1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include <asm/set_memory.h> 7 #include <asm/smp.h> 8 #include <linux/types.h> 9 #include <linux/stop_machine.h> 10 11 #include <drm/drm_managed.h> 12 #include <drm/intel/i915_drm.h> 13 #include <drm/intel/intel-gtt.h> 14 15 #include "gem/i915_gem_lmem.h" 16 17 #include "intel_context.h" 18 #include "intel_ggtt_gmch.h" 19 #include "intel_gpu_commands.h" 20 #include "intel_gt.h" 21 #include "intel_gt_regs.h" 22 #include "intel_pci_config.h" 23 #include "intel_ring.h" 24 #include "i915_drv.h" 25 #include "i915_pci.h" 26 #include "i915_reg.h" 27 #include "i915_request.h" 28 #include "i915_scatterlist.h" 29 #include "i915_utils.h" 30 #include "i915_vgpu.h" 31 32 #include "intel_gtt.h" 33 #include "gen8_ppgtt.h" 34 #include "intel_engine_pm.h" 35 36 static void i915_ggtt_color_adjust(const struct drm_mm_node *node, 37 unsigned long color, 38 u64 *start, 39 u64 *end) 40 { 41 if (i915_node_color_differs(node, color)) 42 *start += I915_GTT_PAGE_SIZE; 43 44 /* 45 * Also leave a space between the unallocated reserved node after the 46 * GTT and any objects within the GTT, i.e. we use the color adjustment 47 * to insert a guard page to prevent prefetches crossing over the 48 * GTT boundary. 49 */ 50 node = list_next_entry(node, node_list); 51 if (node->color != color) 52 *end -= I915_GTT_PAGE_SIZE; 53 } 54 55 static int ggtt_init_hw(struct i915_ggtt *ggtt) 56 { 57 struct drm_i915_private *i915 = ggtt->vm.i915; 58 59 i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT); 60 61 ggtt->vm.is_ggtt = true; 62 63 /* Only VLV supports read-only GGTT mappings */ 64 ggtt->vm.has_read_only = IS_VALLEYVIEW(i915); 65 66 if (!HAS_LLC(i915) && !HAS_PPGTT(i915)) 67 ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust; 68 69 if (ggtt->mappable_end) { 70 if (!io_mapping_init_wc(&ggtt->iomap, 71 ggtt->gmadr.start, 72 ggtt->mappable_end)) { 73 ggtt->vm.cleanup(&ggtt->vm); 74 return -EIO; 75 } 76 77 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, 78 ggtt->mappable_end); 79 } 80 81 intel_ggtt_init_fences(ggtt); 82 83 return 0; 84 } 85 86 /** 87 * i915_ggtt_init_hw - Initialize GGTT hardware 88 * @i915: i915 device 89 */ 90 int i915_ggtt_init_hw(struct drm_i915_private *i915) 91 { 92 int ret; 93 94 /* 95 * Note that we use page colouring to enforce a guard page at the 96 * end of the address space. This is required as the CS may prefetch 97 * beyond the end of the batch buffer, across the page boundary, 98 * and beyond the end of the GTT if we do not provide a guard. 99 */ 100 ret = ggtt_init_hw(to_gt(i915)->ggtt); 101 if (ret) 102 return ret; 103 104 return 0; 105 } 106 107 /** 108 * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM 109 * @vm: The VM to suspend the mappings for 110 * 111 * Suspend the memory mappings for all objects mapped to HW via the GGTT or a 112 * DPT page table. 113 */ 114 void i915_ggtt_suspend_vm(struct i915_address_space *vm) 115 { 116 struct i915_vma *vma, *vn; 117 int save_skip_rewrite; 118 119 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); 120 121 retry: 122 i915_gem_drain_freed_objects(vm->i915); 123 124 mutex_lock(&vm->mutex); 125 126 /* 127 * Skip rewriting PTE on VMA unbind. 128 * FIXME: Use an argument to i915_vma_unbind() instead? 129 */ 130 save_skip_rewrite = vm->skip_pte_rewrite; 131 vm->skip_pte_rewrite = true; 132 133 list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) { 134 struct drm_i915_gem_object *obj = vma->obj; 135 136 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 137 138 if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) 139 continue; 140 141 /* unlikely to race when GPU is idle, so no worry about slowpath.. */ 142 if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) { 143 /* 144 * No dead objects should appear here, GPU should be 145 * completely idle, and userspace suspended 146 */ 147 i915_gem_object_get(obj); 148 149 mutex_unlock(&vm->mutex); 150 151 i915_gem_object_lock(obj, NULL); 152 GEM_WARN_ON(i915_vma_unbind(vma)); 153 i915_gem_object_unlock(obj); 154 i915_gem_object_put(obj); 155 156 vm->skip_pte_rewrite = save_skip_rewrite; 157 goto retry; 158 } 159 160 if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) { 161 i915_vma_wait_for_bind(vma); 162 163 __i915_vma_evict(vma, false); 164 drm_mm_remove_node(&vma->node); 165 } 166 167 i915_gem_object_unlock(obj); 168 } 169 170 vm->clear_range(vm, 0, vm->total); 171 172 vm->skip_pte_rewrite = save_skip_rewrite; 173 174 mutex_unlock(&vm->mutex); 175 } 176 177 void i915_ggtt_suspend(struct