xref: /linux/drivers/gpu/drm/i915/gt/intel_ggtt.c (revision d09560435cb712c9ec1e62b8a43a79b0af69fe77)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <linux/stop_machine.h>
7 
8 #include <asm/set_memory.h>
9 #include <asm/smp.h>
10 
11 #include <drm/i915_drm.h>
12 
13 #include "gem/i915_gem_lmem.h"
14 
15 #include "intel_gt.h"
16 #include "i915_drv.h"
17 #include "i915_scatterlist.h"
18 #include "i915_vgpu.h"
19 
20 #include "intel_gtt.h"
21 #include "gen8_ppgtt.h"
22 
23 static int
24 i915_get_ggtt_vma_pages(struct i915_vma *vma);
25 
26 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
27 				   unsigned long color,
28 				   u64 *start,
29 				   u64 *end)
30 {
31 	if (i915_node_color_differs(node, color))
32 		*start += I915_GTT_PAGE_SIZE;
33 
34 	/*
35 	 * Also leave a space between the unallocated reserved node after the
36 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
37 	 * to insert a guard page to prevent prefetches crossing over the
38 	 * GTT boundary.
39 	 */
40 	node = list_next_entry(node, node_list);
41 	if (node->color != color)
42 		*end -= I915_GTT_PAGE_SIZE;
43 }
44 
45 static int ggtt_init_hw(struct i915_ggtt *ggtt)
46 {
47 	struct drm_i915_private *i915 = ggtt->vm.i915;
48 
49 	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
50 
51 	ggtt->vm.is_ggtt = true;
52 
53 	/* Only VLV supports read-only GGTT mappings */
54 	ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
55 
56 	if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
57 		ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
58 
59 	if (ggtt->mappable_end) {
60 		if (!io_mapping_init_wc(&ggtt->iomap,
61 					ggtt->gmadr.start,
62 					ggtt->mappable_end)) {
63 			ggtt->vm.cleanup(&ggtt->vm);
64 			return -EIO;
65 		}
66 
67 		ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
68 					      ggtt->mappable_end);
69 	}
70 
71 	intel_ggtt_init_fences(ggtt);
72 
73 	return 0;
74 }
75 
76 /**
77  * i915_ggtt_init_hw - Initialize GGTT hardware
78  * @i915: i915 device
79  */
80 int i915_ggtt_init_hw(struct drm_i915_private *i915)
81 {
82 	int ret;
83 
84 	/*
85 	 * Note that we use page colouring to enforce a guard page at the
86 	 * end of the address space. This is required as the CS may prefetch
87 	 * beyond the end of the batch buffer, across the page boundary,
88 	 * and beyond the end of the GTT if we do not provide a guard.
89 	 */
90 	ret = ggtt_init_hw(&i915->ggtt);
91 	if (ret)
92 		return ret;
93 
94 	return 0;
95 }
96 
97 /*
98  * Certain Gen5 chipsets require idling the GPU before
99  * unmapping anything from the GTT when VT-d is enabled.
100  */
101 static bool needs_idle_maps(struct drm_i915_private *i915)
102 {
103 	/*
104 	 * Query intel_iommu to see if we need the workaround. Presumably that
105 	 * was loaded first.
106 	 */
107 	if (!intel_vtd_active())
108 		return false;
109 
110 	if (GRAPHICS_VER(i915) == 5 && IS_MOBILE(i915))
111 		return true;
112 
113 	if (GRAPHICS_VER(i915) == 12)
114 		return true; /* XXX DMAR fault reason 7 */
115 
116 	return false;
117 }
118 
119 void i915_ggtt_suspend(struct i915_ggtt *ggtt)
120 {
121 	struct i915_vma *vma, *vn;
122 	int open;
123 
124 	mutex_lock(&ggtt->vm.mutex);
125 
126 	/* Skip rewriting PTE on VMA unbind. */
127 	open = atomic_xchg(&ggtt->vm.open, 0);
128 
129 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
130 		GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
131 		i915_vma_wait_for_bind(vma);
132 
133 		if (i915_vma_is_pinned(vma))
134 			continue;
135 
136 		if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
137 			__i915_vma_evict(vma);
138 			drm_mm_remove_node(&vma->node);
139 		}
140 	}
141 
142 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
143 	ggtt->invalidate(ggtt);
144 	atomic_set(&ggtt->vm.open, open);
145 
146 	mutex_unlock(&ggtt->vm.mutex);
147 
148 	intel_gt_check_and_clear_faults(ggtt->vm.gt);
149 }
150 
151 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
152 {
153 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
154 
155 	spin_lock_irq(&uncore->lock);
156 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
157 	intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
158 	spin_unlock_irq(&uncore->lock);
159 }
160 
161 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
162 {
163 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
164 
165 	/*
166 	 * Note that as an uncached mmio write, this will flush the
167 	 * WCB of the writes into the GGTT before it triggers the invalidate.
168 	 */
169 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
170 }
171 
172 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
173 {
174 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
175 	struct drm_i915_private *i915 = ggtt->vm.i915;
176 
177 	gen8_ggtt_invalidate(ggtt);
178 
179 	if (GRAPHICS_VER(i915) >= 12)
180 		intel_uncore_write_fw(uncore, GEN12_GUC_TLB_INV_CR,
181 				      GEN12_GUC_TLB_INV_CR_INVALIDATE);
182 	else
183 		intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
184 }
185 
186 static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt)
187 {
188 	intel_gtt_chipset_flush();
189 }
190 
191 u64 gen8_ggtt_pte_encode(dma_addr_t addr,
192 			 enum i915_cache_level level,
193 			 u32 flags)
194 {
195 	gen8_pte_t pte = addr | _PAGE_PRESENT;
196 
197 	if (flags & PTE_LM)
198 		pte |= GEN12_GGTT_PTE_LM;
199 
200 	return pte;
201 }
202 
203 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
204 {
205 	writeq(pte, addr);
206 }
207 
208 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
209 				  dma_addr_t addr,
210 				  u64 offset,
211 				  enum i915_cache_level level,
212 				  u32 flags)
213 {
214 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
215 	gen8_pte_t __iomem *pte =
216 		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
217 
218 	gen8_set_pte(pte, gen8_ggtt_pte_encode(addr, level, flags));
219 
220 	ggtt->invalidate(ggtt);
221 }
222 
223 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
224 				     struct i915_vma *vma,
225 				     enum i915_cache_level level,
226 				     u32 flags)
227 {
228 	const gen8_pte_t pte_encode = gen8_ggtt_pte_encode(0, level, flags);
229 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
230 	gen8_pte_t __iomem *gte;
231 	gen8_pte_t __iomem *end;
232 	struct sgt_iter iter;
233 	dma_addr_t addr;
234 
235 	/*
236 	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
237 	 * not to allow the user to override access to a read only page.
