * readback check when writing GTT PTE entries.
210 	 */
211 	if (!IS_GEN9_LP(i915) && GRAPHICS_VER(i915) < 11)
212 		return true;
213 
214 	return false;
215 }
216 
217 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
218 {
219 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
220 
221 	/*
222 	 * Note that as an uncached mmio write, this will flush the
223 	 * WCB of the writes into the GGTT before it triggers the invalidate.
224 	 *
225 	 * Only perform this when GGTT is mapped as WC, see ggtt_probe_common().
226 	 */
227 	if (needs_wc_ggtt_mapping(ggtt->vm.i915))
228 		intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6,
229 				      GFX_FLSH_CNTL_EN);
230 }
231 
232 static void guc_ggtt_ct_invalidate(struct intel_gt *gt)
233 {
234 	struct intel_uncore *uncore = gt->uncore;
235 	intel_wakeref_t wakeref;
236 
237 	with_intel_runtime_pm_if_active(uncore->rpm, wakeref)
238 		intel_guc_invalidate_tlb_guc(gt_to_guc(gt));
239 }
240 
241 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
242 {
243 	struct drm_i915_private *i915 = ggtt->vm.i915;
244 	struct intel_gt *gt;
245 
246 	gen8_ggtt_invalidate(ggtt);
247 
248 	list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) {
249 		if (intel_guc_tlb_invalidation_is_available(gt_to_guc(gt)))
250 			guc_ggtt_ct_invalidate(gt);
251 		else if (GRAPHICS_VER(i915) >= 12)
252 			intel_uncore_write_fw(gt->uncore,
253 					      GEN12_GUC_TLB_INV_CR,
254 					      GEN12_GUC_TLB_INV_CR_INVALIDATE);
255 		else
256 			intel_uncore_write_fw(gt->uncore,
257 					      GEN8_GTCR, GEN8_GTCR_INVALIDATE);
258 	}
259 }
260 
261 static u64 mtl_ggtt_pte_encode(dma_addr_t addr,
262 			       unsigned int pat_index,
263 			       u32 flags)
264 {
265 	gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
266 
267 	WARN_ON_ONCE(addr & ~GEN12_GGTT_PTE_ADDR_MASK);
268 
269 	if (flags & PTE_LM)
270 		pte |= GEN12_GGTT_PTE_LM;
271 
272 	if (pat_index & BIT(0))
273 		pte |= MTL_GGTT_PTE_PAT0;
274 
275 	if (pat_index & BIT(1))
276 		pte |= MTL_GGTT_PTE_PAT1;
277 
278 	return pte;
279 }
280 
281 u64 gen8_ggtt_pte_encode(dma_addr_t addr,
282 			 unsigned int pat_index,
283 			 u32 flags)
284 {
285 	gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
286 
287 	if (flags & PTE_LM)
288 		pte |= GEN12_GGTT_PTE_LM;
289 
290 	return pte;
291 }
292 
293 static dma_addr_t gen8_ggtt_pte_decode(u64 pte, bool *is_present, bool *is_local)
294 {
295 	*is_present = pte & GEN8_PAGE_PRESENT;
296 	*is_local = pte & GEN12_GGTT_PTE_LM;
297 
298 	return pte & GEN12_GGTT_PTE_ADDR_MASK;
299 }
300 
301 static bool should_update_ggtt_with_bind(struct i915_ggtt *ggtt)
302 {
303 	struct intel_gt *gt = ggtt->vm.gt;
304 
305 	return intel_gt_is_bind_context_ready(gt);
306 }
307 
308 static struct intel_context *gen8_ggtt_bind_get_ce(struct i915_ggtt *ggtt, intel_wakeref_t *wakeref)
309 {
310 	struct intel_context *ce;
311 	struct intel_gt *gt = ggtt->vm.gt;
312 
313 	if (intel_gt_is_wedged(gt))
314 		return NULL;
315 
316 	ce = gt->engine[BCS0]->bind_context;
317 	GEM_BUG_ON(!ce);
318 
319 	/*
320 	 * If the GT is not awake already at this stage then fallback
321 	 * to pci based GGTT update otherwise __intel_wakeref_get_first()
322 	 * would conflict with fs_reclaim trying to allocate memory while
323 	 * doing rpm_resume().
324 	 */
325 	*wakeref = intel_gt_pm_get_if_awake(gt);
326 	if (!*wakeref)
327 		return NULL;
328 
329 	intel_engine_pm_get(ce->engine);
330 
331 	return ce;
332 }
333 
334 static void gen8_ggtt_bind_put_ce(struct intel_context *ce, intel_wakeref_t wakeref)
335 {
336 	intel_engine_pm_put(ce->engine);
337 	intel_gt_pm_put(ce->engine->gt, wakeref);
338 }
339 
340 static bool gen8_ggtt_bind_ptes(struct i915_ggtt *ggtt, u32 offset,
341 				struct sg_table *pages, u32 num_entries,
342 				const gen8_pte_t pte)
343 {
344 	struct i915_sched_attr attr = {};
345 	struct intel_gt *gt = ggtt->vm.gt;
346 	const gen8_pte_t scratch_pte = ggtt->vm.scratch[0]->encode;
347 	struct sgt_iter iter;
348 	struct i915_request *rq;
349 	struct intel_context *ce;
350 	intel_wakeref_t wakeref;
351 	u32 *cs;
352 
353 	if (!num_entries)
354 		return true;
355 
356 	ce = gen8_ggtt_bind_get_ce(ggtt, &wakeref);
357 	if (!ce)
358 		return false;
359 
360 	if (pages)
361 		iter = __sgt_iter(pages->sgl, true);
362 
363 	while (num_entries) {
364 		int count = 0;
365 		dma_addr_t addr;
366 		/*
367 		 * MI_UPDATE_GTT can update 512 entries in a single command but
368 		 * that end up with engine reset, 511 works.
