xref: /linux/drivers/gpu/drm/i915/gt/intel_ggtt.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <asm/set_memory.h>
7 #include <asm/smp.h>
8 #include <linux/types.h>
9 #include <linux/stop_machine.h>
10 
11 #include <drm/drm_managed.h>
12 #include <drm/i915_drm.h>
13 #include <drm/intel-gtt.h>
14 
15 #include "display/intel_display.h"
16 #include "gem/i915_gem_lmem.h"
17 
18 #include "intel_context.h"
19 #include "intel_ggtt_gmch.h"
20 #include "intel_gpu_commands.h"
21 #include "intel_gt.h"
22 #include "intel_gt_regs.h"
23 #include "intel_pci_config.h"
24 #include "intel_ring.h"
25 #include "i915_drv.h"
26 #include "i915_pci.h"
27 #include "i915_reg.h"
28 #include "i915_request.h"
29 #include "i915_scatterlist.h"
30 #include "i915_utils.h"
31 #include "i915_vgpu.h"
32 
33 #include "intel_gtt.h"
34 #include "gen8_ppgtt.h"
35 #include "intel_engine_pm.h"
36 
37 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
38 				   unsigned long color,
39 				   u64 *start,
40 				   u64 *end)
41 {
42 	if (i915_node_color_differs(node, color))
43 		*start += I915_GTT_PAGE_SIZE;
44 
45 	/*
46 	 * Also leave a space between the unallocated reserved node after the
47 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
48 	 * to insert a guard page to prevent prefetches crossing over the
49 	 * GTT boundary.
50 	 */
51 	node = list_next_entry(node, node_list);
52 	if (node->color != color)
53 		*end -= I915_GTT_PAGE_SIZE;
54 }
55 
56 static int ggtt_init_hw(struct i915_ggtt *ggtt)
57 {
58 	struct drm_i915_private *i915 = ggtt->vm.i915;
59 
60 	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
61 
62 	ggtt->vm.is_ggtt = true;
63 
64 	/* Only VLV supports read-only GGTT mappings */
65 	ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
66 
67 	if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
68 		ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
69 
70 	if (ggtt->mappable_end) {
71 		if (!io_mapping_init_wc(&ggtt->iomap,
72 					ggtt->gmadr.start,
73 					ggtt->mappable_end)) {
74 			ggtt->vm.cleanup(&ggtt->vm);
75 			return -EIO;
76 		}
77 
78 		ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
79 					      ggtt->mappable_end);
80 	}
81 
82 	intel_ggtt_init_fences(ggtt);
83 
84 	return 0;
85 }
86 
87 /**
88  * i915_ggtt_init_hw - Initialize GGTT hardware
89  * @i915: i915 device
90  */
91 int i915_ggtt_init_hw(struct drm_i915_private *i915)
92 {
93 	int ret;
94 
95 	/*
96 	 * Note that we use page colouring to enforce a guard page at the
97 	 * end of the address space. This is required as the CS may prefetch
98 	 * beyond the end of the batch buffer, across the page boundary,
99 	 * and beyond the end of the GTT if we do not provide a guard.
100 	 */
101 	ret = ggtt_init_hw(to_gt(i915)->ggtt);
102 	if (ret)
103 		return ret;
104 
105 	return 0;
106 }
107 
108 /**
109  * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM
110  * @vm: The VM to suspend the mappings for
111  *
112  * Suspend the memory mappings for all objects mapped to HW via the GGTT or a
113  * DPT page table.
114  */
115 void i915_ggtt_suspend_vm(struct i915_address_space *vm)
116 {
117 	struct i915_vma *vma, *vn;
118 	int save_skip_rewrite;
119 
120 	drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
121 
122 retry:
123 	i915_gem_drain_freed_objects(vm->i915);
124 
125 	mutex_lock(&vm->mutex);
126 
127 	/*
128 	 * Skip rewriting PTE on VMA unbind.
129 	 * FIXME: Use an argument to i915_vma_unbind() instead?
130 	 */
131 	save_skip_rewrite = vm->skip_pte_rewrite;
132 	vm->skip_pte_rewrite = true;
133 
134 	list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
135 		struct drm_i915_gem_object *obj = vma->obj;
136 
137 		GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
138 
139 		if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
140 			continue;
141 
142 		/* unlikely to race when GPU is idle, so no worry about slowpath.. */
143 		if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) {
144 			/*
145 			 * No dead objects should appear here, GPU should be
146 			 * completely idle, and userspace suspended
147 			 */
148 			i915_gem_object_get(obj);
149 
150 			mutex_unlock(&vm->mutex);
151 
152 			i915_gem_object_lock(obj, NULL);
153 			GEM_WARN_ON(i915_vma_unbind(vma));
154 			i915_gem_object_unlock(obj);
155 			i915_gem_object_put(obj);
156 
157 			vm->skip_pte_rewrite = save_skip_rewrite;
158 			goto retry;
159 		}
160 
161 		if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
162 			i915_vma_wait_for_bind(vma);
163 
164 			__i915_vma_evict(vma, false);
165 			drm_mm_remove_node(&vma->node);
166 		}
167 
168 		i915_gem_object_unlock(obj);
169 	}
170 
171 	vm->clear_range(vm, 0, vm->total);
172 
173 	vm->skip_pte_rewrite = save_skip_rewrite;
174 
175 	mutex_unlock(&vm->mutex);
176 }
177 
178 void i915_ggtt_suspend(struct i915_ggtt *ggtt)
179 {
180 	struct intel_gt *gt;
181 
182 	i915_ggtt_suspend_vm(&ggtt->vm);
183 	ggtt->invalidate(ggtt);
184 
185 	list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
186 		intel_gt_check_and_clear_faults(gt);
187 }
188 
189 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
190 {
191 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
192 
193 	spin_lock_irq(&uncore->lock);
194 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
195 	intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
196 	spin_unlock_irq(&uncore->lock);
197 }
198 
199 static bool needs_wc_ggtt_mapping(struct drm_i915_private *i915)
200 {
201 	/*
202 	 * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range
203 	 * will be dropped. For WC mappings in general we have 64 byte burst
204 	 * writes when the WC buffer is flushed, so we can't use it, but have to
205 	 * resort to an uncached mapping. The WC issue is easily caught by the
206 	 * readback check when writing GTT PTE entries.
207 	 */
208 	if (!IS_GEN9_LP(i915) && GRAPHICS_VER(i915) < 11)
209 		return true;
210 
211 	return false;
212 }
213 
214 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
215 {
216 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
217 
218 	/*
219 	 * Note that as an uncached mmio write, this will flush the
220 	 * WCB of the writes into the GGTT before it triggers the invalidate.
221 	 *
222 	 * Only perform this when GGTT is mapped as WC, see ggtt_probe_common().