238 	 */
239 
240 	gte = (gen8_pte_t __iomem *)ggtt->gsm;
241 	gte += vma->node.start / I915_GTT_PAGE_SIZE;
242 	end = gte + vma->node.size / I915_GTT_PAGE_SIZE;
243 
244 	for_each_sgt_daddr(addr, iter, vma->pages)
245 		gen8_set_pte(gte++, pte_encode | addr);
246 	GEM_BUG_ON(gte > end);
247 
248 	/* Fill the allocated but "unused" space beyond the end of the buffer */
249 	while (gte < end)
250 		gen8_set_pte(gte++, vm->scratch[0]->encode);
251 
252 	/*
253 	 * We want to flush the TLBs only after we're certain all the PTE
254 	 * updates have finished.
255 	 */
256 	ggtt->invalidate(ggtt);
257 }
258 
259 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
260 				  dma_addr_t addr,
261 				  u64 offset,
262 				  enum i915_cache_level level,
263 				  u32 flags)
264 {
265 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
266 	gen6_pte_t __iomem *pte =
267 		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
268 
269 	iowrite32(vm->pte_encode(addr, level, flags), pte);
270 
271 	ggtt->invalidate(ggtt);
272 }
273 
274 /*
275  * Binds an object into the global gtt with the specified cache level.
276  * The object will be accessible to the GPU via commands whose operands
277  * reference offsets within the global GTT as well as accessible by the GPU
278  * through the GMADR mapped BAR (i915->mm.gtt->gtt).
279  */
280 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
281 				     struct i915_vma *vma,
282 				     enum i915_cache_level level,
283 				     u32 flags)
284 {
285 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
286 	gen6_pte_t __iomem *gte;
287 	gen6_pte_t __iomem *end;
288 	struct sgt_iter iter;
289 	dma_addr_t addr;
290 
291 	gte = (gen6_pte_t __iomem *)ggtt->gsm;
292 	gte += vma->node.start / I915_GTT_PAGE_SIZE;
293 	end = gte + vma->node.size / I915_GTT_PAGE_SIZE;
294 
295 	for_each_sgt_daddr(addr, iter, vma->pages)
296 		iowrite32(vm->pte_encode(addr, level, flags), gte++);
297 	GEM_BUG_ON(gte > end);
298 
299 	/* Fill the allocated but "unused" space beyond the end of the buffer */
300 	while (gte < end)
301 		iowrite32(vm->scratch[0]->encode, gte++);
302 
303 	/*
304 	 * We want to flush the TLBs only after we're certain all the PTE
305 	 * updates have finished.
306 	 */
307 	ggtt->invalidate(ggtt);
308 }
309 
310 static void nop_clear_range(struct i915_address_space *vm,
311 			    u64 start, u64 length)
312 {
313 }
314 
315 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
316 				  u64 start, u64 length)
317 {
318 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
319 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
320 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
321 	const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
322 	gen8_pte_t __iomem *gtt_base =
323 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
324 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
325 	int i;
326 
327 	if (WARN(num_entries > max_entries,
328 		 "First entry = %d; Num entries = %d (max=%d)\n",
329 		 first_entry, num_entries, max_entries))
330 		num_entries = max_entries;
331 
332 	for (i = 0; i < num_entries; i++)
333 		gen8_set_pte(&gtt_base[i], scratch_pte);
334 }
335 
336 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
337 {
338 	/*
339 	 * Make sure the internal GAM fifo has been cleared of all GTT
340 	 * writes before exiting stop_machine(). This guarantees that
341 	 * any aperture accesses waiting to start in another process
342 	 * cannot back up behind the GTT writes causing a hang.
343 	 * The register can be any arbitrary GAM register.
344 	 */
345 	intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
346 }
347 
348 struct insert_page {
349 	struct i915_address_space *vm;
350 	dma_addr_t addr;
351 	u64 offset;
352 	enum i915_cache_level level;
353 };
354 
355 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
356 {
357 	struct insert_page *arg = _arg;
358 
359 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
360 	bxt_vtd_ggtt_wa(arg->vm);
361 
362 	return 0;
363 }
364 
365 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
366 					  dma_addr_t addr,
367 					  u64 offset,
368 					  enum i915_cache_level level,
369 					  u32 unused)
370 {
371 	struct insert_page arg = { vm, addr, offset, level };
372 
373 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
374 }
375 
376 struct insert_entries {
377 	struct i915_address_space *vm;
378 	struct i915_vma *vma;
379 	enum i915_cache_level level;
380 	u32 flags;
381 };
382 
383 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
384 {
385 	struct insert_entries *arg = _arg;
386 
387 	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
388 	bxt_vtd_ggtt_wa(arg->vm);
389 
390 	return 0;
391 }
392 
393 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
394 					     struct i915_vma *vma,
395 					     enum i915_cache_level level,
396 					     u32 flags)
397 {
398 	struct insert_entries arg = { vm, vma, level, flags };
399 
400 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
401 }
402 
403 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
404 				  u64 start, u64 length)
405 {
406 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
407 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
408 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
409 	gen6_pte_t scratch_pte, __iomem *gtt_base =
410 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
411 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
412 	int i;
413 
414 	if (WARN(num_entries > max_entries,
415 		 "First entry = %d; Num entries = %d (max=%d)\n",
416 		 first_entry, num_entries, max_entries))
417 		num_entries = max_entries;
418 
419 	scratch_pte = vm->scratch[0]->encode;
420 	for (i = 0; i < num_entries; i++)