369 		 */
370 		u32 n_ptes = min_t(u32, 511, num_entries);
371 
372 		if (mutex_lock_interruptible(&ce->timeline->mutex))
373 			goto put_ce;
374 
375 		intel_context_enter(ce);
376 		rq = __i915_request_create(ce, GFP_NOWAIT | GFP_ATOMIC);
377 		intel_context_exit(ce);
378 		if (IS_ERR(rq)) {
379 			GT_TRACE(gt, "Failed to get bind request\n");
380 			mutex_unlock(&ce->timeline->mutex);
381 			goto put_ce;
382 		}
383 
384 		cs = intel_ring_begin(rq, 2 * n_ptes + 2);
385 		if (IS_ERR(cs)) {
386 			GT_TRACE(gt, "Failed to ring space for GGTT bind\n");
387 			i915_request_set_error_once(rq, PTR_ERR(cs));
388 			/* once a request is created, it must be queued */
389 			goto queue_err_rq;
390 		}
391 
392 		*cs++ = MI_UPDATE_GTT | (2 * n_ptes);
393 		*cs++ = offset << 12;
394 
395 		if (pages) {
396 			for_each_sgt_daddr_next(addr, iter) {
397 				if (count == n_ptes)
398 					break;
399 				*cs++ = lower_32_bits(pte | addr);
400 				*cs++ = upper_32_bits(pte | addr);
401 				count++;
402 			}
403 			/* fill remaining with scratch pte, if any */
404 			if (count < n_ptes) {
405 				memset64((u64 *)cs, scratch_pte,
406 					 n_ptes - count);
407 				cs += (n_ptes - count) * 2;
408 			}
409 		} else {
410 			memset64((u64 *)cs, pte, n_ptes);
411 			cs += n_ptes * 2;
412 		}
413 
414 		intel_ring_advance(rq, cs);
415 queue_err_rq:
416 		i915_request_get(rq);
417 		__i915_request_commit(rq);
418 		__i915_request_queue(rq, &attr);
419 
420 		mutex_unlock(&ce->timeline->mutex);
421 		/* This will break if the request is complete or after engine reset */
422 		i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT);
423 		if (rq->fence.error)
424 			goto err_rq;
425 
426 		i915_request_put(rq);
427 
428 		num_entries -= n_ptes;
429 		offset += n_ptes;
430 	}
431 
432 	gen8_ggtt_bind_put_ce(ce, wakeref);
433 	return true;
434 
435 err_rq:
436 	i915_request_put(rq);
437 put_ce:
438 	gen8_ggtt_bind_put_ce(ce, wakeref);
439 	return false;
440 }
441 
442 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
443 {
444 	writeq(pte, addr);
445 }
446 
447 static gen8_pte_t gen8_get_pte(void __iomem *addr)
448 {
449 	return readq(addr);
450 }
451 
452 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
453 				  dma_addr_t addr,
454 				  u64 offset,
455 				  unsigned int pat_index,
456 				  u32 flags)
457 {
458 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
459 	gen8_pte_t __iomem *pte =
460 		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
461 
462 	gen8_set_pte(pte, ggtt->vm.pte_encode(addr, pat_index, flags));
463 
464 	ggtt->invalidate(ggtt);
465 }
466 
467 static dma_addr_t gen8_ggtt_read_entry(struct i915_address_space *vm,
468 				       u64 offset, bool *is_present, bool *is_local)
469 {
470 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
471 	gen8_pte_t __iomem *pte =
472 		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
473 
474 	return ggtt->vm.pte_decode(gen8_get_pte(pte), is_present, is_local);
475 }
476 
477 static void gen8_ggtt_insert_page_bind(struct i915_address_space *vm,
478 				       dma_addr_t addr, u64 offset,
479 				       unsigned int pat_index, u32 flags)
480 {
481 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
482 	gen8_pte_t pte;
483 
484 	pte = ggtt->vm.pte_encode(addr, pat_index, flags);
485 	if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) &&
486 	    gen8_ggtt_bind_ptes(ggtt, offset, NULL, 1, pte))
487 		return ggtt->invalidate(ggtt);
488 
489 	gen8_ggtt_insert_page(vm, addr, offset, pat_index, flags);
490 }
491 
492 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
493 				     struct i915_vma_resource *vma_res,
494 				     unsigned int pat_index,
495 				     u32 flags)
496 {
497 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
498 	const gen8_pte_t pte_encode = ggtt->vm.pte_encode(0, pat_index, flags);
499 	gen8_pte_t __iomem *gte;
500 	gen8_pte_t __iomem *end;
501 	struct sgt_iter iter;
502 	dma_addr_t addr;
503 
504 	/*
505 	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
506 	 * not to allow the user to override access to a read only page.
507 	 */
508 
509 	gte = (gen8_pte_t __iomem *)ggtt->gsm;
510 	gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
511 	end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
512 	while (gte < end)
513 		gen8_set_pte(gte++, vm->scratch[0]->encode);
514 	end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
515 
516 	for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
517 		gen8_set_pte(gte++, pte_encode | addr);
518 	GEM_BUG_ON(gte > end);
519 
520 	/* Fill the allocated but "unused" space beyond the end of the buffer */
521 	while (gte < end)
522 		gen8_set_pte(gte++, vm->scratch[0]->encode);
523 
524 	/*
525 	 * We want to flush the TLBs only after we're certain all the PTE
526 	 * updates have finished.