i915_ggtt *ggtt) 178 { 179 struct intel_gt *gt; 180 181 i915_ggtt_suspend_vm(&ggtt->vm); 182 ggtt->invalidate(ggtt); 183 184 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) 185 intel_gt_check_and_clear_faults(gt); 186 } 187 188 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt) 189 { 190 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 191 192 spin_lock_irq(&uncore->lock); 193 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 194 intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6); 195 spin_unlock_irq(&uncore->lock); 196 } 197 198 static bool needs_wc_ggtt_mapping(struct drm_i915_private *i915) 199 { 200 /* 201 * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range 202 * will be dropped. For WC mappings in general we have 64 byte burst 203 * writes when the WC buffer is flushed, so we can't use it, but have to 204 * resort to an uncached mapping. The WC issue is easily caught by the 205 * readback check when writing GTT PTE entries. 206 */ 207 if (!IS_GEN9_LP(i915) && GRAPHICS_VER(i915) < 11) 208 return true; 209 210 return false; 211 } 212 213 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt) 214 { 215 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 216 217 /* 218 * Note that as an uncached mmio write, this will flush the 219 * WCB of the writes into the GGTT before it triggers the invalidate. 220 * 221 * Only perform this when GGTT is mapped as WC, see ggtt_probe_common(). 222 */ 223 if (needs_wc_ggtt_mapping(ggtt->vm.i915)) 224 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, 225 GFX_FLSH_CNTL_EN); 226 } 227 228 static void guc_ggtt_ct_invalidate(struct intel_gt *gt) 229 { 230 struct intel_uncore *uncore = gt->uncore; 231 intel_wakeref_t wakeref; 232 233 with_intel_runtime_pm_if_active(uncore->rpm, wakeref) 234 intel_guc_invalidate_tlb_guc(gt_to_guc(gt)); 235 } 236 237 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt) 238 { 239 struct drm_i915_private *i915 = ggtt->vm.i915; 240 struct intel_gt *gt; 241 242 gen8_ggtt_invalidate(ggtt); 243 244 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) { 245 if (intel_guc_tlb_invalidation_is_available(gt_to_guc(gt))) 246 guc_ggtt_ct_invalidate(gt); 247 else if (GRAPHICS_VER(i915) >= 12) 248 intel_uncore_write_fw(gt->uncore, 249 GEN12_GUC_TLB_INV_CR, 250 GEN12_GUC_TLB_INV_CR_INVALIDATE); 251 else 252 intel_uncore_write_fw(gt->uncore, 253 GEN8_GTCR, GEN8_GTCR_INVALIDATE); 254 } 255 } 256 257 static u64 mtl_ggtt_pte_encode(dma_addr_t addr, 258 unsigned int pat_index, 259 u32 flags) 260 { 261 gen8_pte_t pte = addr | GEN8_PAGE_PRESENT; 262 263 WARN_ON_ONCE(addr & ~GEN12_GGTT_PTE_ADDR_MASK); 264 265 if (flags & PTE_LM) 266 pte |= GEN12_GGTT_PTE_LM; 267 268 if (pat_index & BIT(0)) 269 pte |= MTL_GGTT_PTE_PAT0; 270 271 if (pat_index & BIT(1)) 272 pte |= MTL_GGTT_PTE_PAT1; 273 274 return pte; 275 } 276 277 u64 gen8_ggtt_pte_encode(dma_addr_t addr, 278 unsigned int pat_index, 279 u32 flags) 280 { 281 gen8_pte_t pte = addr | GEN8_PAGE_PRESENT; 282 283 if (flags & PTE_LM) 284 pte |= GEN12_GGTT_PTE_LM; 285 286 return pte; 287 } 288 289 static bool should_update_ggtt_with_bind(struct i915_ggtt *ggtt) 290 { 291 struct intel_gt *gt = ggtt->vm.gt; 292 293 return intel_gt_is_bind_context_ready(gt); 294 } 295 296 static struct intel_context *gen8_ggtt_bind_get_ce(struct i915_ggtt *ggtt, intel_wakeref_t *wakeref) 297 { 298 struct intel_context *ce; 299 struct intel_gt *gt = ggtt->vm.gt; 300 301 if (intel_gt_is_wedged(gt)) 302 return NULL; 303 304 ce = gt->engine[BCS0]->bind_context; 305 GEM_BUG_ON(!ce); 306 307 /* 308 * If the GT is not awake already at this stage then fallback 309 * to pci based GGTT update otherwise __intel_wakeref_get_first() 310 * would conflict with fs_reclaim trying to allocate memory while 311 * doing rpm_resume(). 312 */ 313 *wakeref = intel_gt_pm_get_if_awake(gt); 314 if (!*wakeref) 315 return NULL; 316 317 intel_engine_pm_get(ce->engine); 318 319 return ce; 320 } 321 322 static void gen8_ggtt_bind_put_ce(struct intel_context *ce, intel_wakeref_t wakeref) 323 { 324 intel_engine_pm_put(ce->engine); 325 intel_gt_pm_put(ce->engine->gt, wakeref); 326 } 327 328 static bool gen8_ggtt_bind_ptes(struct i915_ggtt *ggtt, u32 offset, 329 struct sg_table *pages, u32 num_entries, 330 const gen8_pte_t pte) 331 { 332 struct i915_sched_attr attr = {}; 333 struct intel_gt *gt = ggtt->vm.gt; 334 const gen8_pte_t scratch_pte = ggtt->vm.scratch[0]->encode; 335 struct sgt_iter iter; 336 struct i915_request *rq; 337 struct intel_context *ce; 338 intel_wakeref_t wakeref; 339 u32 *cs; 340 341 if (!num_entries) 342 return true; 343 344 ce = gen8_ggtt_bind_get_ce(ggtt, &wakeref); 345 if (!ce) 346 return false; 347 348 if (pages) 349 iter = __sgt_iter(pages->sgl, true); 350 351 while (num_entries) { 352 int count = 0; 353 dma_addr_t addr; 354 /* 355 * MI_UPDATE_GTT can update 512 entries in a single command but 356 * that end up with engine reset, 511 works. 