223 	 */
224 	if (needs_wc_ggtt_mapping(ggtt->vm.i915))
225 		intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6,
226 				      GFX_FLSH_CNTL_EN);
227 }
228 
229 static void guc_ggtt_ct_invalidate(struct intel_gt *gt)
230 {
231 	struct intel_uncore *uncore = gt->uncore;
232 	intel_wakeref_t wakeref;
233 
234 	with_intel_runtime_pm_if_active(uncore->rpm, wakeref) {
235 		struct intel_guc *guc = &gt->uc.guc;
236 
237 		intel_guc_invalidate_tlb_guc(guc);
238 	}
239 }
240 
241 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
242 {
243 	struct drm_i915_private *i915 = ggtt->vm.i915;
244 	struct intel_gt *gt;
245 
246 	gen8_ggtt_invalidate(ggtt);
247 
248 	list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) {
249 		if (intel_guc_tlb_invalidation_is_available(&gt->uc.guc))
250 			guc_ggtt_ct_invalidate(gt);
251 		else if (GRAPHICS_VER(i915) >= 12)
252 			intel_uncore_write_fw(gt->uncore,
253 					      GEN12_GUC_TLB_INV_CR,
254 					      GEN12_GUC_TLB_INV_CR_INVALIDATE);
255 		else
256 			intel_uncore_write_fw(gt->uncore,
257 					      GEN8_GTCR, GEN8_GTCR_INVALIDATE);
258 	}
259 }
260 
261 static u64 mtl_ggtt_pte_encode(dma_addr_t addr,
262 			       unsigned int pat_index,
263 			       u32 flags)
264 {
265 	gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
266 
267 	WARN_ON_ONCE(addr & ~GEN12_GGTT_PTE_ADDR_MASK);
268 
269 	if (flags & PTE_LM)
270 		pte |= GEN12_GGTT_PTE_LM;
271 
272 	if (pat_index & BIT(0))
273 		pte |= MTL_GGTT_PTE_PAT0;
274 
275 	if (pat_index & BIT(1))
276 		pte |= MTL_GGTT_PTE_PAT1;
277 
278 	return pte;
279 }
280 
281 u64 gen8_ggtt_pte_encode(dma_addr_t addr,
282 			 unsigned int pat_index,
283 			 u32 flags)
284 {
285 	gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
286 
287 	if (flags & PTE_LM)
288 		pte |= GEN12_GGTT_PTE_LM;
289 
290 	return pte;
291 }
292 
293 static bool should_update_ggtt_with_bind(struct i915_ggtt *ggtt)
294 {
295 	struct intel_gt *gt = ggtt->vm.gt;
296 
297 	return intel_gt_is_bind_context_ready(gt);
298 }
299 
300 static struct intel_context *gen8_ggtt_bind_get_ce(struct i915_ggtt *ggtt, intel_wakeref_t *wakeref)
301 {
302 	struct intel_context *ce;
303 	struct intel_gt *gt = ggtt->vm.gt;
304 
305 	if (intel_gt_is_wedged(gt))
306 		return NULL;
307 
308 	ce = gt->engine[BCS0]->bind_context;
309 	GEM_BUG_ON(!ce);
310 
311 	/*
312 	 * If the GT is not awake already at this stage then fallback
313 	 * to pci based GGTT update otherwise __intel_wakeref_get_first()
314 	 * would conflict with fs_reclaim trying to allocate memory while
315 	 * doing rpm_resume().
316 	 */
317 	*wakeref = intel_gt_pm_get_if_awake(gt);
318 	if (!*wakeref)
319 		return NULL;
320 
321 	intel_engine_pm_get(ce->engine);
322 
323 	return ce;
324 }
325 
326 static void gen8_ggtt_bind_put_ce(struct intel_context *ce, intel_wakeref_t wakeref)
327 {
328 	intel_engine_pm_put(ce->engine);
329 	intel_gt_pm_put(ce->engine->gt, wakeref);
330 }
331 
332 static bool gen8_ggtt_bind_ptes(struct i915_ggtt *ggtt, u32 offset,
333 				struct sg_table *pages, u32 num_entries,
334 				const gen8_pte_t pte)
335 {
336 	struct i915_sched_attr attr = {};
337 	struct intel_gt *gt = ggtt->vm.gt;
338 	const gen8_pte_t scratch_pte = ggtt->vm.scratch[0]->encode;
339 	struct sgt_iter iter;
340 	struct i915_request *rq;
341 	struct intel_context *ce;
342 	intel_wakeref_t wakeref;
343 	u32 *cs;
344 
345 	if (!num_entries)
346 		return true;
347 
348 	ce = gen8_ggtt_bind_get_ce(ggtt, &wakeref);
349 	if (!ce)
350 		return false;
351 
352 	if (pages)
353 		iter = __sgt_iter(pages->sgl, true);
354 
355 	while (num_entries) {
356 		int count = 0;
357 		dma_addr_t addr;
358 		/*
359 		 * MI_UPDATE_GTT can update 512 entries in a single command but
360 		 * that end up with engine reset, 511 works.