527 	 */
528 	ggtt->invalidate(ggtt);
529 }
530 
531 static bool __gen8_ggtt_insert_entries_bind(struct i915_address_space *vm,
532 					    struct i915_vma_resource *vma_res,
533 					    unsigned int pat_index, u32 flags)
534 {
535 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
536 	gen8_pte_t scratch_pte = vm->scratch[0]->encode;
537 	gen8_pte_t pte_encode;
538 	u64 start, end;
539 
540 	pte_encode = ggtt->vm.pte_encode(0, pat_index, flags);
541 	start = (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
542 	end = start + vma_res->guard / I915_GTT_PAGE_SIZE;
543 	if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte))
544 		goto err;
545 
546 	start = end;
547 	end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
548 	if (!gen8_ggtt_bind_ptes(ggtt, start, vma_res->bi.pages,
549 	      vma_res->node_size / I915_GTT_PAGE_SIZE, pte_encode))
550 		goto err;
551 
552 	start += vma_res->node_size / I915_GTT_PAGE_SIZE;
553 	if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte))
554 		goto err;
555 
556 	return true;
557 
558 err:
559 	return false;
560 }
561 
562 static void gen8_ggtt_insert_entries_bind(struct i915_address_space *vm,
563 					  struct i915_vma_resource *vma_res,
564 					  unsigned int pat_index, u32 flags)
565 {
566 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
567 
568 	if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) &&
569 	    __gen8_ggtt_insert_entries_bind(vm, vma_res, pat_index, flags))
570 		return ggtt->invalidate(ggtt);
571 
572 	gen8_ggtt_insert_entries(vm, vma_res, pat_index, flags);
573 }
574 
575 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
576 				  u64 start, u64 length)
577 {
578 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
579 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
580 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
581 	const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
582 	gen8_pte_t __iomem *gtt_base =
583 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
584 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
585 	int i;
586 
587 	if (WARN(num_entries > max_entries,
588 		 "First entry = %d; Num entries = %d (max=%d)\n",
589 		 first_entry, num_entries, max_entries))
590 		num_entries = max_entries;
591 
592 	for (i = 0; i < num_entries; i++)
593 		gen8_set_pte(&gtt_base[i], scratch_pte);
594 }
595 
596 static void gen8_ggtt_scratch_range_bind(struct i915_address_space *vm,
597 					 u64 start, u64 length)
598 {
599 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
600 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
601 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
602 	const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
603 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
604 
605 	if (WARN(num_entries > max_entries,
606 		 "First entry = %d; Num entries = %d (max=%d)\n",
607 		 first_entry, num_entries, max_entries))
608 		num_entries = max_entries;
609 
610 	if (should_update_ggtt_with_bind(ggtt) && gen8_ggtt_bind_ptes(ggtt, first_entry,
611 	     NULL, num_entries, scratch_pte))
612 		return ggtt->invalidate(ggtt);
613 
614 	gen8_ggtt_clear_range(vm, start, length);
615 }
616 
617 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
618 				  dma_addr_t addr,
619 				  u64 offset,
620 				  unsigned int pat_index,
621 				  u32 flags)
622 {
623 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
624 	gen6_pte_t __iomem *pte =
625 		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
626 
627 	iowrite32(vm->pte_encode(addr, pat_index, flags), pte);
628 
629 	ggtt->invalidate(ggtt);
630 }
631 
632 static dma_addr_t gen6_ggtt_read_entry(struct i915_address_space *vm,
633 				       u64 offset,
634 				       bool *is_present, bool *is_local)
635 {
636 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
637 	gen6_pte_t __iomem *pte =
638 		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
639 
640 	return vm->pte_decode(ioread32(pte), is_present, is_local);
641 }
642 
643 /*
644  * Binds an object into the global gtt with the specified cache level.
645  * The object will be accessible to the GPU via commands whose operands
646  * reference offsets within the global GTT as well as accessible by the GPU
647  * through the GMADR mapped BAR (i915->mm.gtt->gtt).
648  */
649 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
650 				     struct i915_vma_resource *vma_res,
651 				     unsigned int pat_index,
652 				     u32 flags)
653 {
654 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
655 	gen6_pte_t __iomem *gte;
656 	gen6_pte_t __iomem *end;
657 	struct sgt_iter iter;
658 	dma_addr_t addr;
659 
660 	gte = (gen6_pte_t __iomem *)ggtt->gsm;
661 	gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
662 
663 	end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
664 	while (gte < end)
665 		iowrite32(vm->scratch[0]->encode, gte++);
666 	end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
667 	for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
668 		iowrite32(vm->pte_encode(addr, pat_index, flags), gte++);
669 	GEM_BUG_ON(gte > end);
670 
671 	/* Fill the allocated but "unused" space beyond the end of the buffer */
672 	while (gte < end)
673 		iowrite32(vm->scratch[0]->encode, gte++);
674 
675 	/*
676 	 * We want to flush the TLBs only after we're certain all the PTE
677 	 * updates have finished.
678 	 */
679 	ggtt->invalidate(ggtt);
680 }
681 
682 static void nop_clear_range(struct i915_address_space *vm,
683 			    u64 start, u64 length)
684 {
685 }
686 
687 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
688 {
689 	/*
690 	 * Make sure the internal GAM fifo has been cleared of all GTT
691 	 * writes before exiting stop_machine(). This guarantees that
692 	 * any aperture accesses waiting to start in another process
693 	 * cannot back up behind the GTT writes causing a hang.
694 	 * The register can be any arbitrary GAM register.
695 	 */
696 	intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
697 }
698 
699 struct insert_page {
700 	struct i915_address_space *vm;
701 	dma_addr_t addr;
702 	u64 offset;
703 	unsigned int pat_index;
704 };
705 
706 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
707 {
708 	struct insert_page *arg = _arg;
709 
710 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset,
711 			      arg->pat_index, 0);
712 	bxt_vtd_ggtt_wa(arg->vm);
713 
714 	return 0;
715 }
716 
717 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
718 					  dma_addr_t addr,
719 					  u64 offset,
720 					  unsigned int pat_index,
721 					  u32 unused)
722 {
723 	struct insert_page arg = { vm, addr, offset, pat_index };
724 
725 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
726 }
727 
728 struct insert_entries {
729 	struct i915_address_space *vm;
730 	struct i915_vma_resource *vma_res;
731 	unsigned int pat_index;
732 	u32 flags;
733 };
734 
735 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
736 {
737 	struct insert_entries *arg = _arg;
738 
739 	gen8_ggtt_insert_entries(arg->vm, arg->vma_res,
740 				 arg->pat_index, arg->flags);
741 	bxt_vtd_ggtt_wa(arg->vm);
742 
743 	return 0;
744 }
745 
746 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
747 					     struct i915_vma_resource *vma_res,
748 					     unsigned int pat_index,
749 					     u32 flags)
750 {
751 	struct insert_entries arg = { vm, vma_res, pat_index, flags };
752 
753 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
754 }
755 
756 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
757 				  u64 start, u64 length)
758 {
759 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
760 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
761 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
762 	gen6_pte_t scratch_pte, __iomem *gtt_base =
763 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
764 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
765 	int i;
766 
767 	if (WARN(num_entries > max_entries,
768 		 "First entry = %d; Num entries = %d (max=%d)\n",
769 		 first_entry, num_entries, max_entries))
770 		num_entries = max_entries;
771 
772 	scratch_pte = vm->scratch[0]->encode;
773 	for (i = 0; i < num_entries; i++)
774 		iowrite32(scratch_pte, &gtt_base[i]);
775 }
776 
777 void intel_ggtt_bind_vma(struct i915_address_space *vm,
778 			 struct i915_vm_pt_stash *stash,
779 			 struct i915_vma_resource *vma_res,
780 			 unsigned int pat_index,
781 			 u32 flags)
782 {
783 	u32 pte_flags;
784 
785 	if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK))
786 		return;
787 
788 	vma_res->bound_flags |= flags;
789 
790 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
791 	pte_flags = 0;
792 	if (vma_res->bi.readonly)
793 		pte_flags |= PTE_READ_ONLY;
794 	if (vma_res->bi.lmem)
795 		pte_flags |= PTE_LM;
796 
797 	vm->insert_entries(vm, vma_res, pat_index, pte_flags);
798 	vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE;
799 }
800 
801 void intel_ggtt_unbind_vma(struct i915_address_space *vm,
802 			   struct i915_vma_resource *vma_res)
803 {
804 	vm->clear_range(vm, vma_res->start, vma_res->vma_size);
805 }
806 
807 dma_addr_t intel_ggtt_read_entry(struct i915_address_space *vm,
808 				 u64 offset, bool *is_present, bool *is_local)
809 {
810 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
811 
812 	return ggtt->vm.read_entry(vm, offset, is_present, is_local);
813 }
814 
815 /*
816  * Reserve the top of the GuC address space for firmware images. Addresses
817  * beyond GUC_GGTT_TOP in the GuC address space are inaccessible by GuC,
818  * which makes for a suitable range to hold GuC/HuC firmware images if the
819  * size of the GGTT is 4G. However, on a 32-bit platform the size of the GGTT
820  * is limited to 2G, which is less than GUC_GGTT_TOP, but we reserve a chunk
821  * of the same size anyway, which is far more than needed, to keep the logic
822  * in uc_fw_ggtt_offset() simple.