357 */ 358 u32 n_ptes = min_t(u32, 511, num_entries); 359 360 if (mutex_lock_interruptible(&ce->timeline->mutex)) 361 goto put_ce; 362 363 intel_context_enter(ce); 364 rq = __i915_request_create(ce, GFP_NOWAIT | GFP_ATOMIC); 365 intel_context_exit(ce); 366 if (IS_ERR(rq)) { 367 GT_TRACE(gt, "Failed to get bind request\n"); 368 mutex_unlock(&ce->timeline->mutex); 369 goto put_ce; 370 } 371 372 cs = intel_ring_begin(rq, 2 * n_ptes + 2); 373 if (IS_ERR(cs)) { 374 GT_TRACE(gt, "Failed to ring space for GGTT bind\n"); 375 i915_request_set_error_once(rq, PTR_ERR(cs)); 376 /* once a request is created, it must be queued */ 377 goto queue_err_rq; 378 } 379 380 *cs++ = MI_UPDATE_GTT | (2 * n_ptes); 381 *cs++ = offset << 12; 382 383 if (pages) { 384 for_each_sgt_daddr_next(addr, iter) { 385 if (count == n_ptes) 386 break; 387 *cs++ = lower_32_bits(pte | addr); 388 *cs++ = upper_32_bits(pte | addr); 389 count++; 390 } 391 /* fill remaining with scratch pte, if any */ 392 if (count < n_ptes) { 393 memset64((u64 *)cs, scratch_pte, 394 n_ptes - count); 395 cs += (n_ptes - count) * 2; 396 } 397 } else { 398 memset64((u64 *)cs, pte, n_ptes); 399 cs += n_ptes * 2; 400 } 401 402 intel_ring_advance(rq, cs); 403 queue_err_rq: 404 i915_request_get(rq); 405 __i915_request_commit(rq); 406 __i915_request_queue(rq, &attr); 407 408 mutex_unlock(&ce->timeline->mutex); 409 /* This will break if the request is complete or after engine reset */ 410 i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT); 411 if (rq->fence.error) 412 goto err_rq; 413 414 i915_request_put(rq); 415 416 num_entries -= n_ptes; 417 offset += n_ptes; 418 } 419 420 gen8_ggtt_bind_put_ce(ce, wakeref); 421 return true; 422 423 err_rq: 424 i915_request_put(rq); 425 put_ce: 426 gen8_ggtt_bind_put_ce(ce, wakeref); 427 return false; 428 } 429 430 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) 431 { 432 writeq(pte, addr); 433 } 434 435 static void gen8_ggtt_insert_page(struct i915_address_space *vm, 436 dma_addr_t addr, 437 u64 offset, 438 unsigned int pat_index, 439 u32 flags) 440 { 441 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 442 gen8_pte_t __iomem *pte = 443 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 444 445 gen8_set_pte(pte, ggtt->vm.pte_encode(addr, pat_index, flags)); 446 447 ggtt->invalidate(ggtt); 448 } 449 450 static void gen8_ggtt_insert_page_bind(struct i915_address_space *vm, 451 dma_addr_t addr, u64 offset, 452 unsigned int pat_index, u32 flags) 453 { 454 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 455 gen8_pte_t pte; 456 457 pte = ggtt->vm.pte_encode(addr, pat_index, flags); 458 if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) && 459 gen8_ggtt_bind_ptes(ggtt, offset, NULL, 1, pte)) 460 return ggtt->invalidate(ggtt); 461 462 gen8_ggtt_insert_page(vm, addr, offset, pat_index, flags); 463 } 464 465 static void gen8_ggtt_insert_entries(struct i915_address_space *vm, 466 struct i915_vma_resource *vma_res, 467 unsigned int pat_index, 468 u32 flags) 469 { 470 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 471 const gen8_pte_t pte_encode = ggtt->vm.pte_encode(0, pat_index, flags); 472 gen8_pte_t __iomem *gte; 473 gen8_pte_t __iomem *end; 474 struct sgt_iter iter; 475 dma_addr_t addr; 476 477 /* 478 * Note that we ignore PTE_READ_ONLY here. The caller must be careful 479 * not to allow the user to override access to a read only page. 480 */ 481 482 gte = (gen8_pte_t __iomem *)ggtt->gsm; 483 gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE; 484 end = gte + vma_res->guard / I915_GTT_PAGE_SIZE; 485 while (gte < end) 486 gen8_set_pte(gte++, vm->scratch[0]->encode); 487 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE; 488 489 for_each_sgt_daddr(addr, iter, vma_res->bi.pages) 490 gen8_set_pte(gte++, pte_encode | addr); 491 GEM_BUG_ON(gte > end); 492 493 /* Fill the allocated but "unused" space beyond the end of the buffer */ 494 while (gte < end) 495 gen8_set_pte(gte++, vm->scratch[0]->encode); 496 497 /* 498 * We want to flush the TLBs only after we're certain all the PTE 499 * updates have finished. 