361 		 */
362 		u32 n_ptes = min_t(u32, 511, num_entries);
363 
364 		if (mutex_lock_interruptible(&ce->timeline->mutex))
365 			goto put_ce;
366 
367 		intel_context_enter(ce);
368 		rq = __i915_request_create(ce, GFP_NOWAIT | GFP_ATOMIC);
369 		intel_context_exit(ce);
370 		if (IS_ERR(rq)) {
371 			GT_TRACE(gt, "Failed to get bind request\n");
372 			mutex_unlock(&ce->timeline->mutex);
373 			goto put_ce;
374 		}
375 
376 		cs = intel_ring_begin(rq, 2 * n_ptes + 2);
377 		if (IS_ERR(cs)) {
378 			GT_TRACE(gt, "Failed to ring space for GGTT bind\n");
379 			i915_request_set_error_once(rq, PTR_ERR(cs));
380 			/* once a request is created, it must be queued */
381 			goto queue_err_rq;
382 		}
383 
384 		*cs++ = MI_UPDATE_GTT | (2 * n_ptes);
385 		*cs++ = offset << 12;
386 
387 		if (pages) {
388 			for_each_sgt_daddr_next(addr, iter) {
389 				if (count == n_ptes)
390 					break;
391 				*cs++ = lower_32_bits(pte | addr);
392 				*cs++ = upper_32_bits(pte | addr);
393 				count++;
394 			}
395 			/* fill remaining with scratch pte, if any */
396 			if (count < n_ptes) {
397 				memset64((u64 *)cs, scratch_pte,
398 					 n_ptes - count);
399 				cs += (n_ptes - count) * 2;
400 			}
401 		} else {
402 			memset64((u64 *)cs, pte, n_ptes);
403 			cs += n_ptes * 2;
404 		}
405 
406 		intel_ring_advance(rq, cs);
407 queue_err_rq:
408 		i915_request_get(rq);
409 		__i915_request_commit(rq);
410 		__i915_request_queue(rq, &attr);
411 
412 		mutex_unlock(&ce->timeline->mutex);
413 		/* This will break if the request is complete or after engine reset */
414 		i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT);
415 		if (rq->fence.error)
416 			goto err_rq;
417 
418 		i915_request_put(rq);
419 
420 		num_entries -= n_ptes;
421 		offset += n_ptes;
422 	}
423 
424 	gen8_ggtt_bind_put_ce(ce, wakeref);
425 	return true;
426 
427 err_rq:
428 	i915_request_put(rq);
429 put_ce:
430 	gen8_ggtt_bind_put_ce(ce, wakeref);
431 	return false;
432 }
433 
434 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
435 {
436 	writeq(pte, addr);
437 }
438 
439 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
440 				  dma_addr_t addr,
441 				  u64 offset,
442 				  unsigned int pat_index,
443 				  u32 flags)
444 {
445 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
446 	gen8_pte_t __iomem *pte =
447 		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
448 
449 	gen8_set_pte(pte, ggtt->vm.pte_encode(addr, pat_index, flags));
450 
451 	ggtt->invalidate(ggtt);
452 }
453 
454 static void gen8_ggtt_insert_page_bind(struct i915_address_space *vm,
455 				       dma_addr_t addr, u64 offset,
456 				       unsigned int pat_index, u32 flags)
457 {
458 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
459 	gen8_pte_t pte;
460 
461 	pte = ggtt->vm.pte_encode(addr, pat_index, flags);
462 	if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) &&
463 	    gen8_ggtt_bind_ptes(ggtt, offset, NULL, 1, pte))
464 		return ggtt->invalidate(ggtt);
465 
466 	gen8_ggtt_insert_page(vm, addr, offset, pat_index, flags);
467 }
468 
469 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
470 				     struct i915_vma_resource *vma_res,
471 				     unsigned int pat_index,
472 				     u32 flags)
473 {
474 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
475 	const gen8_pte_t pte_encode = ggtt->vm.pte_encode(0, pat_index, flags);
476 	gen8_pte_t __iomem *gte;
477 	gen8_pte_t __iomem *end;
478 	struct sgt_iter iter;
479 	dma_addr_t addr;
480 
481 	/*
482 	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
483 	 * not to allow the user to override access to a read only page.
484 	 */
485 
486 	gte = (gen8_pte_t __iomem *)ggtt->gsm;
487 	gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
488 	end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
489 	while (gte < end)
490 		gen8_set_pte(gte++, vm->scratch[0]->encode);
491 	end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
492 
493 	for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
494 		gen8_set_pte(gte++, pte_encode | addr);
495 	GEM_BUG_ON(gte > end);
496 
497 	/* Fill the allocated but "unused" space beyond the end of the buffer */
498 	while (gte < end)
499 		gen8_set_pte(gte++, vm->scratch[0]->encode);
500 
501 	/*
502 	 * We want to flush the TLBs only after we're certain all the PTE
503 	 * updates have finished.
504 	 */
505 	ggtt->invalidate(ggtt);
506 }
507 
508 static bool __gen8_ggtt_insert_entries_bind(struct i915_address_space *vm,
509 					    struct i915_vma_resource *vma_res,
510 					    unsigned int pat_index, u32 flags)
511 {
512 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
513 	gen8_pte_t scratch_pte = vm->scratch[0]->encode;
514 	gen8_pte_t pte_encode;
515 	u64 start, end;
516 
517 	pte_encode = ggtt->vm.pte_encode(0, pat_index, flags);
518 	start = (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
519 	end = start + vma_res->guard / I915_GTT_PAGE_SIZE;
520 	if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte))
521 		goto err;
522 
523 	start = end;
524 	end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
525 	if (!gen8_ggtt_bind_ptes(ggtt, start, vma_res->bi.pages,
526 	      vma_res->node_size / I915_GTT_PAGE_SIZE, pte_encode))
527 		goto err;
528 
529 	start += vma_res->node_size / I915_GTT_PAGE_SIZE;
530 	if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte))
531 		goto err;
532 
533 	return true;
534 
535 err:
536 	return false;
537 }
538 
539 static void gen8_ggtt_insert_entries_bind(struct i915_address_space *vm,
540 					  struct i915_vma_resource *vma_res,
541 					  unsigned int pat_index, u32 flags)
542 {
543 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
544 
545 	if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) &&
546 	    __gen8_ggtt_insert_entries_bind(vm, vma_res, pat_index, flags))
547 		return ggtt->invalidate(ggtt);
548 
549 	gen8_ggtt_insert_entries(vm, vma_res, pat_index, flags);
550 }
551 
552 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
553 				  u64 start, u64 length)
554 {
555 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
556 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
557 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
558 	const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
559 	gen8_pte_t __iomem *gtt_base =
560 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
561 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
562 	int i;
563 
564 	if (WARN(num_entries > max_entries,
565 		 "First entry = %d; Num entries = %d (max=%d)\n",
566 		 first_entry, num_entries, max_entries))
567 		num_entries = max_entries;
568 
569 	for (i = 0; i < num_entries; i++)
570 		gen8_set_pte(&gtt_base[i], scratch_pte);
571 }
572 
573 static void gen8_ggtt_scratch_range_bind(struct i915_address_space *vm,
574 					 u64 start, u64 length)
575 {
576 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
577 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
578 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
579 	const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
580 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
581 
582 	if (WARN(num_entries > max_entries,
583 		 "First entry = %d; Num entries = %d (max=%d)\n",
584 		 first_entry, num_entries, max_entries))
585 		num_entries = max_entries;
586 
587 	if (should_update_ggtt_with_bind(ggtt) && gen8_ggtt_bind_ptes(ggtt, first_entry,
588 	     NULL, num_entries, scratch_pte))
589 		return ggtt->invalidate(ggtt);
590 
591 	gen8_ggtt_clear_range(vm, start, length);
592 }
593 
594 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
595 				  dma_addr_t addr,
596 				  u64 offset,
597 				  unsigned int pat_index,
598 				  u32 flags)
599 {
600 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
601 	gen6_pte_t __iomem *pte =
602 		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
603 
604 	iowrite32(vm->pte_encode(addr, pat_index, flags), pte);
605 
606 	ggtt->invalidate(ggtt);
607 }
608 
609 /*
610  * Binds an object into the global gtt with the specified cache level.
611  * The object will be accessible to the GPU via commands whose operands
612  * reference offsets within the global GTT as well as accessible by the GPU
613  * through the GMADR mapped BAR (i915->mm.gtt->gtt).