823  */
824 #define GUC_TOP_RESERVE_SIZE (SZ_4G - GUC_GGTT_TOP)
825 
826 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
827 {
828 	u64 offset;
829 	int ret;
830 
831 	if (!intel_uc_uses_guc(&ggtt->vm.gt->uc))
832 		return 0;
833 
834 	GEM_BUG_ON(ggtt->vm.total <= GUC_TOP_RESERVE_SIZE);
835 	offset = ggtt->vm.total - GUC_TOP_RESERVE_SIZE;
836 
837 	ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw,
838 				   GUC_TOP_RESERVE_SIZE, offset,
839 				   I915_COLOR_UNEVICTABLE, PIN_NOEVICT);
840 	if (ret)
841 		drm_dbg(&ggtt->vm.i915->drm,
842 			"Failed to reserve top of GGTT for GuC\n");
843 
844 	return ret;
845 }
846 
847 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
848 {
849 	if (drm_mm_node_allocated(&ggtt->uc_fw))
850 		drm_mm_remove_node(&ggtt->uc_fw);
851 }
852 
853 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
854 {
855 	ggtt_release_guc_top(ggtt);
856 	if (drm_mm_node_allocated(&ggtt->error_capture))
857 		drm_mm_remove_node(&ggtt->error_capture);
858 	mutex_destroy(&ggtt->error_mutex);
859 }
860 
861 static int init_ggtt(struct i915_ggtt *ggtt)
862 {
863 	/*
864 	 * Let GEM Manage all of the aperture.
865 	 *
866 	 * However, leave one page at the end still bound to the scratch page.
867 	 * There are a number of places where the hardware apparently prefetches
868 	 * past the end of the object, and we've seen multiple hangs with the
869 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
870 	 * aperture.  One page should be enough to keep any prefetching inside
871 	 * of the aperture.
872 	 */
873 	unsigned long hole_start, hole_end;
874 	struct drm_mm_node *entry;
875 	int ret;
876 
877 	/*
878 	 * GuC requires all resources that we're sharing with it to be placed in
879 	 * non-WOPCM memory. If GuC is not present or not in use we still need a
880 	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
881 	 * why.
882 	 */
883 	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
884 			       intel_wopcm_guc_size(&ggtt->vm.gt->wopcm));
885 
886 	ret = intel_vgt_balloon(ggtt);
887 	if (ret)
888 		return ret;
889 
890 	mutex_init(&ggtt->error_mutex);
891 	if (ggtt->mappable_end) {
892 		/*
893 		 * Reserve a mappable slot for our lockless error capture.
894 		 *
895 		 * We strongly prefer taking address 0x0 in order to protect
896 		 * other critical buffers against accidental overwrites,
897 		 * as writing to address 0 is a very common mistake.
898 		 *
899 		 * Since 0 may already be in use by the system (e.g. the BIOS
900 		 * framebuffer), we let the reservation fail quietly and hope
901 		 * 0 remains reserved always.
902 		 *
903 		 * If we fail to reserve 0, and then fail to find any space
904 		 * for an error-capture, remain silent. We can afford not
905 		 * to reserve an error_capture node as we have fallback
906 		 * paths, and we trust that 0 will remain reserved. However,
907 		 * the only likely reason for failure to insert is a driver
908 		 * bug, which we expect to cause other failures...
909 		 *
910 		 * Since CPU can perform speculative reads on error capture
911 		 * (write-combining allows it) add scratch page after error
912 		 * capture to avoid DMAR errors.
913 		 */
914 		ggtt->error_capture.size = 2 * I915_GTT_PAGE_SIZE;
915 		ggtt->error_capture.color = I915_COLOR_UNEVICTABLE;
916 		if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture))
917 			drm_mm_insert_node_in_range(&ggtt->vm.mm,
918 						    &ggtt->error_capture,
919 						    ggtt->error_capture.size, 0,
920 						    ggtt->error_capture.color,
921 						    0, ggtt->mappable_end,
922 						    DRM_MM_INSERT_LOW);
923 	}
924 	if (drm_mm_node_allocated(&ggtt->error_capture)) {
925 		u64 start = ggtt->error_capture.start;
926 		u64 size = ggtt->error_capture.size;
927 
928 		ggtt->vm.scratch_range(&ggtt->vm, start, size);
929 		drm_dbg(&ggtt->vm.i915->drm,
930 			"Reserved GGTT:[%llx, %llx] for use by error capture\n",
931 			start, start + size);
932 	}
933 
934 	/*
935 	 * The upper portion of the GuC address space has a sizeable hole
936 	 * (several MB) that is inaccessible by GuC. Reserve this range within
937 	 * GGTT as it can comfortably hold GuC/HuC firmware images.