500 */ 501 ggtt->invalidate(ggtt); 502 } 503 504 static bool __gen8_ggtt_insert_entries_bind(struct i915_address_space *vm, 505 struct i915_vma_resource *vma_res, 506 unsigned int pat_index, u32 flags) 507 { 508 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 509 gen8_pte_t scratch_pte = vm->scratch[0]->encode; 510 gen8_pte_t pte_encode; 511 u64 start, end; 512 513 pte_encode = ggtt->vm.pte_encode(0, pat_index, flags); 514 start = (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE; 515 end = start + vma_res->guard / I915_GTT_PAGE_SIZE; 516 if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte)) 517 goto err; 518 519 start = end; 520 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE; 521 if (!gen8_ggtt_bind_ptes(ggtt, start, vma_res->bi.pages, 522 vma_res->node_size / I915_GTT_PAGE_SIZE, pte_encode)) 523 goto err; 524 525 start += vma_res->node_size / I915_GTT_PAGE_SIZE; 526 if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte)) 527 goto err; 528 529 return true; 530 531 err: 532 return false; 533 } 534 535 static void gen8_ggtt_insert_entries_bind(struct i915_address_space *vm, 536 struct i915_vma_resource *vma_res, 537 unsigned int pat_index, u32 flags) 538 { 539 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 540 541 if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) && 542 __gen8_ggtt_insert_entries_bind(vm, vma_res, pat_index, flags)) 543 return ggtt->invalidate(ggtt); 544 545 gen8_ggtt_insert_entries(vm, vma_res, pat_index, flags); 546 } 547 548 static void gen8_ggtt_clear_range(struct i915_address_space *vm, 549 u64 start, u64 length) 550 { 551 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 552 unsigned int first_entry = start / I915_GTT_PAGE_SIZE; 553 unsigned int num_entries = length / I915_GTT_PAGE_SIZE; 554 const gen8_pte_t scratch_pte = vm->scratch[0]->encode; 555 gen8_pte_t __iomem *gtt_base = 556 (gen8_pte_t __iomem *)ggtt->gsm + first_entry; 557 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 558 int i; 559 560 if (WARN(num_entries > max_entries, 561 "First entry = %d; Num entries = %d (max=%d)\n", 562 first_entry, num_entries, max_entries)) 563 num_entries = max_entries; 564 565 for (i = 0; i < num_entries; i++) 566 gen8_set_pte(>t_base[i], scratch_pte); 567 } 568 569 static void gen8_ggtt_scratch_range_bind(struct i915_address_space *vm, 570 u64 start, u64 length) 571 { 572 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 573 unsigned int first_entry = start / I915_GTT_PAGE_SIZE; 574 unsigned int num_entries = length / I915_GTT_PAGE_SIZE; 575 const gen8_pte_t scratch_pte = vm->scratch[0]->encode; 576 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 577 578 if (WARN(num_entries > max_entries, 579 "First entry = %d; Num entries = %d (max=%d)\n", 580 first_entry, num_entries, max_entries)) 581 num_entries = max_entries; 582 583 if (should_update_ggtt_with_bind(ggtt) && gen8_ggtt_bind_ptes(ggtt, first_entry, 584 NULL, num_entries, scratch_pte)) 585 return ggtt->invalidate(ggtt); 586 587 gen8_ggtt_clear_range(vm, start, length); 588 } 589 590 static void gen6_ggtt_insert_page(struct i915_address_space *vm, 591 dma_addr_t addr, 592 u64 offset, 593 unsigned int pat_index, 594 u32 flags) 595 { 596 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 597 gen6_pte_t __iomem *pte = 598 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 599 600 iowrite32(vm->pte_encode(addr, pat_index, flags), pte); 601 602 ggtt->invalidate(ggtt); 603 } 604 605 /* 606 * Binds an object into the global gtt with the specified cache level. 607 * The object will be accessible to the GPU via commands whose operands 608 * reference offsets within the global GTT as well as accessible by the GPU 609 * through the GMADR mapped BAR (i915->mm.gtt->gtt). 610 */ 611 static void gen6_ggtt_insert_entries(struct i915_address_space *vm, 612 struct i915_vma_resource *vma_res, 613 unsigned int pat_index, 614 u32 flags) 615 { 616 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 617 gen6_pte_t __iomem *gte; 618 gen6_pte_t __iomem *end; 619 struct sgt_iter iter; 620 dma_addr_t addr; 621 622 gte = (gen6_pte_t __iomem *)ggtt->gsm; 623 gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE; 624 625 end = gte + vma_res->guard / I915_GTT_PAGE_SIZE; 626 while (gte < end) 627 iowrite32(vm->scratch[0]->encode, gte++); 628 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE; 629 for_each_sgt_daddr(addr, iter, vma_res->bi.pages) 630 iowrite32(vm->pte_encode(addr, pat_index, flags), gte++); 631 GEM_BUG_ON(gte > end); 632 633 /* Fill the allocated but "unused" space beyond the end of the buffer */ 634 while (gte < end) 635 iowrite32(vm->scratch[0]->encode, gte++); 636 637 /* 638 * We want to flush the TLBs only after we're certain all the PTE 639 * updates have finished. 