614  */
615 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
616 				     struct i915_vma_resource *vma_res,
617 				     unsigned int pat_index,
618 				     u32 flags)
619 {
620 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
621 	gen6_pte_t __iomem *gte;
622 	gen6_pte_t __iomem *end;
623 	struct sgt_iter iter;
624 	dma_addr_t addr;
625 
626 	gte = (gen6_pte_t __iomem *)ggtt->gsm;
627 	gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
628 
629 	end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
630 	while (gte < end)
631 		iowrite32(vm->scratch[0]->encode, gte++);
632 	end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
633 	for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
634 		iowrite32(vm->pte_encode(addr, pat_index, flags), gte++);
635 	GEM_BUG_ON(gte > end);
636 
637 	/* Fill the allocated but "unused" space beyond the end of the buffer */
638 	while (gte < end)
639 		iowrite32(vm->scratch[0]->encode, gte++);
640 
641 	/*
642 	 * We want to flush the TLBs only after we're certain all the PTE
643 	 * updates have finished.
644 	 */
645 	ggtt->invalidate(ggtt);
646 }
647 
648 static void nop_clear_range(struct i915_address_space *vm,
649 			    u64 start, u64 length)
650 {
651 }
652 
653 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
654 {
655 	/*
656 	 * Make sure the internal GAM fifo has been cleared of all GTT
657 	 * writes before exiting stop_machine(). This guarantees that
658 	 * any aperture accesses waiting to start in another process
659 	 * cannot back up behind the GTT writes causing a hang.
660 	 * The register can be any arbitrary GAM register.
661 	 */
662 	intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
663 }
664 
665 struct insert_page {
666 	struct i915_address_space *vm;
667 	dma_addr_t addr;
668 	u64 offset;
669 	unsigned int pat_index;
670 };
671 
672 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
673 {
674 	struct insert_page *arg = _arg;
675 
676 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset,
677 			      arg->pat_index, 0);
678 	bxt_vtd_ggtt_wa(arg->vm);
679 
680 	return 0;
681 }
682 
683 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
684 					  dma_addr_t addr,
685 					  u64 offset,
686 					  unsigned int pat_index,
687 					  u32 unused)
688 {
689 	struct insert_page arg = { vm, addr, offset, pat_index };
690 
691 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
692 }
693 
694 struct insert_entries {
695 	struct i915_address_space *vm;
696 	struct i915_vma_resource *vma_res;
697 	unsigned int pat_index;
698 	u32 flags;
699 };
700 
701 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
702 {
703 	struct insert_entries *arg = _arg;
704 
705 	gen8_ggtt_insert_entries(arg->vm, arg->vma_res,
706 				 arg->pat_index, arg->flags);
707 	bxt_vtd_ggtt_wa(arg->vm);
708 
709 	return 0;
710 }
711 
712 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
713 					     struct i915_vma_resource *vma_res,
714 					     unsigned int pat_index,
715 					     u32 flags)
716 {
717 	struct insert_entries arg = { vm, vma_res, pat_index, flags };
718 
719 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
720 }
721 
722 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
723 				  u64 start, u64 length)
724 {
725 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
726 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
727 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
728 	gen6_pte_t scratch_pte, __iomem *gtt_base =
729 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
730 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
731 	int i;
732 
733 	if (WARN(num_entries > max_entries,
734 		 "First entry = %d; Num entries = %d (max=%d)\n",
735 		 first_entry, num_entries, max_entries))
736 		num_entries = max_entries;
737 
738 	scratch_pte = vm->scratch[0]->encode;
739 	for (i = 0; i < num_entries; i++)
740 		iowrite32(scratch_pte, &gtt_base[i]);
741 }
742 
743 void intel_ggtt_bind_vma(struct i915_address_space *vm,
744 			 struct i915_vm_pt_stash *stash,
745 			 struct i915_vma_resource *vma_res,
746 			 unsigned int pat_index,
747 			 u32 flags)
748 {
749 	u32 pte_flags;
750 
751 	if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK))
752 		return;
753 
754 	vma_res->bound_flags |= flags;
755 
756 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
757 	pte_flags = 0;
758 	if (vma_res->bi.readonly)
759 		pte_flags |= PTE_READ_ONLY;
760 	if (vma_res->bi.lmem)
761 		pte_flags |= PTE_LM;
762 
763 	vm->insert_entries(vm, vma_res, pat_index, pte_flags);
764 	vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE;
765 }
766 
767 void intel_ggtt_unbind_vma(struct i915_address_space *vm,
768 			   struct i915_vma_resource *vma_res)
769 {
770 	vm->clear_range(vm, vma_res->start, vma_res->vma_size);
771 }
772 
773 /*
774  * Reserve the top of the GuC address space for firmware images. Addresses
775  * beyond GUC_GGTT_TOP in the GuC address space are inaccessible by GuC,
776  * which makes for a suitable range to hold GuC/HuC firmware images if the
777  * size of the GGTT is 4G. However, on a 32-bit platform the size of the GGTT
778  * is limited to 2G, which is less than GUC_GGTT_TOP, but we reserve a chunk
779  * of the same size anyway, which is far more than needed, to keep the logic
780  * in uc_fw_ggtt_offset() simple.
781  */
782 #define GUC_TOP_RESERVE_SIZE (SZ_4G - GUC_GGTT_TOP)
783 
784 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
785 {
786 	u64 offset;
787 	int ret;
788 
789 	if (!intel_uc_uses_guc(&ggtt->vm.gt->uc))
790 		return 0;
791 
792 	GEM_BUG_ON(ggtt->vm.total <= GUC_TOP_RESERVE_SIZE);
793 	offset = ggtt->vm.total - GUC_TOP_RESERVE_SIZE;
794 
795 	ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw,
796 				   GUC_TOP_RESERVE_SIZE, offset,
797 				   I915_COLOR_UNEVICTABLE, PIN_NOEVICT);
798 	if (ret)
799 		drm_dbg(&ggtt->vm.i915->drm,
800 			"Failed to reserve top of GGTT for GuC\n");
801 
802 	return ret;
803 }
804 
805 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
806 {
807 	if (drm_mm_node_allocated(&ggtt->uc_fw))
808 		drm_mm_remove_node(&ggtt->uc_fw);
809 }
810 
811 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
812 {
813 	ggtt_release_guc_top(ggtt);
814 	if (drm_mm_node_allocated(&ggtt->error_capture))
815 		drm_mm_remove_node(&ggtt->error_capture);
816 	mutex_destroy(&ggtt->error_mutex);
817 }
818 
819 static int init_ggtt(struct i915_ggtt *ggtt)
820 {
821 	/*
822 	 * Let GEM Manage all of the aperture.
823 	 *
824 	 * However, leave one page at the end still bound to the scratch page.
825 	 * There are a number of places where the hardware apparently prefetches
826 	 * past the end of the object, and we've seen multiple hangs with the
827 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
828 	 * aperture.  One page should be enough to keep any prefetching inside
829 	 * of the aperture.
830 	 */
831 	unsigned long hole_start, hole_end;
832 	struct drm_mm_node *entry;
833 	int ret;
834 
835 	/*
836 	 * GuC requires all resources that we're sharing with it to be placed in
837 	 * non-WOPCM memory. If GuC is not present or not in use we still need a
838 	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
839 	 * why.