938 	 */
939 	ret = ggtt_reserve_guc_top(ggtt);
940 	if (ret)
941 		goto err;
942 
943 	/* Clear any non-preallocated blocks */
944 	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
945 		drm_dbg(&ggtt->vm.i915->drm,
946 			"clearing unused GTT space: [%lx, %lx]\n",
947 			hole_start, hole_end);
948 		ggtt->vm.clear_range(&ggtt->vm, hole_start,
949 				     hole_end - hole_start);
950 	}
951 
952 	/* And finally clear the reserved guard page */
953 	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
954 
955 	return 0;
956 
957 err:
958 	cleanup_init_ggtt(ggtt);
959 	return ret;
960 }
961 
962 static void aliasing_gtt_bind_vma(struct i915_address_space *vm,
963 				  struct i915_vm_pt_stash *stash,
964 				  struct i915_vma_resource *vma_res,
965 				  unsigned int pat_index,
966 				  u32 flags)
967 {
968 	u32 pte_flags;
969 
970 	/* Currently applicable only to VLV */
971 	pte_flags = 0;
972 	if (vma_res->bi.readonly)
973 		pte_flags |= PTE_READ_ONLY;
974 
975 	if (flags & I915_VMA_LOCAL_BIND)
976 		ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm,
977 			       stash, vma_res, pat_index, flags);
978 
979 	if (flags & I915_VMA_GLOBAL_BIND)
980 		vm->insert_entries(vm, vma_res, pat_index, pte_flags);
981 
982 	vma_res->bound_flags |= flags;
983 }
984 
985 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm,
986 				    struct i915_vma_resource *vma_res)
987 {
988 	if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND)
989 		vm->clear_range(vm, vma_res->start, vma_res->vma_size);
990 
991 	if (vma_res->bound_flags & I915_VMA_LOCAL_BIND)
992 		ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res);
993 }
994 
995 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
996 {
997 	struct i915_vm_pt_stash stash = {};
998 	struct i915_ppgtt *ppgtt;
999 	int err;
1000 
1001 	ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0);
1002 	if (IS_ERR(ppgtt))
1003 		return PTR_ERR(ppgtt);
1004 
1005 	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
1006 		err = -ENODEV;
1007 		goto err_ppgtt;
1008 	}
1009 
1010 	err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total);
1011 	if (err)
1012 		goto err_ppgtt;
1013 
1014 	i915_gem_object_lock(ppgtt->vm.scratch[0], NULL);
1015 	err = i915_vm_map_pt_stash(&ppgtt->vm, &stash);
1016 	i915_gem_object_unlock(ppgtt->vm.scratch[0]);
1017 	if (err)
1018 		goto err_stash;
1019 
1020 	/*
1021 	 * Note we only pre-allocate as far as the end of the global
1022 	 * GTT. On 48b / 4-level page-tables, the difference is very,
1023 	 * very significant! We have to preallocate as GVT/vgpu does
1024 	 * not like the page directory disappearing.
1025 	 */
1026 	ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total);
1027 
1028 	ggtt->alias = ppgtt;
1029 	ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
1030 
1031 	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != intel_ggtt_bind_vma);
1032 	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
1033 
1034 	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != intel_ggtt_unbind_vma);
1035 	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
1036 
1037 	i915_vm_free_pt_stash(&ppgtt->vm, &stash);
1038 	return 0;
1039 
1040 err_stash:
1041 	i915_vm_free_pt_stash(&ppgtt->vm, &stash);
1042 err_ppgtt:
1043 	i915_vm_put(&ppgtt->vm);
1044 	return err;
1045 }
1046 
1047 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
1048 {
1049 	struct i915_ppgtt *ppgtt;
1050 
1051 	ppgtt = fetch_and_zero(&ggtt->alias);
1052 	if (!ppgtt)
1053 		return;
1054 
1055 	i915_vm_put(&ppgtt->vm);
1056 
1057 	ggtt->vm.vma_ops.bind_vma   = intel_ggtt_bind_vma;
1058 	ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
1059 }
1060 
1061 int i915_init_ggtt(struct drm_i915_private *i915)
1062 {
1063 	int ret;
1064 
1065 	ret = init_ggtt(to_gt(i915)->ggtt);
1066 	if (ret)
1067 		return ret;
1068 
1069 	if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
1070 		ret = init_aliasing_ppgtt(to_gt(i915)->ggtt);
1071 		if (ret)
1072 			cleanup_init_ggtt(to_gt(i915)->ggtt);
1073 	}
1074 
1075 	return 0;
1076 }
1077 
1078 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
1079 {
1080 	struct i915_vma *vma, *vn;
1081 
1082 	flush_workqueue(ggtt->vm.i915->wq);
1083 	i915_gem_drain_freed_objects(ggtt->vm.i915);
1084 
1085 	mutex_lock(&ggtt->vm.mutex);
1086 
1087 	ggtt->vm.skip_pte_rewrite = true;
1088 
1089 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
1090 		struct drm_i915_gem_object *obj = vma->obj;
1091 		bool trylock;
1092 
1093 		trylock = i915_gem_object_trylock(obj, NULL);
1094 		WARN_ON(!trylock);
1095 
1096 		WARN_ON(__i915_vma_unbind(vma));
1097 		if (trylock)
1098 			i915_gem_object_unlock(obj);
1099 	}
1100 
1101 	if (drm_mm_node_allocated(&ggtt->error_capture))
1102 		drm_mm_remove_node(&ggtt->error_capture);
1103 	mutex_destroy(&ggtt->error_mutex);
1104 
1105 	ggtt_release_guc_top(ggtt);
1106 	intel_vgt_deballoon(ggtt);
1107 
1108 	ggtt->vm.cleanup(&ggtt->vm);
1109 
1110 	mutex_unlock(&ggtt->vm.mutex);
1111 	i915_address_space_fini(&ggtt->vm);
1112 
1113 	arch_phys_wc_del(ggtt->mtrr);
1114 
1115 	if (ggtt->iomap.size)
1116 		io_mapping_fini(&ggtt->iomap);
1117 }
1118 
1119 /**
1120  * i915_ggtt_driver_release - Clean up GGTT hardware initialization
1121  * @i915: i915 device
1122  */
1123 void i915_ggtt_driver_release(struct drm_i915_private *i915)
1124 {
1125 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
1126 
1127 	fini_aliasing_ppgtt(ggtt);
1128 
1129 	intel_ggtt_fini_fences(ggtt);
1130 	ggtt_cleanup_hw(ggtt);
1131 }
1132 
1133 /**
1134  * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after
1135  * all free objects have been drained.