640 */ 641 ggtt->invalidate(ggtt); 642 } 643 644 static void nop_clear_range(struct i915_address_space *vm, 645 u64 start, u64 length) 646 { 647 } 648 649 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm) 650 { 651 /* 652 * Make sure the internal GAM fifo has been cleared of all GTT 653 * writes before exiting stop_machine(). This guarantees that 654 * any aperture accesses waiting to start in another process 655 * cannot back up behind the GTT writes causing a hang. 656 * The register can be any arbitrary GAM register. 657 */ 658 intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6); 659 } 660 661 struct insert_page { 662 struct i915_address_space *vm; 663 dma_addr_t addr; 664 u64 offset; 665 unsigned int pat_index; 666 }; 667 668 static int bxt_vtd_ggtt_insert_page__cb(void *_arg) 669 { 670 struct insert_page *arg = _arg; 671 672 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, 673 arg->pat_index, 0); 674 bxt_vtd_ggtt_wa(arg->vm); 675 676 return 0; 677 } 678 679 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm, 680 dma_addr_t addr, 681 u64 offset, 682 unsigned int pat_index, 683 u32 unused) 684 { 685 struct insert_page arg = { vm, addr, offset, pat_index }; 686 687 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL); 688 } 689 690 struct insert_entries { 691 struct i915_address_space *vm; 692 struct i915_vma_resource *vma_res; 693 unsigned int pat_index; 694 u32 flags; 695 }; 696 697 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg) 698 { 699 struct insert_entries *arg = _arg; 700 701 gen8_ggtt_insert_entries(arg->vm, arg->vma_res, 702 arg->pat_index, arg->flags); 703 bxt_vtd_ggtt_wa(arg->vm); 704 705 return 0; 706 } 707 708 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm, 709 struct i915_vma_resource *vma_res, 710 unsigned int pat_index, 711 u32 flags) 712 { 713 struct insert_entries arg = { vm, vma_res, pat_index, flags }; 714 715 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL); 716 } 717 718 static void gen6_ggtt_clear_range(struct i915_address_space *vm, 719 u64 start, u64 length) 720 { 721 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 722 unsigned int first_entry = start / I915_GTT_PAGE_SIZE; 723 unsigned int num_entries = length / I915_GTT_PAGE_SIZE; 724 gen6_pte_t scratch_pte, __iomem *gtt_base = 725 (gen6_pte_t __iomem *)ggtt->gsm + first_entry; 726 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 727 int i; 728 729 if (WARN(num_entries > max_entries, 730 "First entry = %d; Num entries = %d (max=%d)\n", 731 first_entry, num_entries, max_entries)) 732 num_entries = max_entries; 733 734 scratch_pte = vm->scratch[0]->encode; 735 for (i = 0; i < num_entries; i++) 736 iowrite32(scratch_pte, >t_base[i]); 737 } 738 739 void intel_ggtt_bind_vma(struct i915_address_space *vm, 740 struct i915_vm_pt_stash *stash, 741 struct i915_vma_resource *vma_res, 742 unsigned int pat_index, 743 u32 flags) 744 { 745 u32 pte_flags; 746 747 if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK)) 748 return; 749 750 vma_res->bound_flags |= flags; 751 752 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */ 753 pte_flags = 0; 754 if (vma_res->bi.readonly) 755 pte_flags |= PTE_READ_ONLY; 756 if (vma_res->bi.lmem) 757 pte_flags |= PTE_LM; 758 759 vm->insert_entries(vm, vma_res, pat_index, pte_flags); 760 vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE; 761 } 762 763 void intel_ggtt_unbind_vma(struct i915_address_space *vm, 764 struct i915_vma_resource *vma_res) 765 { 766 vm->clear_range(vm, vma_res->start, vma_res->vma_size); 767 } 768 769 /* 770 * Reserve the top of the GuC address space for firmware images. Addresses 771 * beyond GUC_GGTT_TOP in the GuC address space are inaccessible by GuC, 772 * which makes for a suitable range to hold GuC/HuC firmware images if the 773 * size of the GGTT is 4G. However, on a 32-bit platform the size of the GGTT 774 * is limited to 2G, which is less than GUC_GGTT_TOP, but we reserve a chunk 775 * of the same size anyway, which is far more than needed, to keep the logic 776 * in uc_fw_ggtt_offset() simple. 