421 		iowrite32(scratch_pte, &gtt_base[i]);
422 }
423 
424 static void i915_ggtt_insert_page(struct i915_address_space *vm,
425 				  dma_addr_t addr,
426 				  u64 offset,
427 				  enum i915_cache_level cache_level,
428 				  u32 unused)
429 {
430 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
431 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
432 
433 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
434 }
435 
436 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
437 				     struct i915_vma *vma,
438 				     enum i915_cache_level cache_level,
439 				     u32 unused)
440 {
441 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
442 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
443 
444 	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
445 				    flags);
446 }
447 
448 static void i915_ggtt_clear_range(struct i915_address_space *vm,
449 				  u64 start, u64 length)
450 {
451 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
452 }
453 
454 static void ggtt_bind_vma(struct i915_address_space *vm,
455 			  struct i915_vm_pt_stash *stash,
456 			  struct i915_vma *vma,
457 			  enum i915_cache_level cache_level,
458 			  u32 flags)
459 {
460 	struct drm_i915_gem_object *obj = vma->obj;
461 	u32 pte_flags;
462 
463 	if (i915_vma_is_bound(vma, ~flags & I915_VMA_BIND_MASK))
464 		return;
465 
466 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
467 	pte_flags = 0;
468 	if (i915_gem_object_is_readonly(obj))
469 		pte_flags |= PTE_READ_ONLY;
470 	if (i915_gem_object_is_lmem(obj))
471 		pte_flags |= PTE_LM;
472 
473 	vm->insert_entries(vm, vma, cache_level, pte_flags);
474 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
475 }
476 
477 static void ggtt_unbind_vma(struct i915_address_space *vm, struct i915_vma *vma)
478 {
479 	vm->clear_range(vm, vma->node.start, vma->size);
480 }
481 
482 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
483 {
484 	u64 size;
485 	int ret;
486 
487 	if (!intel_uc_uses_guc(&ggtt->vm.gt->uc))
488 		return 0;
489 
490 	GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
491 	size = ggtt->vm.total - GUC_GGTT_TOP;
492 
493 	ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size,
494 				   GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
495 				   PIN_NOEVICT);
496 	if (ret)
497 		drm_dbg(&ggtt->vm.i915->drm,
498 			"Failed to reserve top of GGTT for GuC\n");
499 
500 	return ret;
501 }
502 
503 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
504 {
505 	if (drm_mm_node_allocated(&ggtt->uc_fw))
506 		drm_mm_remove_node(&ggtt->uc_fw);
507 }
508 
509 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
510 {
511 	ggtt_release_guc_top(ggtt);
512 	if (drm_mm_node_allocated(&ggtt->error_capture))
513 		drm_mm_remove_node(&ggtt->error_capture);
514 	mutex_destroy(&ggtt->error_mutex);
515 }
516 
517 static int init_ggtt(struct i915_ggtt *ggtt)
518 {
519 	/*
520 	 * Let GEM Manage all of the aperture.
521 	 *
522 	 * However, leave one page at the end still bound to the scratch page.
523 	 * There are a number of places where the hardware apparently prefetches
524 	 * past the end of the object, and we've seen multiple hangs with the
525 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
526 	 * aperture.  One page should be enough to keep any prefetching inside
527 	 * of the aperture.
528 	 */
529 	unsigned long hole_start, hole_end;
530 	struct drm_mm_node *entry;
531 	int ret;
532 
533 	/*
534 	 * GuC requires all resources that we're sharing with it to be placed in
535 	 * non-WOPCM memory. If GuC is not present or not in use we still need a
536 	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
537 	 * why.
538 	 */
539 	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
540 			       intel_wopcm_guc_size(&ggtt->vm.i915->wopcm));
541 
542 	ret = intel_vgt_balloon(ggtt);
543 	if (ret)
544 		return ret;
545 
546 	mutex_init(&ggtt->error_mutex);
547 	if (ggtt->mappable_end) {
548 		/*
549 		 * Reserve a mappable slot for our lockless error capture.
550 		 *
551 		 * We strongly prefer taking address 0x0 in order to protect
552 		 * other critical buffers against accidental overwrites,
553 		 * as writing to address 0 is a very common mistake.
554 		 *
555 		 * Since 0 may already be in use by the system (e.g. the BIOS
556 		 * framebuffer), we let the reservation fail quietly and hope
557 		 * 0 remains reserved always.
558 		 *
559 		 * If we fail to reserve 0, and then fail to find any space
560 		 * for an error-capture, remain silent. We can afford not
561 		 * to reserve an error_capture node as we have fallback
562 		 * paths, and we trust that 0 will remain reserved. However,
563 		 * the only likely reason for failure to insert is a driver
564 		 * bug, which we expect to cause other failures...
565 		 */
566 		ggtt->error_capture.size = I915_GTT_PAGE_SIZE;
567 		ggtt->error_capture.color = I915_COLOR_UNEVICTABLE;
568 		if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture))
569 			drm_mm_insert_node_in_range(&ggtt->vm.mm,
570 						    &ggtt->error_capture,
571 						    ggtt->error_capture.size, 0,
572 						    ggtt->error_capture.color,
573 						    0, ggtt->mappable_end,
574 						    DRM_MM_INSERT_LOW);
575 	}
576 	if (drm_mm_node_allocated(&ggtt->error_capture))
577 		drm_dbg(&ggtt->vm.i915->drm,
578 			"Reserved GGTT:[%llx, %llx] for use by error capture\n",
579 			ggtt->error_capture.start,
580 			ggtt->error_capture.start + ggtt->error_capture.size);
581 
582 	/*
583 	 * The upper portion of the GuC address space has a sizeable hole
584 	 * (several MB) that is inaccessible by GuC. Reserve this range within
585 	 * GGTT as it can comfortably hold GuC/HuC firmware images.