840 	 */
841 	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
842 			       intel_wopcm_guc_size(&ggtt->vm.gt->wopcm));
843 
844 	ret = intel_vgt_balloon(ggtt);
845 	if (ret)
846 		return ret;
847 
848 	mutex_init(&ggtt->error_mutex);
849 	if (ggtt->mappable_end) {
850 		/*
851 		 * Reserve a mappable slot for our lockless error capture.
852 		 *
853 		 * We strongly prefer taking address 0x0 in order to protect
854 		 * other critical buffers against accidental overwrites,
855 		 * as writing to address 0 is a very common mistake.
856 		 *
857 		 * Since 0 may already be in use by the system (e.g. the BIOS
858 		 * framebuffer), we let the reservation fail quietly and hope
859 		 * 0 remains reserved always.
860 		 *
861 		 * If we fail to reserve 0, and then fail to find any space
862 		 * for an error-capture, remain silent. We can afford not
863 		 * to reserve an error_capture node as we have fallback
864 		 * paths, and we trust that 0 will remain reserved. However,
865 		 * the only likely reason for failure to insert is a driver
866 		 * bug, which we expect to cause other failures...
867 		 *
868 		 * Since CPU can perform speculative reads on error capture
869 		 * (write-combining allows it) add scratch page after error
870 		 * capture to avoid DMAR errors.
871 		 */
872 		ggtt->error_capture.size = 2 * I915_GTT_PAGE_SIZE;
873 		ggtt->error_capture.color = I915_COLOR_UNEVICTABLE;
874 		if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture))
875 			drm_mm_insert_node_in_range(&ggtt->vm.mm,
876 						    &ggtt->error_capture,
877 						    ggtt->error_capture.size, 0,
878 						    ggtt->error_capture.color,
879 						    0, ggtt->mappable_end,
880 						    DRM_MM_INSERT_LOW);
881 	}
882 	if (drm_mm_node_allocated(&ggtt->error_capture)) {
883 		u64 start = ggtt->error_capture.start;
884 		u64 size = ggtt->error_capture.size;
885 
886 		ggtt->vm.scratch_range(&ggtt->vm, start, size);
887 		drm_dbg(&ggtt->vm.i915->drm,
888 			"Reserved GGTT:[%llx, %llx] for use by error capture\n",
889 			start, start + size);
890 	}
891 
892 	/*
893 	 * The upper portion of the GuC address space has a sizeable hole
894 	 * (several MB) that is inaccessible by GuC. Reserve this range within
895 	 * GGTT as it can comfortably hold GuC/HuC firmware images.
896 	 */
897 	ret = ggtt_reserve_guc_top(ggtt);
898 	if (ret)
899 		goto err;
900 
901 	/* Clear any non-preallocated blocks */
902 	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
903 		drm_dbg(&ggtt->vm.i915->drm,
904 			"clearing unused GTT space: [%lx, %lx]\n",
905 			hole_start, hole_end);
906 		ggtt->vm.clear_range(&ggtt->vm, hole_start,
907 				     hole_end - hole_start);
908 	}
909 
910 	/* And finally clear the reserved guard page */
911 	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
912 
913 	return 0;
914 
915 err:
916 	cleanup_init_ggtt(ggtt);
917 	return ret;
918 }
919 
920 static void aliasing_gtt_bind_vma(struct i915_address_space *vm,
921 				  struct i915_vm_pt_stash *stash,
922 				  struct i915_vma_resource *vma_res,
923 				  unsigned int pat_index,
924 				  u32 flags)
925 {
926 	u32 pte_flags;
927 
928 	/* Currently applicable only to VLV */
929 	pte_flags = 0;
930 	if (vma_res->bi.readonly)
931 		pte_flags |= PTE_READ_ONLY;
932 
933 	if (flags & I915_VMA_LOCAL_BIND)
934 		ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm,
935 			       stash, vma_res, pat_index, flags);
936 
937 	if (flags & I915_VMA_GLOBAL_BIND)
938 		vm->insert_entries(vm, vma_res, pat_index, pte_flags);
939 
940 	vma_res->bound_flags |= flags;
941 }
942 
943 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm,
944 				    struct i915_vma_resource *vma_res)
945 {
946 	if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND)
947 		vm->clear_range(vm, vma_res->start, vma_res->vma_size);
948 
949 	if (vma_res->bound_flags & I915_VMA_LOCAL_BIND)
950 		ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res);
951 }
952 
953 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
954 {
955 	struct i915_vm_pt_stash stash = {};
956 	struct i915_ppgtt *ppgtt;
957 	int err;
958 
959 	ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0);
960 	if (IS_ERR(ppgtt))
961 		return PTR_ERR(ppgtt);
962 
963 	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
964 		err = -ENODEV;
965 		goto err_ppgtt;
966 	}
967 
968 	err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total);
969 	if (err)
970 		goto err_ppgtt;
971 
972 	i915_gem_object_lock(ppgtt->vm.scratch[0], NULL);
973 	err = i915_vm_map_pt_stash(&ppgtt->vm, &stash);
974 	i915_gem_object_unlock(ppgtt->vm.scratch[0]);
975 	if (err)
976 		goto err_stash;
977 
978 	/*
979 	 * Note we only pre-allocate as far as the end of the global
980 	 * GTT. On 48b / 4-level page-tables, the difference is very,
981 	 * very significant! We have to preallocate as GVT/vgpu does
982 	 * not like the page directory disappearing.