777 */ 778 #define GUC_TOP_RESERVE_SIZE (SZ_4G - GUC_GGTT_TOP) 779 780 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt) 781 { 782 u64 offset; 783 int ret; 784 785 if (!intel_uc_uses_guc(&ggtt->vm.gt->uc)) 786 return 0; 787 788 GEM_BUG_ON(ggtt->vm.total <= GUC_TOP_RESERVE_SIZE); 789 offset = ggtt->vm.total - GUC_TOP_RESERVE_SIZE; 790 791 ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw, 792 GUC_TOP_RESERVE_SIZE, offset, 793 I915_COLOR_UNEVICTABLE, PIN_NOEVICT); 794 if (ret) 795 drm_dbg(&ggtt->vm.i915->drm, 796 "Failed to reserve top of GGTT for GuC\n"); 797 798 return ret; 799 } 800 801 static void ggtt_release_guc_top(struct i915_ggtt *ggtt) 802 { 803 if (drm_mm_node_allocated(&ggtt->uc_fw)) 804 drm_mm_remove_node(&ggtt->uc_fw); 805 } 806 807 static void cleanup_init_ggtt(struct i915_ggtt *ggtt) 808 { 809 ggtt_release_guc_top(ggtt); 810 if (drm_mm_node_allocated(&ggtt->error_capture)) 811 drm_mm_remove_node(&ggtt->error_capture); 812 mutex_destroy(&ggtt->error_mutex); 813 } 814 815 static int init_ggtt(struct i915_ggtt *ggtt) 816 { 817 /* 818 * Let GEM Manage all of the aperture. 819 * 820 * However, leave one page at the end still bound to the scratch page. 821 * There are a number of places where the hardware apparently prefetches 822 * past the end of the object, and we've seen multiple hangs with the 823 * GPU head pointer stuck in a batchbuffer bound at the last page of the 824 * aperture. One page should be enough to keep any prefetching inside 825 * of the aperture. 826 */ 827 unsigned long hole_start, hole_end; 828 struct drm_mm_node *entry; 829 int ret; 830 831 /* 832 * GuC requires all resources that we're sharing with it to be placed in 833 * non-WOPCM memory. If GuC is not present or not in use we still need a 834 * small bias as ring wraparound at offset 0 sometimes hangs. No idea 835 * why. 836 */ 837 ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE, 838 intel_wopcm_guc_size(&ggtt->vm.gt->wopcm)); 839 840 ret = intel_vgt_balloon(ggtt); 841 if (ret) 842 return ret; 843 844 mutex_init(&ggtt->error_mutex); 845 if (ggtt->mappable_end) { 846 /* 847 * Reserve a mappable slot for our lockless error capture. 848 * 849 * We strongly prefer taking address 0x0 in order to protect 850 * other critical buffers against accidental overwrites, 851 * as writing to address 0 is a very common mistake. 852 * 853 * Since 0 may already be in use by the system (e.g. the BIOS 854 * framebuffer), we let the reservation fail quietly and hope 855 * 0 remains reserved always. 856 * 857 * If we fail to reserve 0, and then fail to find any space 858 * for an error-capture, remain silent. We can afford not 859 * to reserve an error_capture node as we have fallback 860 * paths, and we trust that 0 will remain reserved. However, 861 * the only likely reason for failure to insert is a driver 862 * bug, which we expect to cause other failures... 863 * 864 * Since CPU can perform speculative reads on error capture 865 * (write-combining allows it) add scratch page after error 866 * capture to avoid DMAR errors. 867 */ 868 ggtt->error_capture.size = 2 * I915_GTT_PAGE_SIZE; 869 ggtt->error_capture.color = I915_COLOR_UNEVICTABLE; 870 if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture)) 871 drm_mm_insert_node_in_range(&ggtt->vm.mm, 872 &ggtt->error_capture, 873 ggtt->error_capture.size, 0, 874 ggtt->error_capture.color, 875 0, ggtt->mappable_end, 876 DRM_MM_INSERT_LOW); 877 } 878 if (drm_mm_node_allocated(&ggtt->error_capture)) { 879 u64 start = ggtt->error_capture.start; 880 u64 size = ggtt->error_capture.size; 881 882 ggtt->vm.scratch_range(&ggtt->vm, start, size); 883 drm_dbg(&ggtt->vm.i915->drm, 884 "Reserved GGTT:[%llx, %llx] for use by error capture\n", 885 start, start + size); 886 } 887 888 /* 889 * The upper portion of the GuC address space has a sizeable hole 890 * (several MB) that is inaccessible by GuC. Reserve this range within 891 * GGTT as it can comfortably hold GuC/HuC firmware images. 892 */ 893 ret = ggtt_reserve_guc_top(ggtt); 894 if (ret) 895 goto err; 896 897 /* Clear any non-preallocated blocks */ 898 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) { 899 drm_dbg(&ggtt->vm.i915->drm, 900 "clearing unused GTT space: [%lx, %lx]\n", 901 hole_start, hole_end); 902 ggtt->vm.clear_range(&ggtt->vm, hole_start, 903 hole_end - hole_start); 904 } 905 906 /* And finally clear the reserved guard page */ 907 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE); 908 909 return 0; 910 911 err: 912 cleanup_init_ggtt(ggtt); 913 return ret; 914 } 915 916 static void aliasing_gtt_bind_vma(struct i915_address_space *vm, 917 struct i915_vm_pt_stash *stash, 918 struct i915_vma_resource *vma_res, 919 unsigned int pat_index, 920 u32 flags) 921 { 922 u32 pte_flags; 923 924 /* Currently applicable only to VLV */ 925 pte_flags = 0; 926 if (vma_res->bi.readonly) 927 pte_flags |= PTE_READ_ONLY; 928 929 if (flags & I915_VMA_LOCAL_BIND) 930 ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm, 931 stash, vma_res, pat_index, flags); 932 933 if (flags & I915_VMA_GLOBAL_BIND) 934 vm->insert_entries(vm, vma_res, pat_index, pte_flags); 935 936 vma_res->bound_flags |= flags; 937 } 938 939 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm, 940 struct i915_vma_resource *vma_res) 941 { 942 if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND) 943 vm->clear_range(vm, vma_res->start, vma_res->vma_size); 944 945 if (vma_res->bound_flags & I915_VMA_LOCAL_BIND) 946 ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res); 947 } 948 949 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt) 950 { 951 struct i915_vm_pt_stash stash = {}; 952 struct i915_ppgtt *ppgtt; 953 int err; 954 955 ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0); 956 if (IS_ERR(ppgtt)) 957 return PTR_ERR(ppgtt); 958 959 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) { 960 err = -ENODEV; 961 goto err_ppgtt; 962 } 963 964 err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total); 965 if (err) 966 goto err_ppgtt; 967 968 i915_gem_object_lock(ppgtt->vm.scratch[0], NULL); 969 err = i915_vm_map_pt_stash(&ppgtt->vm, &stash); 970 i915_gem_object_unlock(ppgtt->vm.scratch[0]); 971 if (err) 972 goto err_stash; 973 974 /* 975 * Note we only pre-allocate as far as the end of the global 976 * GTT. On 48b / 4-level page-tables, the difference is very, 977 * very significant! We have to preallocate as GVT/vgpu does 978 * not like the page directory disappearing. 979 */ 980 ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total); 981 982 ggtt->alias = ppgtt; 983 ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags; 984 985 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != intel_ggtt_bind_vma); 986 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma; 987 988 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != intel_ggtt_unbind_vma); 989 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma; 990 991 i915_vm_free_pt_stash(&ppgtt->vm, &stash); 992 return 0; 993 994 err_stash: 995 i915_vm_free_pt_stash(&ppgtt->vm, &stash); 996 err_ppgtt: 997 i915_vm_put(&ppgtt->vm); 998 return err; 999 } 1000 1001 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt) 1002 { 1003 struct i915_ppgtt *ppgtt; 1004 1005 ppgtt = fetch_and_zero(&ggtt->alias); 1006 if (!ppgtt) 1007 return; 1008 1009 i915_vm_put(&ppgtt->vm); 1010 1011 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; 1012 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; 1013 } 1014 1015 int i915_init_ggtt(struct drm_i915_private *i915) 1016 { 1017 int ret; 1018 1019 ret = init_ggtt(to_gt(i915)->ggtt); 1020 if (ret) 1021 return ret; 1022 1023 if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) { 1024 ret = init_aliasing_ppgtt(to_gt(i915)->ggtt); 1025 if (ret) 1026 cleanup_init_ggtt(to_gt(i915)->ggtt); 1027 } 1028 1029 return 0; 1030 } 1031 1032 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt) 1033 { 1034 struct i915_vma *vma, *vn; 1035 1036 flush_workqueue(ggtt->vm.i915->wq); 1037 i915_gem_drain_freed_objects(ggtt->vm.i915); 1038 1039 mutex_lock(&ggtt->vm.mutex); 1040 1041 ggtt->vm.skip_pte_rewrite = true; 1042 1043 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) { 1044 struct drm_i915_gem_object *obj = vma->obj; 1045 bool trylock; 1046 1047 trylock = i915_gem_object_trylock(obj, NULL); 1048 WARN_ON(!trylock); 1049 1050 WARN_ON(__i915_vma_unbind(vma)); 1051 if (trylock) 1052 i915_gem_object_unlock(obj); 1053 } 1054 1055 if (drm_mm_node_allocated(&ggtt->error_capture)) 1056 drm_mm_remove_node(&ggtt->error_capture); 1057 mutex_destroy(&ggtt->error_mutex); 1058 1059 ggtt_release_guc_top(ggtt); 1060 intel_vgt_deballoon(ggtt); 1061 1062 ggtt->vm.cleanup(&ggtt->vm); 1063 1064 mutex_unlock(&ggtt->vm.mutex); 1065 i915_address_space_fini(&ggtt->vm); 1066 1067 arch_phys_wc_del(ggtt->mtrr); 1068 1069 if (ggtt->iomap.size) 1070 io_mapping_fini(&ggtt->iomap); 1071 } 1072 1073 /** 1074 * i915_ggtt_driver_release - Clean up GGTT hardware initialization 1075 * @i915: i915 device 1076 */ 1077 void i915_ggtt_driver_release(struct drm_i915_private *i915) 1078 { 1079 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 1080 1081 fini_aliasing_ppgtt(ggtt); 1082 1083 intel_ggtt_fini_fences(ggtt); 1084 ggtt_cleanup_hw(ggtt); 1085 } 1086 1087 /** 1088 * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after 1089 * all free objects have been drained. 