586 	 */
587 	ret = ggtt_reserve_guc_top(ggtt);
588 	if (ret)
589 		goto err;
590 
591 	/* Clear any non-preallocated blocks */
592 	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
593 		drm_dbg(&ggtt->vm.i915->drm,
594 			"clearing unused GTT space: [%lx, %lx]\n",
595 			hole_start, hole_end);
596 		ggtt->vm.clear_range(&ggtt->vm, hole_start,
597 				     hole_end - hole_start);
598 	}
599 
600 	/* And finally clear the reserved guard page */
601 	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
602 
603 	return 0;
604 
605 err:
606 	cleanup_init_ggtt(ggtt);
607 	return ret;
608 }
609 
610 static void aliasing_gtt_bind_vma(struct i915_address_space *vm,
611 				  struct i915_vm_pt_stash *stash,
612 				  struct i915_vma *vma,
613 				  enum i915_cache_level cache_level,
614 				  u32 flags)
615 {
616 	u32 pte_flags;
617 
618 	/* Currently applicable only to VLV */
619 	pte_flags = 0;
620 	if (i915_gem_object_is_readonly(vma->obj))
621 		pte_flags |= PTE_READ_ONLY;
622 
623 	if (flags & I915_VMA_LOCAL_BIND)
624 		ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm,
625 			       stash, vma, cache_level, flags);
626 
627 	if (flags & I915_VMA_GLOBAL_BIND)
628 		vm->insert_entries(vm, vma, cache_level, pte_flags);
629 }
630 
631 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm,
632 				    struct i915_vma *vma)
633 {
634 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
635 		vm->clear_range(vm, vma->node.start, vma->size);
636 
637 	if (i915_vma_is_bound(vma, I915_VMA_LOCAL_BIND))
638 		ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma);
639 }
640 
641 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
642 {
643 	struct i915_vm_pt_stash stash = {};
644 	struct i915_ppgtt *ppgtt;
645 	int err;
646 
647 	ppgtt = i915_ppgtt_create(ggtt->vm.gt);
648 	if (IS_ERR(ppgtt))
649 		return PTR_ERR(ppgtt);
650 
651 	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
652 		err = -ENODEV;
653 		goto err_ppgtt;
654 	}
655 
656 	err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total);
657 	if (err)
658 		goto err_ppgtt;
659 
660 	i915_gem_object_lock(ppgtt->vm.scratch[0], NULL);
661 	err = i915_vm_map_pt_stash(&ppgtt->vm, &stash);
662 	i915_gem_object_unlock(ppgtt->vm.scratch[0]);
663 	if (err)
664 		goto err_stash;
665 
666 	/*
667 	 * Note we only pre-allocate as far as the end of the global
668 	 * GTT. On 48b / 4-level page-tables, the difference is very,
669 	 * very significant! We have to preallocate as GVT/vgpu does
670 	 * not like the page directory disappearing.
671 	 */
672 	ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total);
673 
674 	ggtt->alias = ppgtt;
675 	ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
676 
677 	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
678 	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
679 
680 	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
681 	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
682 
683 	i915_vm_free_pt_stash(&ppgtt->vm, &stash);
684 	return 0;
685 
686 err_stash:
687 	i915_vm_free_pt_stash(&ppgtt->vm, &stash);
688 err_ppgtt:
689 	i915_vm_put(&ppgtt->vm);
690 	return err;
691 }
692 
693 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
694 {
695 	struct i915_ppgtt *ppgtt;
696 
697 	ppgtt = fetch_and_zero(&ggtt->alias);
698 	if (!ppgtt)
699 		return;
700 
701 	i915_vm_put(&ppgtt->vm);
702 
703 	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
704 	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
705 }
706 
707 int i915_init_ggtt(struct drm_i915_private *i915)
708 {
709 	int ret;
710 
711 	ret = init_ggtt(&i915->ggtt);
712 	if (ret)
713 		return ret;
714 
715 	if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
716 		ret = init_aliasing_ppgtt(&i915->ggtt);
717 		if (ret)
718 			cleanup_init_ggtt(&i915->ggtt);
719 	}
720 
721 	return 0;
722 }
723 
724 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
725 {
726 	struct i915_vma *vma, *vn;
727 
728 	atomic_set(&ggtt->vm.open, 0);
729 
730 	rcu_barrier(); /* flush the RCU'ed__i915_vm_release */
731 	flush_workqueue(ggtt->vm.i915->wq);
732 
733 	mutex_lock(&ggtt->vm.mutex);
734 
735 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
736 		WARN_ON(__i915_vma_unbind(vma));
737 
738 	if (drm_mm_node_allocated(&ggtt->error_capture))
739 		drm_mm_remove_node(&ggtt->error_capture);
740 	mutex_destroy(&ggtt->error_mutex);
741 
742 	ggtt_release_guc_top(ggtt);
743 	intel_vgt_deballoon(ggtt);
744 
745 	ggtt->vm.cleanup(&ggtt->vm);
746 
747 	mutex_unlock(&ggtt->vm.mutex);
748 	i915_address_space_fini(&ggtt->vm);
749 
750 	arch_phys_wc_del(ggtt->mtrr);
751 
752 	if (ggtt->iomap.size)
753 		io_mapping_fini(&ggtt->iomap);
754 }
755 
756 /**
757  * i915_ggtt_driver_release - Clean up GGTT hardware initialization
758  * @i915: i915 device
759  */
760 void i915_ggtt_driver_release(struct drm_i915_private *i915)
761 {
762 	struct i915_ggtt *ggtt = &i915->ggtt;
763 
764 	fini_aliasing_ppgtt(ggtt);
765 
766 	intel_ggtt_fini_fences(ggtt);
767 	ggtt_cleanup_hw(ggtt);
768 }
769 
770 /**
771  * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after
772  * all free objects have been drained.
773  * @i915: i915 device
774  */
775 void i915_ggtt_driver_late_release(struct drm_i915_private *i915)
776 {
777 	struct i915_ggtt *ggtt = &i915->ggtt;
778 
779 	GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1);
780 	dma_resv_fini(&ggtt->vm._resv);
781 }
782 
783 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
784 {
785 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
786 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
787 	return snb_gmch_ctl << 20;
788 }
789 
790 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
791 {
792 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
793 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
794 	if (bdw_gmch_ctl)
795 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
796 
797 #ifdef CONFIG_X86_32
798 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
799 	if (bdw_gmch_ctl > 4)
800 		bdw_gmch_ctl = 4;
801 #endif
802 
803 	return bdw_gmch_ctl << 20;
804 }
805 
806 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
807 {
808 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
809 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
810 
811 	if (gmch_ctrl)
812 		return 1 << (20 + gmch_ctrl);
813 
814 	return 0;
815 }
816 
817 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
818 {
819 	struct drm_i915_private *i915 = ggtt->vm.i915;
820 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
821 	phys_addr_t phys_addr;
822 	u32 pte_flags;
823 	int ret;
824 
825 	/* For Modern GENs the PTEs and register space are split in the BAR */
826 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
827 
828 	/*
829 	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
830 	 * will be dropped. For WC mappings in general we have 64 byte burst
831 	 * writes when the WC buffer is flushed, so we can't use it, but have to
832 	 * resort to an uncached mapping. The WC issue is easily caught by the
833 	 * readback check when writing GTT PTE entries.