1136  * @i915: i915 device
1137  */
1138 void i915_ggtt_driver_late_release(struct drm_i915_private *i915)
1139 {
1140 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
1141 
1142 	GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1);
1143 	dma_resv_fini(&ggtt->vm._resv);
1144 }
1145 
1146 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1147 {
1148 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1149 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1150 	return snb_gmch_ctl << 20;
1151 }
1152 
1153 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1154 {
1155 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1156 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1157 	if (bdw_gmch_ctl)
1158 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1159 
1160 #ifdef CONFIG_X86_32
1161 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
1162 	if (bdw_gmch_ctl > 4)
1163 		bdw_gmch_ctl = 4;
1164 #endif
1165 
1166 	return bdw_gmch_ctl << 20;
1167 }
1168 
1169 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
1170 {
1171 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
1172 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
1173 
1174 	if (gmch_ctrl)
1175 		return 1 << (20 + gmch_ctrl);
1176 
1177 	return 0;
1178 }
1179 
1180 static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915)
1181 {
1182 	/*
1183 	 * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset
1184 	 * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset
1185 	 */
1186 	GEM_BUG_ON(GRAPHICS_VER(i915) < 6);
1187 	return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M;
1188 }
1189 
1190 static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915)
1191 {
1192 	return gen6_gttmmadr_size(i915) / 2;
1193 }
1194 
1195 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
1196 {
1197 	struct drm_i915_private *i915 = ggtt->vm.i915;
1198 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
1199 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1200 	phys_addr_t phys_addr;
1201 	u32 pte_flags;
1202 	int ret;
1203 
1204 	GEM_WARN_ON(pci_resource_len(pdev, GEN4_GTTMMADR_BAR) != gen6_gttmmadr_size(i915));
1205 
1206 	if (i915_direct_stolen_access(i915)) {
1207 		drm_dbg(&i915->drm, "Using direct GSM access\n");
1208 		phys_addr = intel_uncore_read64(uncore, GEN6_GSMBASE) & GEN11_BDSM_MASK;
1209 	} else {
1210 		phys_addr = pci_resource_start(pdev, GEN4_GTTMMADR_BAR) + gen6_gttadr_offset(i915);
1211 	}
1212 
1213 	if (needs_wc_ggtt_mapping(i915))
1214 		ggtt->gsm = ioremap_wc(phys_addr, size);
1215 	else
1216 		ggtt->gsm = ioremap(phys_addr, size);
1217 
1218 	if (!ggtt->gsm) {
1219 		drm_err(&i915->drm, "Failed to map the ggtt page table\n");
1220 		return -ENOMEM;
1221 	}
1222 
1223 	kref_init(&ggtt->vm.resv_ref);
1224 	ret = setup_scratch_page(&ggtt->vm);
1225 	if (ret) {
1226 		drm_err(&i915->drm, "Scratch setup failed\n");
1227 		/* iounmap will also get called at remove, but meh */
1228 		iounmap(ggtt->gsm);
1229 		return ret;
1230 	}
1231 
1232 	pte_flags = 0;
1233 	if (i915_gem_object_is_lmem(ggtt->vm.scratch[0]))
1234 		pte_flags |= PTE_LM;
1235 
1236 	ggtt->vm.scratch[0]->encode =
1237 		ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]),
1238 				    i915_gem_get_pat_index(i915,
1239 							   I915_CACHE_NONE),
1240 				    pte_flags);
1241 
1242 	return 0;
1243 }
1244 
1245 static void gen6_gmch_remove(struct i915_address_space *vm)
1246 {
1247 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
1248 
1249 	iounmap(ggtt->gsm);
1250 	free_scratch(vm);
1251 }
1252 
1253 static struct resource pci_resource(struct pci_dev *pdev, int bar)
1254 {
1255 	return DEFINE_RES_MEM(pci_resource_start(pdev, bar),
1256 			      pci_resource_len(pdev, bar));
1257 }
1258 
1259 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
1260 {
1261 	struct drm_i915_private *i915 = ggtt->vm.i915;
1262 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1263 	unsigned int size;
1264 	u16 snb_gmch_ctl;
1265 
1266 	if (!HAS_LMEM(i915) && !HAS_LMEMBAR_SMEM_STOLEN(i915)) {
1267 		if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
1268 			return -ENXIO;
1269 
1270 		ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
1271 		ggtt->mappable_end = resource_size(&ggtt->gmadr);
1272 	}
1273 
1274 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1275 	if (IS_CHERRYVIEW(i915))
1276 		size = chv_get_total_gtt_size(snb_gmch_ctl);
1277 	else
1278 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
1279 
1280 	ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1281 	ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1282 	ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY;
1283 
1284 	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
1285 	ggtt->vm.cleanup = gen6_gmch_remove;
1286 	ggtt->vm.insert_page = gen8_ggtt_insert_page;
1287 	ggtt->vm.clear_range = nop_clear_range;
1288 	ggtt->vm.scratch_range = gen8_ggtt_clear_range;
1289 
1290 	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
1291 	ggtt->vm.read_entry = gen8_ggtt_read_entry;
1292 
1293 	/*
1294 	 * Serialize GTT updates with aperture access on BXT if VT-d is on,
1295 	 * and always on CHV.
1296 	 */
1297 	if (intel_vm_no_concurrent_access_wa(i915)) {
1298 		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
1299 		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
1300 
1301 		/*
1302 		 * Calling stop_machine() version of GGTT update function
1303 		 * at error capture/reset path will raise lockdep warning.
1304 		 * Allow calling gen8_ggtt_insert_* directly at reset path
1305 		 * which is safe from parallel GGTT updates.
1306 		 */
1307 		ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
1308 		ggtt->vm.raw_insert_entries = gen8_ggtt_insert_entries;
1309 
1310 		ggtt->vm.bind_async_flags =
1311 			I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
1312 	}
1313 
1314 	if (i915_ggtt_require_binder(i915)) {
1315 		ggtt->vm.scratch_range = gen8_ggtt_scratch_range_bind;
1316 		ggtt->vm.insert_page = gen8_ggtt_insert_page_bind;
1317 		ggtt->vm.insert_entries = gen8_ggtt_insert_entries_bind;
1318 		/*
1319 		 * On GPU is hung, we might bind VMAs for error capture.
1320 		 * Fallback to CPU GGTT updates in that case.