983 	 */
984 	ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total);
985 
986 	ggtt->alias = ppgtt;
987 	ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
988 
989 	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != intel_ggtt_bind_vma);
990 	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
991 
992 	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != intel_ggtt_unbind_vma);
993 	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
994 
995 	i915_vm_free_pt_stash(&ppgtt->vm, &stash);
996 	return 0;
997 
998 err_stash:
999 	i915_vm_free_pt_stash(&ppgtt->vm, &stash);
1000 err_ppgtt:
1001 	i915_vm_put(&ppgtt->vm);
1002 	return err;
1003 }
1004 
1005 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
1006 {
1007 	struct i915_ppgtt *ppgtt;
1008 
1009 	ppgtt = fetch_and_zero(&ggtt->alias);
1010 	if (!ppgtt)
1011 		return;
1012 
1013 	i915_vm_put(&ppgtt->vm);
1014 
1015 	ggtt->vm.vma_ops.bind_vma   = intel_ggtt_bind_vma;
1016 	ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
1017 }
1018 
1019 int i915_init_ggtt(struct drm_i915_private *i915)
1020 {
1021 	int ret;
1022 
1023 	ret = init_ggtt(to_gt(i915)->ggtt);
1024 	if (ret)
1025 		return ret;
1026 
1027 	if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
1028 		ret = init_aliasing_ppgtt(to_gt(i915)->ggtt);
1029 		if (ret)
1030 			cleanup_init_ggtt(to_gt(i915)->ggtt);
1031 	}
1032 
1033 	return 0;
1034 }
1035 
1036 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
1037 {
1038 	struct i915_vma *vma, *vn;
1039 
1040 	flush_workqueue(ggtt->vm.i915->wq);
1041 	i915_gem_drain_freed_objects(ggtt->vm.i915);
1042 
1043 	mutex_lock(&ggtt->vm.mutex);
1044 
1045 	ggtt->vm.skip_pte_rewrite = true;
1046 
1047 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
1048 		struct drm_i915_gem_object *obj = vma->obj;
1049 		bool trylock;
1050 
1051 		trylock = i915_gem_object_trylock(obj, NULL);
1052 		WARN_ON(!trylock);
1053 
1054 		WARN_ON(__i915_vma_unbind(vma));
1055 		if (trylock)
1056 			i915_gem_object_unlock(obj);
1057 	}
1058 
1059 	if (drm_mm_node_allocated(&ggtt->error_capture))
1060 		drm_mm_remove_node(&ggtt->error_capture);
1061 	mutex_destroy(&ggtt->error_mutex);
1062 
1063 	ggtt_release_guc_top(ggtt);
1064 	intel_vgt_deballoon(ggtt);
1065 
1066 	ggtt->vm.cleanup(&ggtt->vm);
1067 
1068 	mutex_unlock(&ggtt->vm.mutex);
1069 	i915_address_space_fini(&ggtt->vm);
1070 
1071 	arch_phys_wc_del(ggtt->mtrr);
1072 
1073 	if (ggtt->iomap.size)
1074 		io_mapping_fini(&ggtt->iomap);
1075 }
1076 
1077 /**
1078  * i915_ggtt_driver_release - Clean up GGTT hardware initialization
1079  * @i915: i915 device
1080  */
1081 void i915_ggtt_driver_release(struct drm_i915_private *i915)
1082 {
1083 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
1084 
1085 	fini_aliasing_ppgtt(ggtt);
1086 
1087 	intel_ggtt_fini_fences(ggtt);
1088 	ggtt_cleanup_hw(ggtt);
1089 }
1090 
1091 /**
1092  * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after
1093  * all free objects have been drained.
1094  * @i915: i915 device
1095  */
1096 void i915_ggtt_driver_late_release(struct drm_i915_private *i915)
1097 {
1098 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
1099 
1100 	GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1);
1101 	dma_resv_fini(&ggtt->vm._resv);
1102 }
1103 
1104 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1105 {
1106 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1107 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1108 	return snb_gmch_ctl << 20;
1109 }
1110 
1111 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1112 {
1113 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1114 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1115 	if (bdw_gmch_ctl)
1116 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1117 
1118 #ifdef CONFIG_X86_32
1119 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
1120 	if (bdw_gmch_ctl > 4)
1121 		bdw_gmch_ctl = 4;
1122 #endif
1123 
1124 	return bdw_gmch_ctl << 20;
1125 }
1126 
1127 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
1128 {
1129 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
1130 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
1131 
1132 	if (gmch_ctrl)
1133 		return 1 << (20 + gmch_ctrl);
1134 
1135 	return 0;
1136 }
1137 
1138 static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915)
1139 {
1140 	/*
1141 	 * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset
1142 	 * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset
1143 	 */
1144 	GEM_BUG_ON(GRAPHICS_VER(i915) < 6);
1145 	return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M;
1146 }
1147 
1148 static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915)
1149 {
1150 	return gen6_gttmmadr_size(i915) / 2;
1151 }
1152 
1153 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
1154 {
1155 	struct drm_i915_private *i915 = ggtt->vm.i915;
1156 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
1157 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1158 	phys_addr_t phys_addr;
1159 	u32 pte_flags;
1160 	int ret;
1161 
1162 	GEM_WARN_ON(pci_resource_len(pdev, GEN4_GTTMMADR_BAR) != gen6_gttmmadr_size(i915));
1163 
1164 	if (i915_direct_stolen_access(i915)) {
1165 		drm_dbg(&i915->drm, "Using direct GSM access\n");
1166 		phys_addr = intel_uncore_read64(uncore, GEN6_GSMBASE) & GEN11_BDSM_MASK;
1167 	} else {
1168 		phys_addr = pci_resource_start(pdev, GEN4_GTTMMADR_BAR) + gen6_gttadr_offset(i915);
1169 	}
1170 
1171 	if (needs_wc_ggtt_mapping(i915))
1172 		ggtt->gsm = ioremap_wc(phys_addr, size);
1173 	else
1174 		ggtt->gsm = ioremap(phys_addr, size);
1175 
1176 	if (!ggtt->gsm) {
1177 		drm_err(&i915->drm, "Failed to map the ggtt page table\n");
1178 		return -ENOMEM;
1179 	}
1180 
1181 	kref_init(&ggtt->vm.resv_ref);
1182 	ret = setup_scratch_page(&ggtt->vm);
1183 	if (ret) {
1184 		drm_err(&i915->drm, "Scratch setup failed\n");
1185 		/* iounmap will also get called at remove, but meh */
1186 		iounmap(ggtt->gsm);
1187 		return ret;
1188 	}
1189 
1190 	pte_flags = 0;
1191 	if (i915_gem_object_is_lmem(ggtt->vm.scratch[0]))
1192 		pte_flags |= PTE_LM;
1193 
1194 	ggtt->vm.scratch[0]->encode =
1195 		ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]),
1196 				    i915_gem_get_pat_index(i915,
1197 							   I915_CACHE_NONE),
1198 				    pte_flags);
1199 
1200 	return 0;
1201 }
1202 
1203 static void gen6_gmch_remove(struct i915_address_space *vm)
1204 {
1205 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
1206 
1207 	iounmap(ggtt->gsm);
1208 	free_scratch(vm);
1209 }
1210 
1211 static struct resource pci_resource(struct pci_dev *pdev, int bar)
1212 {
1213 	return DEFINE_RES_MEM(pci_resource_start(pdev, bar),
1214 			      pci_resource_len(pdev, bar));
1215 }
1216 
1217 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
1218 {
1219 	struct drm_i915_private *i915 = ggtt->vm.i915;
1220 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1221 	unsigned int size;
1222 	u16 snb_gmch_ctl;
1223 
1224 	if (!HAS_LMEM(i915) && !HAS_LMEMBAR_SMEM_STOLEN(i915)) {
1225 		if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
1226 			return -ENXIO;
1227 
1228 		ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
1229 		ggtt->mappable_end = resource_size(&ggtt->gmadr);
1230 	}
1231 
1232 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1233 	if (IS_CHERRYVIEW(i915))
1234 		size = chv_get_total_gtt_size(snb_gmch_ctl);
1235 	else
1236 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
1237 
1238 	ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1239 	ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1240 	ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY;
1241 
1242 	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
1243 	ggtt->vm.cleanup = gen6_gmch_remove;
1244 	ggtt->vm.insert_page = gen8_ggtt_insert_page;
1245 	ggtt->vm.clear_range = nop_clear_range;
1246 	ggtt->vm.scratch_range = gen8_ggtt_clear_range;
1247 
1248 	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
1249 
1250 	/*
1251 	 * Serialize GTT updates with aperture access on BXT if VT-d is on,
1252 	 * and always on CHV.