834 	 */
835 	if (IS_GEN9_LP(i915) || GRAPHICS_VER(i915) >= 10)
836 		ggtt->gsm = ioremap(phys_addr, size);
837 	else
838 		ggtt->gsm = ioremap_wc(phys_addr, size);
839 	if (!ggtt->gsm) {
840 		drm_err(&i915->drm, "Failed to map the ggtt page table\n");
841 		return -ENOMEM;
842 	}
843 
844 	kref_init(&ggtt->vm.resv_ref);
845 	ret = setup_scratch_page(&ggtt->vm);
846 	if (ret) {
847 		drm_err(&i915->drm, "Scratch setup failed\n");
848 		/* iounmap will also get called at remove, but meh */
849 		iounmap(ggtt->gsm);
850 		return ret;
851 	}
852 
853 	pte_flags = 0;
854 	if (i915_gem_object_is_lmem(ggtt->vm.scratch[0]))
855 		pte_flags |= PTE_LM;
856 
857 	ggtt->vm.scratch[0]->encode =
858 		ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]),
859 				    I915_CACHE_NONE, pte_flags);
860 
861 	return 0;
862 }
863 
864 int ggtt_set_pages(struct i915_vma *vma)
865 {
866 	int ret;
867 
868 	GEM_BUG_ON(vma->pages);
869 
870 	ret = i915_get_ggtt_vma_pages(vma);
871 	if (ret)
872 		return ret;
873 
874 	vma->page_sizes = vma->obj->mm.page_sizes;
875 
876 	return 0;
877 }
878 
879 static void gen6_gmch_remove(struct i915_address_space *vm)
880 {
881 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
882 
883 	iounmap(ggtt->gsm);
884 	free_scratch(vm);
885 }
886 
887 static struct resource pci_resource(struct pci_dev *pdev, int bar)
888 {
889 	return (struct resource)DEFINE_RES_MEM(pci_resource_start(pdev, bar),
890 					       pci_resource_len(pdev, bar));
891 }
892 
893 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
894 {
895 	struct drm_i915_private *i915 = ggtt->vm.i915;
896 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
897 	unsigned int size;
898 	u16 snb_gmch_ctl;
899 
900 	/* TODO: We're not aware of mappable constraints on gen8 yet */
901 	if (!HAS_LMEM(i915)) {
902 		ggtt->gmadr = pci_resource(pdev, 2);
903 		ggtt->mappable_end = resource_size(&ggtt->gmadr);
904 	}
905 
906 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
907 	if (IS_CHERRYVIEW(i915))
908 		size = chv_get_total_gtt_size(snb_gmch_ctl);
909 	else
910 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
911 
912 	ggtt->vm.alloc_pt_dma = alloc_pt_dma;
913 
914 	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
915 	ggtt->vm.cleanup = gen6_gmch_remove;
916 	ggtt->vm.insert_page = gen8_ggtt_insert_page;
917 	ggtt->vm.clear_range = nop_clear_range;
918 	if (intel_scanout_needs_vtd_wa(i915))
919 		ggtt->vm.clear_range = gen8_ggtt_clear_range;
920 
921 	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
922 
923 	/*
924 	 * Serialize GTT updates with aperture access on BXT if VT-d is on,
925 	 * and always on CHV.
926 	 */
927 	if (intel_vm_no_concurrent_access_wa(i915)) {
928 		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
929 		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
930 		ggtt->vm.bind_async_flags =
931 			I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
932 	}
933 
934 	ggtt->invalidate = gen8_ggtt_invalidate;
935 
936 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
937 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
938 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
939 	ggtt->vm.vma_ops.clear_pages = clear_pages;
940 
941 	ggtt->vm.pte_encode = gen8_ggtt_pte_encode;
942 
943 	setup_private_pat(ggtt->vm.gt->uncore);
944 
945 	return ggtt_probe_common(ggtt, size);
946 }
947 
948 static u64 snb_pte_encode(dma_addr_t addr,
949 			  enum i915_cache_level level,
950 			  u32 flags)
951 {
952 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
953 
954 	switch (level) {
955 	case I915_CACHE_L3_LLC:
956 	case I915_CACHE_LLC:
957 		pte |= GEN6_PTE_CACHE_LLC;
958 		break;
959 	case I915_CACHE_NONE:
960 		pte |= GEN6_PTE_UNCACHED;
961 		break;
962 	default:
963 		MISSING_CASE(level);
964 	}
965 
966 	return pte;
967 }
968 
969 static u64 ivb_pte_encode(dma_addr_t addr,
970 			  enum i915_cache_level level,
971 			  u32 flags)
972 {
973 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
974 
975 	switch (level) {
976 	case I915_CACHE_L3_LLC:
977 		pte |= GEN7_PTE_CACHE_L3_LLC;
978 		break;
979 	case I915_CACHE_LLC:
980 		pte |= GEN6_PTE_CACHE_LLC;
981 		break;
982 	case I915_CACHE_NONE:
983 		pte |= GEN6_PTE_UNCACHED;
984 		break;
985 	default:
986 		MISSING_CASE(level);
987 	}
988 
989 	return pte;
990 }
991 
992 static u64 byt_pte_encode(dma_addr_t addr,
993 			  enum i915_cache_level level,
994 			  u32 flags)
995 {
996 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
997 
998 	if (!(flags & PTE_READ_ONLY))
999 		pte |= BYT_PTE_WRITEABLE;
1000 
1001 	if (level != I915_CACHE_NONE)
1002 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
1003 
1004 	return pte;
1005 }
1006 
1007 static u64 hsw_pte_encode(dma_addr_t addr,
1008 			  enum i915_cache_level level,
1009 			  u32 flags)
1010 {
1011 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1012 
1013 	if (level != I915_CACHE_NONE)
1014 		pte |= HSW_WB_LLC_AGE3;
1015 
1016 	return pte;
1017 }
1018 
1019 static u64 iris_pte_encode(dma_addr_t addr,
1020 			   enum i915_cache_level level,
1021 			   u32 flags)
1022 {
1023 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1024 
1025 	switch (level) {
1026 	case I915_CACHE_NONE:
1027 		break;
1028 	case I915_CACHE_WT:
1029 		pte |= HSW_WT_ELLC_LLC_AGE3;
1030 		break;
1031 	default:
1032 		pte |= HSW_WB_ELLC_LLC_AGE3;
1033 		break;
1034 	}
1035 
1036 	return pte;
1037 }
1038 
1039 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
1040 {
1041 	struct drm_i915_private *i915 = ggtt->vm.i915;
1042 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1043 	unsigned int size;
1044 	u16 snb_gmch_ctl;
1045 
1046 	ggtt->gmadr = pci_resource(pdev, 2);
1047 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
1048 
1049 	/*
1050 	 * 64/512MB is the current min/max we actually know of, but this is
1051 	 * just a coarse sanity check.