1321 		 */
1322 		ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
1323 	}
1324 
1325 	if (intel_uc_wants_guc_submission(&ggtt->vm.gt->uc))
1326 		ggtt->invalidate = guc_ggtt_invalidate;
1327 	else
1328 		ggtt->invalidate = gen8_ggtt_invalidate;
1329 
1330 	ggtt->vm.vma_ops.bind_vma    = intel_ggtt_bind_vma;
1331 	ggtt->vm.vma_ops.unbind_vma  = intel_ggtt_unbind_vma;
1332 
1333 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
1334 		ggtt->vm.pte_encode = mtl_ggtt_pte_encode;
1335 	else
1336 		ggtt->vm.pte_encode = gen8_ggtt_pte_encode;
1337 
1338 	ggtt->vm.pte_decode = gen8_ggtt_pte_decode;
1339 
1340 	return ggtt_probe_common(ggtt, size);
1341 }
1342 
1343 /*
1344  * For pre-gen8 platforms pat_index is the same as enum i915_cache_level,
1345  * so the switch-case statements in these PTE encode functions are still valid.
1346  * See translation table LEGACY_CACHELEVEL.
1347  */
1348 static u64 snb_pte_encode(dma_addr_t addr,
1349 			  unsigned int pat_index,
1350 			  u32 flags)
1351 {
1352 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1353 
1354 	switch (pat_index) {
1355 	case I915_CACHE_L3_LLC:
1356 	case I915_CACHE_LLC:
1357 		pte |= GEN6_PTE_CACHE_LLC;
1358 		break;
1359 	case I915_CACHE_NONE:
1360 		pte |= GEN6_PTE_UNCACHED;
1361 		break;
1362 	default:
1363 		MISSING_CASE(pat_index);
1364 	}
1365 
1366 	return pte;
1367 }
1368 
1369 static u64 ivb_pte_encode(dma_addr_t addr,
1370 			  unsigned int pat_index,
1371 			  u32 flags)
1372 {
1373 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1374 
1375 	switch (pat_index) {
1376 	case I915_CACHE_L3_LLC:
1377 		pte |= GEN7_PTE_CACHE_L3_LLC;
1378 		break;
1379 	case I915_CACHE_LLC:
1380 		pte |= GEN6_PTE_CACHE_LLC;
1381 		break;
1382 	case I915_CACHE_NONE:
1383 		pte |= GEN6_PTE_UNCACHED;
1384 		break;
1385 	default:
1386 		MISSING_CASE(pat_index);
1387 	}
1388 
1389 	return pte;
1390 }
1391 
1392 static u64 byt_pte_encode(dma_addr_t addr,
1393 			  unsigned int pat_index,
1394 			  u32 flags)
1395 {
1396 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1397 
1398 	if (!(flags & PTE_READ_ONLY))
1399 		pte |= BYT_PTE_WRITEABLE;
1400 
1401 	if (pat_index != I915_CACHE_NONE)
1402 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
1403 
1404 	return pte;
1405 }
1406 
1407 static u64 hsw_pte_encode(dma_addr_t addr,
1408 			  unsigned int pat_index,
1409 			  u32 flags)
1410 {
1411 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1412 
1413 	if (pat_index != I915_CACHE_NONE)
1414 		pte |= HSW_WB_LLC_AGE3;
1415 
1416 	return pte;
1417 }
1418 
1419 static u64 iris_pte_encode(dma_addr_t addr,
1420 			   unsigned int pat_index,
1421 			   u32 flags)
1422 {
1423 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1424 
1425 	switch (pat_index) {
1426 	case I915_CACHE_NONE:
1427 		break;
1428 	case I915_CACHE_WT:
1429 		pte |= HSW_WT_ELLC_LLC_AGE3;
1430 		break;
1431 	default:
1432 		pte |= HSW_WB_ELLC_LLC_AGE3;
1433 		break;
1434 	}
1435 
1436 	return pte;
1437 }
1438 
1439 static dma_addr_t gen6_pte_decode(u64 pte, bool *is_present, bool *is_local)
1440 {
1441 	*is_present = pte & GEN6_PTE_VALID;
1442 	*is_local = false;
1443 
1444 	return ((pte & 0xff0) << 28) | (pte & ~0xfff);
1445 }
1446 
1447 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
1448 {
1449 	struct drm_i915_private *i915 = ggtt->vm.i915;
1450 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1451 	unsigned int size;
1452 	u16 snb_gmch_ctl;
1453 
1454 	if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
1455 		return -ENXIO;
1456 
1457 	ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
1458 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
1459 
1460 	/*
1461 	 * 64/512MB is the current min/max we actually know of, but this is
1462 	 * just a coarse sanity check.
1463 	 */
1464 	if (ggtt->mappable_end < (64 << 20) ||
1465 	    ggtt->mappable_end > (512 << 20)) {
1466 		drm_err(&i915->drm, "Unknown GMADR size (%pa)\n",
1467 			&ggtt->mappable_end);
1468 		return -ENXIO;
1469 	}
1470 
1471 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1472 
1473 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
1474 	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
1475 
1476 	ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1477 	ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1478 
1479 	ggtt->vm.clear_range = nop_clear_range;
1480 	if (!HAS_FULL_PPGTT(i915))
1481 		ggtt->vm.clear_range = gen6_ggtt_clear_range;
1482 	ggtt->vm.scratch_range = gen6_ggtt_clear_range;
1483 	ggtt->vm.insert_page = gen6_ggtt_insert_page;
1484 	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
1485 	ggtt->vm.read_entry = gen6_ggtt_read_entry;
1486 	ggtt->vm.cleanup = gen6_gmch_remove;
1487 
1488 	ggtt->invalidate = gen6_ggtt_invalidate;
1489 
1490 	if (HAS_EDRAM(i915))
1491 		ggtt->vm.pte_encode = iris_pte_encode;
1492 	else if (IS_HASWELL(i915))
1493 		ggtt->vm.pte_encode = hsw_pte_encode;
1494 	else if (IS_VALLEYVIEW(i915))
1495 		ggtt->vm.pte_encode = byt_pte_encode;
1496 	else if (GRAPHICS_VER(i915) >= 7)
1497 		ggtt->vm.pte_encode = ivb_pte_encode;
1498 	else
1499 		ggtt->vm.pte_encode = snb_pte_encode;
1500 
1501 	ggtt->vm.pte_decode = gen6_pte_decode;
1502 
1503 	ggtt->vm.vma_ops.bind_vma    = intel_ggtt_bind_vma;