1253 	 */
1254 	if (intel_vm_no_concurrent_access_wa(i915)) {
1255 		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
1256 		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
1257 
1258 		/*
1259 		 * Calling stop_machine() version of GGTT update function
1260 		 * at error capture/reset path will raise lockdep warning.
1261 		 * Allow calling gen8_ggtt_insert_* directly at reset path
1262 		 * which is safe from parallel GGTT updates.
1263 		 */
1264 		ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
1265 		ggtt->vm.raw_insert_entries = gen8_ggtt_insert_entries;
1266 
1267 		ggtt->vm.bind_async_flags =
1268 			I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
1269 	}
1270 
1271 	if (i915_ggtt_require_binder(i915)) {
1272 		ggtt->vm.scratch_range = gen8_ggtt_scratch_range_bind;
1273 		ggtt->vm.insert_page = gen8_ggtt_insert_page_bind;
1274 		ggtt->vm.insert_entries = gen8_ggtt_insert_entries_bind;
1275 		/*
1276 		 * On GPU is hung, we might bind VMAs for error capture.
1277 		 * Fallback to CPU GGTT updates in that case.
1278 		 */
1279 		ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
1280 	}
1281 
1282 	if (intel_uc_wants_guc_submission(&ggtt->vm.gt->uc))
1283 		ggtt->invalidate = guc_ggtt_invalidate;
1284 	else
1285 		ggtt->invalidate = gen8_ggtt_invalidate;
1286 
1287 	ggtt->vm.vma_ops.bind_vma    = intel_ggtt_bind_vma;
1288 	ggtt->vm.vma_ops.unbind_vma  = intel_ggtt_unbind_vma;
1289 
1290 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
1291 		ggtt->vm.pte_encode = mtl_ggtt_pte_encode;
1292 	else
1293 		ggtt->vm.pte_encode = gen8_ggtt_pte_encode;
1294 
1295 	return ggtt_probe_common(ggtt, size);
1296 }
1297 
1298 /*
1299  * For pre-gen8 platforms pat_index is the same as enum i915_cache_level,
1300  * so the switch-case statements in these PTE encode functions are still valid.
1301  * See translation table LEGACY_CACHELEVEL.
1302  */
1303 static u64 snb_pte_encode(dma_addr_t addr,
1304 			  unsigned int pat_index,
1305 			  u32 flags)
1306 {
1307 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1308 
1309 	switch (pat_index) {
1310 	case I915_CACHE_L3_LLC:
1311 	case I915_CACHE_LLC:
1312 		pte |= GEN6_PTE_CACHE_LLC;
1313 		break;
1314 	case I915_CACHE_NONE:
1315 		pte |= GEN6_PTE_UNCACHED;
1316 		break;
1317 	default:
1318 		MISSING_CASE(pat_index);
1319 	}
1320 
1321 	return pte;
1322 }
1323 
1324 static u64 ivb_pte_encode(dma_addr_t addr,
1325 			  unsigned int pat_index,
1326 			  u32 flags)
1327 {
1328 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1329 
1330 	switch (pat_index) {
1331 	case I915_CACHE_L3_LLC:
1332 		pte |= GEN7_PTE_CACHE_L3_LLC;
1333 		break;
1334 	case I915_CACHE_LLC:
1335 		pte |= GEN6_PTE_CACHE_LLC;
1336 		break;
1337 	case I915_CACHE_NONE:
1338 		pte |= GEN6_PTE_UNCACHED;
1339 		break;
1340 	default:
1341 		MISSING_CASE(pat_index);
1342 	}
1343 
1344 	return pte;
1345 }
1346 
1347 static u64 byt_pte_encode(dma_addr_t addr,
1348 			  unsigned int pat_index,
1349 			  u32 flags)
1350 {
1351 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1352 
1353 	if (!(flags & PTE_READ_ONLY))
1354 		pte |= BYT_PTE_WRITEABLE;
1355 
1356 	if (pat_index != I915_CACHE_NONE)
1357 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
1358 
1359 	return pte;
1360 }
1361 
1362 static u64 hsw_pte_encode(dma_addr_t addr,
1363 			  unsigned int pat_index,
1364 			  u32 flags)
1365 {
1366 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1367 
1368 	if (pat_index != I915_CACHE_NONE)
1369 		pte |= HSW_WB_LLC_AGE3;
1370 
1371 	return pte;
1372 }
1373 
1374 static u64 iris_pte_encode(dma_addr_t addr,
1375 			   unsigned int pat_index,
1376 			   u32 flags)
1377 {
1378 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1379 
1380 	switch (pat_index) {
1381 	case I915_CACHE_NONE:
1382 		break;
1383 	case I915_CACHE_WT:
1384 		pte |= HSW_WT_ELLC_LLC_AGE3;
1385 		break;
1386 	default:
1387 		pte |= HSW_WB_ELLC_LLC_AGE3;
1388 		break;
1389 	}
1390 
1391 	return pte;
1392 }
1393 
1394 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
1395 {
1396 	struct drm_i915_private *i915 = ggtt->vm.i915;
1397 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1398 	unsigned int size;
1399 	u16 snb_gmch_ctl;
1400 
1401 	if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
1402 		return -ENXIO;
1403 
1404 	ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
1405 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
1406 
1407 	/*
1408 	 * 64/512MB is the current min/max we actually know of, but this is
1409 	 * just a coarse sanity check.