1052 	 */
1053 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
1054 		drm_err(&i915->drm, "Unknown GMADR size (%pa)\n",
1055 			&ggtt->mappable_end);
1056 		return -ENXIO;
1057 	}
1058 
1059 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1060 
1061 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
1062 	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
1063 
1064 	ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1065 
1066 	ggtt->vm.clear_range = nop_clear_range;
1067 	if (!HAS_FULL_PPGTT(i915) || intel_scanout_needs_vtd_wa(i915))
1068 		ggtt->vm.clear_range = gen6_ggtt_clear_range;
1069 	ggtt->vm.insert_page = gen6_ggtt_insert_page;
1070 	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
1071 	ggtt->vm.cleanup = gen6_gmch_remove;
1072 
1073 	ggtt->invalidate = gen6_ggtt_invalidate;
1074 
1075 	if (HAS_EDRAM(i915))
1076 		ggtt->vm.pte_encode = iris_pte_encode;
1077 	else if (IS_HASWELL(i915))
1078 		ggtt->vm.pte_encode = hsw_pte_encode;
1079 	else if (IS_VALLEYVIEW(i915))
1080 		ggtt->vm.pte_encode = byt_pte_encode;
1081 	else if (GRAPHICS_VER(i915) >= 7)
1082 		ggtt->vm.pte_encode = ivb_pte_encode;
1083 	else
1084 		ggtt->vm.pte_encode = snb_pte_encode;
1085 
1086 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
1087 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
1088 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
1089 	ggtt->vm.vma_ops.clear_pages = clear_pages;
1090 
1091 	return ggtt_probe_common(ggtt, size);
1092 }
1093 
1094 static void i915_gmch_remove(struct i915_address_space *vm)
1095 {
1096 	intel_gmch_remove();
1097 }
1098 
1099 static int i915_gmch_probe(struct i915_ggtt *ggtt)
1100 {
1101 	struct drm_i915_private *i915 = ggtt->vm.i915;
1102 	phys_addr_t gmadr_base;
1103 	int ret;
1104 
1105 	ret = intel_gmch_probe(i915->bridge_dev, to_pci_dev(i915->drm.dev), NULL);
1106 	if (!ret) {
1107 		drm_err(&i915->drm, "failed to set up gmch\n");
1108 		return -EIO;
1109 	}
1110 
1111 	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
1112 
1113 	ggtt->gmadr =
1114 		(struct resource)DEFINE_RES_MEM(gmadr_base, ggtt->mappable_end);
1115 
1116 	ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1117 
1118 	if (needs_idle_maps(i915)) {
1119 		drm_notice(&i915->drm,
1120 			   "Flushing DMA requests before IOMMU unmaps; performance may be degraded\n");
1121 		ggtt->do_idle_maps = true;
1122 	}
1123 
1124 	ggtt->vm.insert_page = i915_ggtt_insert_page;
1125 	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
1126 	ggtt->vm.clear_range = i915_ggtt_clear_range;
1127 	ggtt->vm.cleanup = i915_gmch_remove;
1128 
1129 	ggtt->invalidate = gmch_ggtt_invalidate;
1130 
1131 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
1132 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
1133 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
1134 	ggtt->vm.vma_ops.clear_pages = clear_pages;
1135 
1136 	if (unlikely(ggtt->do_idle_maps))
1137 		drm_notice(&i915->drm,
1138 			   "Applying Ironlake quirks for intel_iommu\n");
1139 
1140 	return 0;
1141 }
1142 
1143 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
1144 {
1145 	struct drm_i915_private *i915 = gt->i915;
1146 	int ret;
1147 
1148 	ggtt->vm.gt = gt;
1149 	ggtt->vm.i915 = i915;
1150 	ggtt->vm.dma = i915->drm.dev;
1151 	dma_resv_init(&ggtt->vm._resv);
1152 
1153 	if (GRAPHICS_VER(i915) <= 5)
1154 		ret = i915_gmch_probe(ggtt);
1155 	else if (GRAPHICS_VER(i915) < 8)
1156 		ret = gen6_gmch_probe(ggtt);
1157 	else
1158 		ret = gen8_gmch_probe(ggtt);
1159 	if (ret) {
1160 		dma_resv_fini(&ggtt->vm._resv);
1161 		return ret;
1162 	}
1163 
1164 	if ((ggtt->vm.total - 1) >> 32) {
1165 		drm_err(&i915->drm,
1166 			"We never expected a Global GTT with more than 32bits"
1167 			" of address space! Found %lldM!\n",
1168 			ggtt->vm.total >> 20);
1169 		ggtt->vm.total = 1ULL << 32;
1170 		ggtt->mappable_end =
1171 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
1172 	}
1173 
1174 	if (ggtt->mappable_end > ggtt->vm.total) {
1175 		drm_err(&i915->drm,
1176 			"mappable aperture extends past end of GGTT,"
1177 			" aperture=%pa, total=%llx\n",
1178 			&ggtt->mappable_end, ggtt->vm.total);
1179 		ggtt->mappable_end = ggtt->vm.total;
1180 	}
1181 
1182 	/* GMADR is the PCI mmio aperture into the global GTT. */
1183 	drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20);
1184 	drm_dbg(&i915->drm, "GMADR size = %lluM\n",
1185 		(u64)ggtt->mappable_end >> 20);
1186 	drm_dbg(&i915->drm, "DSM size = %lluM\n",
1187 		(u64)resource_size(&intel_graphics_stolen_res) >> 20);
1188 
1189 	return 0;
1190 }
1191 
1192 /**
1193  * i915_ggtt_probe_hw - Probe GGTT hardware location
1194  * @i915: i915 device
1195  */
1196 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
1197 {
1198 	int ret;
1199 
1200 	ret = ggtt_probe_hw(&i915->ggtt, &i915->gt);
1201 	if (ret)
1202 		return ret;
1203 
1204 	if (intel_vtd_active())
1205 		drm_info(&i915->drm, "VT-d active for gfx access\n");
1206 
1207 	return 0;
1208 }
1209 
1210 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
1211 {
1212 	if (GRAPHICS_VER(i915) < 6 && !intel_enable_gtt())
1213 		return -EIO;
1214 
1215 	return 0;
1216 }
1217 
1218 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt)
1219 {