1504 	ggtt->vm.vma_ops.unbind_vma  = intel_ggtt_unbind_vma;
1505 
1506 	return ggtt_probe_common(ggtt, size);
1507 }
1508 
1509 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
1510 {
1511 	struct drm_i915_private *i915 = gt->i915;
1512 	int ret;
1513 
1514 	ggtt->vm.gt = gt;
1515 	ggtt->vm.i915 = i915;
1516 	ggtt->vm.dma = i915->drm.dev;
1517 	dma_resv_init(&ggtt->vm._resv);
1518 
1519 	if (GRAPHICS_VER(i915) >= 8)
1520 		ret = gen8_gmch_probe(ggtt);
1521 	else if (GRAPHICS_VER(i915) >= 6)
1522 		ret = gen6_gmch_probe(ggtt);
1523 	else
1524 		ret = intel_ggtt_gmch_probe(ggtt);
1525 
1526 	if (ret) {
1527 		dma_resv_fini(&ggtt->vm._resv);
1528 		return ret;
1529 	}
1530 
1531 	if ((ggtt->vm.total - 1) >> 32) {
1532 		drm_err(&i915->drm,
1533 			"We never expected a Global GTT with more than 32bits"
1534 			" of address space! Found %lldM!\n",
1535 			ggtt->vm.total >> 20);
1536 		ggtt->vm.total = 1ULL << 32;
1537 		ggtt->mappable_end =
1538 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
1539 	}
1540 
1541 	if (ggtt->mappable_end > ggtt->vm.total) {
1542 		drm_err(&i915->drm,
1543 			"mappable aperture extends past end of GGTT,"
1544 			" aperture=%pa, total=%llx\n",
1545 			&ggtt->mappable_end, ggtt->vm.total);
1546 		ggtt->mappable_end = ggtt->vm.total;
1547 	}
1548 
1549 	/* GMADR is the PCI mmio aperture into the global GTT. */
1550 	drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20);
1551 	drm_dbg(&i915->drm, "GMADR size = %lluM\n",
1552 		(u64)ggtt->mappable_end >> 20);
1553 	drm_dbg(&i915->drm, "DSM size = %lluM\n",
1554 		(u64)resource_size(&intel_graphics_stolen_res) >> 20);
1555 
1556 	return 0;
1557 }
1558 
1559 /**
1560  * i915_ggtt_probe_hw - Probe GGTT hardware location
1561  * @i915: i915 device
1562  */
1563 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
1564 {
1565 	struct intel_gt *gt;
1566 	int ret, i;
1567 
1568 	for_each_gt(gt, i915, i) {
1569 		ret = intel_gt_assign_ggtt(gt);
1570 		if (ret)
1571 			return ret;
1572 	}
1573 
1574 	ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915));
1575 	if (ret)
1576 		return ret;
1577 
1578 	if (i915_vtd_active(i915))
1579 		drm_info(&i915->drm, "VT-d active for gfx access\n");
1580 
1581 	return 0;
1582 }
1583 
1584 struct i915_ggtt *i915_ggtt_create(struct drm_i915_private *i915)
1585 {
1586 	struct i915_ggtt *ggtt;
1587 
1588 	ggtt = drmm_kzalloc(&i915->drm, sizeof(*ggtt), GFP_KERNEL);
1589 	if (!ggtt)
1590 		return ERR_PTR(-ENOMEM);
1591 
1592 	INIT_LIST_HEAD(&ggtt->gt_list);
1593 
1594 	return ggtt;
1595 }
1596 
1597 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
1598 {
1599 	if (GRAPHICS_VER(i915) < 6)
1600 		return intel_ggtt_gmch_enable_hw(i915);
1601 
1602 	return 0;
1603 }
1604 
1605 /**
1606  * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM
1607  * @vm: The VM to restore the mappings for
1608  * @all_evicted: Were all VMAs expected to be evicted on suspend?
1609  *
1610  * Restore the memory mappings for all objects mapped to HW via the GGTT or a
1611  * DPT page table.
1612  *
1613  * Returns %true if restoring the mapping for any object that was in a write
1614  * domain before suspend.
1615  */
1616 bool i915_ggtt_resume_vm(struct i915_address_space *vm, bool all_evicted)
1617 {
1618 	struct i915_vma *vma;
1619 	bool write_domain_objs = false;
1620 
1621 	drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
1622 
1623 	if (all_evicted) {
1624 		drm_WARN_ON(&vm->i915->drm, !list_empty(&vm->bound_list));
1625 		return false;
1626 	}
1627 
1628 	/* First fill our portion of the GTT with scratch pages */
1629 	vm->clear_range(vm, 0, vm->total);
1630 
1631 	/* clflush objects bound into the GGTT and rebind them. */
1632 	list_for_each_entry(vma, &vm->bound_list, vm_link) {
1633 		struct drm_i915_gem_object *obj = vma->obj;
1634 		unsigned int was_bound =
1635 			atomic_read(&vma->flags) & I915_VMA_BIND_MASK;
1636 
1637 		GEM_BUG_ON(!was_bound);
1638 
1639 		/*
1640 		 * Clear the bound flags of the vma resource to allow
1641 		 * ptes to be repopulated.
1642 		 */
1643 		vma->resource->bound_flags = 0;
1644 		vma->ops->bind_vma(vm, NULL, vma->resource,
1645 				   obj ? obj->pat_index :
1646 					 i915_gem_get_pat_index(vm->i915,
1647 								I915_CACHE_NONE),
1648 				   was_bound);
1649 
1650 		if (obj) { /* only used during resume => exclusive access */
1651 			write_domain_objs |= fetch_and_zero(&obj->write_domain);
1652 			obj->read_domains |= I915_GEM_DOMAIN_GTT;
1653 		}
1654 	}
1655 
1656 	return write_domain_objs;
1657 }
1658 
1659 void i915_ggtt_resume(struct i915_ggtt *ggtt)
1660 {
1661 	struct intel_gt *gt;
1662 	bool flush;
1663 
1664 	list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1665 		intel_gt_check_and_clear_faults(gt);
1666 
1667 	flush = i915_ggtt_resume_vm(&ggtt->vm, false);
1668 
1669 	if (drm_mm_node_allocated(&ggtt->error_capture))
1670 		ggtt->vm.scratch_range(&ggtt->vm, ggtt->error_capture.start,
1671 				       ggtt->error_capture.size);
1672 
1673 	list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1674 		intel_uc_resume_mappings(&gt->uc);
1675 
1676 	ggtt->invalidate(ggtt);
1677 
1678 	if (flush)
1679 		wbinvd_on_all_cpus();
1680 
1681 	intel_ggtt_restore_fences(ggtt);
1682 }
1683