1410 	 */
1411 	if (ggtt->mappable_end < (64 << 20) ||
1412 	    ggtt->mappable_end > (512 << 20)) {
1413 		drm_err(&i915->drm, "Unknown GMADR size (%pa)\n",
1414 			&ggtt->mappable_end);
1415 		return -ENXIO;
1416 	}
1417 
1418 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1419 
1420 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
1421 	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
1422 
1423 	ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1424 	ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1425 
1426 	ggtt->vm.clear_range = nop_clear_range;
1427 	if (!HAS_FULL_PPGTT(i915))
1428 		ggtt->vm.clear_range = gen6_ggtt_clear_range;
1429 	ggtt->vm.scratch_range = gen6_ggtt_clear_range;
1430 	ggtt->vm.insert_page = gen6_ggtt_insert_page;
1431 	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
1432 	ggtt->vm.cleanup = gen6_gmch_remove;
1433 
1434 	ggtt->invalidate = gen6_ggtt_invalidate;
1435 
1436 	if (HAS_EDRAM(i915))
1437 		ggtt->vm.pte_encode = iris_pte_encode;
1438 	else if (IS_HASWELL(i915))
1439 		ggtt->vm.pte_encode = hsw_pte_encode;
1440 	else if (IS_VALLEYVIEW(i915))
1441 		ggtt->vm.pte_encode = byt_pte_encode;
1442 	else if (GRAPHICS_VER(i915) >= 7)
1443 		ggtt->vm.pte_encode = ivb_pte_encode;
1444 	else
1445 		ggtt->vm.pte_encode = snb_pte_encode;
1446 
1447 	ggtt->vm.vma_ops.bind_vma    = intel_ggtt_bind_vma;
1448 	ggtt->vm.vma_ops.unbind_vma  = intel_ggtt_unbind_vma;
1449 
1450 	return ggtt_probe_common(ggtt, size);
1451 }
1452 
1453 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
1454 {
1455 	struct drm_i915_private *i915 = gt->i915;
1456 	int ret;
1457 
1458 	ggtt->vm.gt = gt;
1459 	ggtt->vm.i915 = i915;
1460 	ggtt->vm.dma = i915->drm.dev;
1461 	dma_resv_init(&ggtt->vm._resv);
1462 
1463 	if (GRAPHICS_VER(i915) >= 8)
1464 		ret = gen8_gmch_probe(ggtt);
1465 	else if (GRAPHICS_VER(i915) >= 6)
1466 		ret = gen6_gmch_probe(ggtt);
1467 	else
1468 		ret = intel_ggtt_gmch_probe(ggtt);
1469 
1470 	if (ret) {
1471 		dma_resv_fini(&ggtt->vm._resv);
1472 		return ret;
1473 	}
1474 
1475 	if ((ggtt->vm.total - 1) >> 32) {
1476 		drm_err(&i915->drm,
1477 			"We never expected a Global GTT with more than 32bits"
1478 			" of address space! Found %lldM!\n",
1479 			ggtt->vm.total >> 20);
1480 		ggtt->vm.total = 1ULL << 32;
1481 		ggtt->mappable_end =
1482 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
1483 	}
1484 
1485 	if (ggtt->mappable_end > ggtt->vm.total) {
1486 		drm_err(&i915->drm,
1487 			"mappable aperture extends past end of GGTT,"
1488 			" aperture=%pa, total=%llx\n",
1489 			&ggtt->mappable_end, ggtt->vm.total);
1490 		ggtt->mappable_end = ggtt->vm.total;
1491 	}
1492 
1493 	/* GMADR is the PCI mmio aperture into the global GTT. */
1494 	drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20);
1495 	drm_dbg(&i915->drm, "GMADR size = %lluM\n",
1496 		(u64)ggtt->mappable_end >> 20);
1497 	drm_dbg(&i915->drm, "DSM size = %lluM\n",
1498 		(u64)resource_size(&intel_graphics_stolen_res) >> 20);
1499 
1500 	return 0;
1501 }
1502 
1503 /**
1504  * i915_ggtt_probe_hw - Probe GGTT hardware location
1505  * @i915: i915 device
1506  */
1507 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
1508 {
1509 	struct intel_gt *gt;
1510 	int ret, i;
1511 
1512 	for_each_gt(gt, i915, i) {
1513 		ret = intel_gt_assign_ggtt(gt);
1514 		if (ret)
1515 			return ret;
1516 	}
1517 
1518 	ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915));
1519 	if (ret)
1520 		return ret;
1521 
1522 	if (i915_vtd_active(i915))
1523 		drm_info(&i915->drm, "VT-d active for gfx access\n");
1524 
1525 	return 0;
1526 }
1527 
1528 struct i915_ggtt *i915_ggtt_create(struct drm_i915_private *i915)
1529 {
1530 	struct i915_ggtt *ggtt;
1531 
1532 	ggtt = drmm_kzalloc(&i915->drm, sizeof(*ggtt), GFP_KERNEL);
1533 	if (!ggtt)
1534 		return ERR_PTR(-ENOMEM);
1535 
1536 	INIT_LIST_HEAD(&ggtt->gt_list);
1537 
1538 	return ggtt;
1539 }
1540 
1541 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
1542 {
1543 	if (GRAPHICS_VER(i915) < 6)
1544 		return intel_ggtt_gmch_enable_hw(i915);
1545 
1546 	return 0;
1547 }
1548 
1549 /**
1550  * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM
1551  * @vm: The VM to restore the mappings for
1552  *
1553  * Restore the memory mappings for all objects mapped to HW via the GGTT or a
1554  * DPT page table.
1555  *
1556  * Returns %true if restoring the mapping for any object that was in a write
1557  * domain before suspend.
1558  */
1559 bool i915_ggtt_resume_vm(struct i915_address_space *vm)
1560 {
1561 	struct i915_vma *vma;
1562 	bool write_domain_objs = false;
1563 
1564 	drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
1565 
1566 	/* First fill our portion of the GTT with scratch pages */
1567 	vm->clear_range(vm, 0, vm->total);
1568 
1569 	/* clflush objects bound into the GGTT and rebind them. */
1570 	list_for_each_entry(vma, &vm->bound_list, vm_link) {
1571 		struct drm_i915_gem_object *obj = vma->obj;
1572 		unsigned int was_bound =
1573 			atomic_read(&vma->flags) & I915_VMA_BIND_MASK;
1574 
1575 		GEM_BUG_ON(!was_bound);
1576 
1577 		/*
1578 		 * Clear the bound flags of the vma resource to allow
1579 		 * ptes to be repopulated.
1580 		 */
1581 		vma->resource->bound_flags = 0;
1582 		vma->ops->bind_vma(vm, NULL, vma->resource,
1583 				   obj ? obj->pat_index :
1584 					 i915_gem_get_pat_index(vm->i915,
1585 								I915_CACHE_NONE),
1586 				   was_bound);
1587 
1588 		if (obj) { /* only used during resume => exclusive access */
1589 			write_domain_objs |= fetch_and_zero(&obj->write_domain);
1590 			obj->read_domains |= I915_GEM_DOMAIN_GTT;
1591 		}
1592 	}
1593 
1594 	return write_domain_objs;
1595 }
1596 
1597 void i915_ggtt_resume(struct i915_ggtt *ggtt)
1598 {
1599 	struct intel_gt *gt;
1600 	bool flush;
1601 
1602 	list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1603 		intel_gt_check_and_clear_faults(gt);
1604 
1605 	flush = i915_ggtt_resume_vm(&ggtt->vm);
1606 
1607 	if (drm_mm_node_allocated(&ggtt->error_capture))
1608 		ggtt->vm.scratch_range(&ggtt->vm, ggtt->error_capture.start,
1609 				       ggtt->error_capture.size);
1610 
1611 	list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1612 		intel_uc_resume_mappings(&gt->uc);
1613 
1614 	ggtt->invalidate(ggtt);
1615 
1616 	if (flush)
1617 		wbinvd_on_all_cpus();
1618 
1619 	intel_ggtt_restore_fences(ggtt);
1620 }
1621