1220 	GEM_BUG_ON(ggtt->invalidate != gen8_ggtt_invalidate);
1221 
1222 	ggtt->invalidate = guc_ggtt_invalidate;
1223 
1224 	ggtt->invalidate(ggtt);
1225 }
1226 
1227 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt)
1228 {
1229 	/* XXX Temporary pardon for error unload */
1230 	if (ggtt->invalidate == gen8_ggtt_invalidate)
1231 		return;
1232 
1233 	/* We should only be called after i915_ggtt_enable_guc() */
1234 	GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate);
1235 
1236 	ggtt->invalidate = gen8_ggtt_invalidate;
1237 
1238 	ggtt->invalidate(ggtt);
1239 }
1240 
1241 void i915_ggtt_resume(struct i915_ggtt *ggtt)
1242 {
1243 	struct i915_vma *vma;
1244 	bool flush = false;
1245 	int open;
1246 
1247 	intel_gt_check_and_clear_faults(ggtt->vm.gt);
1248 
1249 	/* First fill our portion of the GTT with scratch pages */
1250 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
1251 
1252 	/* Skip rewriting PTE on VMA unbind. */
1253 	open = atomic_xchg(&ggtt->vm.open, 0);
1254 
1255 	/* clflush objects bound into the GGTT and rebind them. */
1256 	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link) {
1257 		struct drm_i915_gem_object *obj = vma->obj;
1258 		unsigned int was_bound =
1259 			atomic_read(&vma->flags) & I915_VMA_BIND_MASK;
1260 
1261 		GEM_BUG_ON(!was_bound);
1262 		vma->ops->bind_vma(&ggtt->vm, NULL, vma,
1263 				   obj ? obj->cache_level : 0,
1264 				   was_bound);
1265 		if (obj) { /* only used during resume => exclusive access */
1266 			flush |= fetch_and_zero(&obj->write_domain);
1267 			obj->read_domains |= I915_GEM_DOMAIN_GTT;
1268 		}
1269 	}
1270 
1271 	atomic_set(&ggtt->vm.open, open);
1272 	ggtt->invalidate(ggtt);
1273 
1274 	if (flush)
1275 		wbinvd_on_all_cpus();
1276 
1277 	if (GRAPHICS_VER(ggtt->vm.i915) >= 8)
1278 		setup_private_pat(ggtt->vm.gt->uncore);
1279 
1280 	intel_ggtt_restore_fences(ggtt);
1281 }
1282 
1283 static struct scatterlist *
1284 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
1285 	     unsigned int width, unsigned int height,
1286 	     unsigned int src_stride, unsigned int dst_stride,
1287 	     struct sg_table *st, struct scatterlist *sg)
1288 {
1289 	unsigned int column, row;
1290 	unsigned int src_idx;
1291 
1292 	for (column = 0; column < width; column++) {
1293 		unsigned int left;
1294 
1295 		src_idx = src_stride * (height - 1) + column + offset;
1296 		for (row = 0; row < height; row++) {
1297 			st->nents++;
1298 			/*
1299 			 * We don't need the pages, but need to initialize
1300 			 * the entries so the sg list can be happily traversed.
1301 			 * The only thing we need are DMA addresses.
1302 			 */
1303 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
1304 			sg_dma_address(sg) =
1305 				i915_gem_object_get_dma_address(obj, src_idx);
1306 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
1307 			sg = sg_next(sg);
1308 			src_idx -= src_stride;
1309 		}
1310 
1311 		left = (dst_stride - height) * I915_GTT_PAGE_SIZE;
1312 
1313 		if (!left)
1314 			continue;
1315 
1316 		st->nents++;
1317 
1318 		/*
1319 		 * The DE ignores the PTEs for the padding tiles, the sg entry
1320 		 * here is just a conenience to indicate how many padding PTEs
1321 		 * to insert at this spot.
1322 		 */
1323 		sg_set_page(sg, NULL, left, 0);
1324 		sg_dma_address(sg) = 0;
1325 		sg_dma_len(sg) = left;
1326 		sg = sg_next(sg);
1327 	}
1328 
1329 	return sg;
1330 }
1331 
1332 static noinline struct sg_table *
1333 intel_rotate_pages(struct intel_rotation_info *rot_info,
1334 		   struct drm_i915_gem_object *obj)
1335 {
1336 	unsigned int size = intel_rotation_info_size(rot_info);
1337 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1338 	struct sg_table *st;
1339 	struct scatterlist *sg;
1340 	int ret = -ENOMEM;
1341 	int i;
1342 
1343 	/* Allocate target SG list. */
1344 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1345 	if (!st)
1346 		goto err_st_alloc;
1347 
1348 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1349 	if (ret)
1350 		goto err_sg_alloc;
1351 
1352 	st->nents = 0;
1353 	sg = st->sgl;
1354 
1355 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
1356 		sg = rotate_pages(obj, rot_info->plane[i].offset,
1357 				  rot_info->plane[i].width, rot_info->plane[i].height,
1358 				  rot_info->plane[i].src_stride,
1359 				  rot_info->plane[i].dst_stride,
1360 				  st, sg);
1361 
1362 	return st;
1363 
1364 err_sg_alloc:
1365 	kfree(st);
1366 err_st_alloc:
1367 
1368 	drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1369 		obj->base.size, rot_info->plane[0].width,
1370 		rot_info->plane[0].height, size);
1371 
1372 	return ERR_PTR(ret);
1373 }
1374 
1375 static struct scatterlist *
1376 remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
1377 	    unsigned int width, unsigned int height,
1378 	    unsigned int src_stride, unsigned int dst_stride,
1379 	    struct sg_table *st, struct scatterlist *sg)
1380 {
1381 	unsigned int row;
1382 
1383 	for (row = 0; row < height; row++) {
1384 		unsigned int left = width * I915_GTT_PAGE_SIZE;
1385 
1386 		while (left) {
1387 			dma_addr_t addr;
1388 			unsigned int length;
1389 
1390 			/*
1391 			 * We don't need the pages, but need to initialize
1392 			 * the entries so the sg list can be happily traversed.
1393 			 * The only thing we need are DMA addresses.
1394 			 */
1395 
1396 			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1397 
1398 			length = min(left, length);
1399 
1400 			st->nents++;
1401 
1402 			sg_set_page(sg, NULL, length, 0);
1403 			sg_dma_address(sg) = addr;
1404 			sg_dma_len(sg) = length;
1405 			sg = sg_next(sg);
1406 
1407 			offset += length / I915_GTT_PAGE_SIZE;
1408 			left -= length;
1409 		}
1410 
1411 		offset += src_stride - width;
1412 
1413 		left = (dst_stride - width) * I915_GTT_PAGE_SIZE;
1414 
1415 		if (!left)
1416 			continue;
1417 
1418 		st->nents++;
1419 
1420 		/*
1421 		 * The DE ignores the PTEs for the padding tiles, the sg entry
1422 		 * here is just a conenience to indicate how many padding PTEs
1423 		 * to insert at this spot.
1424 		 */
1425 		sg_set_page(sg, NULL, left, 0);
1426 		sg_dma_address(sg) = 0;
1427 		sg_dma_len(sg) = left;
1428 		sg = sg_next(sg);
1429 	}
1430 
1431 	return sg;
1432 }
1433 
1434 static noinline struct sg_table *
1435 intel_remap_pages(struct intel_remapped_info *rem_info,
1436 		  struct drm_i915_gem_object *obj)
1437 {
1438 	unsigned int size = intel_remapped_info_size(rem_info);
1439 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1440 	struct sg_table *st;
1441 	struct scatterlist *sg;
1442 	int ret = -ENOMEM;
1443 	int i;
1444 
1445 	/* Allocate target SG list. */
1446 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1447 	if (!st)
1448 		goto err_st_alloc;
1449 
1450 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1451 	if (ret)
1452 		goto err_sg_alloc;
1453 
1454 	st->nents = 0;
1455 	sg = st->sgl;
1456 
1457 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
1458 		sg = remap_pages(obj, rem_info->plane[i].offset,
1459 				 rem_info->plane[i].width, rem_info->plane[i].height,
1460 				 rem_info->plane[i].src_stride, rem_info->plane[i].dst_stride,
1461 				 st, sg);
1462 	}
1463 
1464 	i915_sg_trim(st);
1465 
1466 	return st;
1467 
1468 err_sg_alloc:
1469 	kfree(st);
1470 err_st_alloc:
1471 
1472 	drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1473 		obj->base.size, rem_info->plane[0].width,
1474 		rem_info->plane[0].height, size);
1475 
1476 	return ERR_PTR(ret);
1477 }
1478 
1479 static noinline struct sg_table *
1480 intel_partial_pages(const struct i915_ggtt_view *view,
1481 		    struct drm_i915_gem_object *obj)
1482 {
1483 	struct sg_table *st;
1484 	struct scatterlist *sg, *iter;
1485 	unsigned int count = view->partial.size;
1486 	unsigned int offset;
1487 	int ret = -ENOMEM;
1488 
1489 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1490 	if (!st)
1491 		goto err_st_alloc;
1492 
1493 	ret = sg_alloc_table(st, count, GFP_KERNEL);
1494 	if (ret)
1495 		goto err_sg_alloc;
1496 
1497 	iter = i915_gem_object_get_sg_dma(obj, view->partial.offset, &offset, true);
1498 	GEM_BUG_ON(!iter);
1499 
1500 	sg = st->sgl;
1501 	st->nents = 0;
1502 	do {
1503 		unsigned int len;
1504 
1505 		len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT),
1506 			  count << PAGE_SHIFT);
1507 		sg_set_page(sg, NULL, len, 0);
1508 		sg_dma_address(sg) =
1509 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
1510 		sg_dma_len(sg) = len;
1511 
1512 		st->nents++;
1513 		count -= len >> PAGE_SHIFT;
1514 		if (count == 0) {
1515 			sg_mark_end(sg);
1516 			i915_sg_trim(st); /* Drop any unused tail entries. */
1517 
1518 			return st;
1519 		}
1520 
1521 		sg = __sg_next(sg);
1522 		iter = __sg_next(iter);
1523 		offset = 0;
1524 	} while (1);
1525 
1526 err_sg_alloc:
1527 	kfree(st);
1528 err_st_alloc:
1529 	return ERR_PTR(ret);
1530 }
1531 
1532 static int
1533 i915_get_ggtt_vma_pages(struct i915_vma *vma)
1534 {
1535 	int ret;
1536 
1537 	/*
1538 	 * The vma->pages are only valid within the lifespan of the borrowed
1539 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1540 	 * must be the vma->pages. A simple rule is that vma->pages must only
1541 	 * be accessed when the obj->mm.pages are pinned.
1542 	 */
1543 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1544 
1545 	switch (vma->ggtt_view.type) {
1546 	default:
1547 		GEM_BUG_ON(vma->ggtt_view.type);
1548 		fallthrough;
1549 	case I915_GGTT_VIEW_NORMAL:
1550 		vma->pages = vma->obj->mm.pages;
1551 		return 0;
1552 
1553 	case I915_GGTT_VIEW_ROTATED:
1554 		vma->pages =
1555 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
1556 		break;
1557 
1558 	case I915_GGTT_VIEW_REMAPPED:
1559 		vma->pages =
1560 			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
1561 		break;
1562 
1563 	case I915_GGTT_VIEW_PARTIAL:
1564 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
1565 		break;
1566 	}
1567 
1568 	ret = 0;
1569 	if (IS_ERR(vma->pages)) {
1570 		ret = PTR_ERR(vma->pages);
1571 		vma->pages = NULL;
1572 		drm_err(&vma->vm->i915->drm,
1573 			"Failed to get pages for VMA view type %u (%d)!\n",
1574 			vma->ggtt_view.type, ret);
1575 	}
1576 	return ret;
1577 }
1578