1090 * @i915: i915 device 1091 */ 1092 void i915_ggtt_driver_late_release(struct drm_i915_private *i915) 1093 { 1094 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 1095 1096 GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1); 1097 dma_resv_fini(&ggtt->vm._resv); 1098 } 1099 1100 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) 1101 { 1102 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; 1103 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; 1104 return snb_gmch_ctl << 20; 1105 } 1106 1107 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) 1108 { 1109 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; 1110 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; 1111 if (bdw_gmch_ctl) 1112 bdw_gmch_ctl = 1 << bdw_gmch_ctl; 1113 1114 #ifdef CONFIG_X86_32 1115 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */ 1116 if (bdw_gmch_ctl > 4) 1117 bdw_gmch_ctl = 4; 1118 #endif 1119 1120 return bdw_gmch_ctl << 20; 1121 } 1122 1123 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) 1124 { 1125 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; 1126 gmch_ctrl &= SNB_GMCH_GGMS_MASK; 1127 1128 if (gmch_ctrl) 1129 return 1 << (20 + gmch_ctrl); 1130 1131 return 0; 1132 } 1133 1134 static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915) 1135 { 1136 /* 1137 * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset 1138 * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset 1139 */ 1140 GEM_BUG_ON(GRAPHICS_VER(i915) < 6); 1141 return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M; 1142 } 1143 1144 static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915) 1145 { 1146 return gen6_gttmmadr_size(i915) / 2; 1147 } 1148 1149 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) 1150 { 1151 struct drm_i915_private *i915 = ggtt->vm.i915; 1152 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 1153 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 1154 phys_addr_t phys_addr; 1155 u32 pte_flags; 1156 int ret; 1157 1158 GEM_WARN_ON(pci_resource_len(pdev, GEN4_GTTMMADR_BAR) != gen6_gttmmadr_size(i915)); 1159 1160 if (i915_direct_stolen_access(i915)) { 1161 drm_dbg(&i915->drm, "Using direct GSM access\n"); 1162 phys_addr = intel_uncore_read64(uncore, GEN6_GSMBASE) & GEN11_BDSM_MASK; 1163 } else { 1164 phys_addr = pci_resource_start(pdev, GEN4_GTTMMADR_BAR) + gen6_gttadr_offset(i915); 1165 } 1166 1167 if (needs_wc_ggtt_mapping(i915)) 1168 ggtt->gsm = ioremap_wc(phys_addr, size); 1169 else 1170 ggtt->gsm = ioremap(phys_addr, size); 1171 1172 if (!ggtt->gsm) { 1173 drm_err(&i915->drm, "Failed to map the ggtt page table\n"); 1174 return -ENOMEM; 1175 } 1176 1177 kref_init(&ggtt->vm.resv_ref); 1178 ret = setup_scratch_page(&ggtt->vm); 1179 if (ret) { 1180 drm_err(&i915->drm, "Scratch setup failed\n"); 1181 /* iounmap will also get called at remove, but meh */ 1182 iounmap(ggtt->gsm); 1183 return ret; 1184 } 1185 1186 pte_flags = 0; 1187 if (i915_gem_object_is_lmem(ggtt->vm.scratch[0])) 1188 pte_flags |= PTE_LM; 1189 1190 ggtt->vm.scratch[0]->encode = 1191 ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]), 1192 i915_gem_get_pat_index(i915, 1193 I915_CACHE_NONE), 1194 pte_flags); 1195 1196 return 0; 1197 } 1198 1199 static void gen6_gmch_remove(struct i915_address_space *vm) 1200 { 1201 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 1202 1203 iounmap(ggtt->gsm); 1204 free_scratch(vm); 1205 } 1206 1207 static struct resource pci_resource(struct pci_dev *pdev, int bar) 1208 { 1209 return DEFINE_RES_MEM(pci_resource_start(pdev, bar), 1210 pci_resource_len(pdev, bar)); 1211 } 1212 1213 static int gen8_gmch_probe(struct i915_ggtt *ggtt) 1214 { 1215 struct drm_i915_private *i915 = ggtt->vm.i915; 1216 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 1217 unsigned int size; 1218 u16 snb_gmch_ctl; 1219 1220 if (!HAS_LMEM(i915) && !HAS_LMEMBAR_SMEM_STOLEN(i915)) { 1221 if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR)) 1222 return -ENXIO; 1223 1224 ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR); 1225 ggtt->mappable_end = resource_size(&ggtt->gmadr); 1226 } 1227 1228 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 1229 if (IS_CHERRYVIEW(i915)) 1230 size = chv_get_total_gtt_size(snb_gmch_ctl); 1231 else 1232 size = gen8_get_total_gtt_size(snb_gmch_ctl); 1233 1234 ggtt->vm.alloc_pt_dma = alloc_pt_dma; 1235 ggtt->vm.alloc_scratch_dma = alloc_pt_dma; 1236 ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY; 1237 1238 ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE; 1239 ggtt->vm.cleanup = gen6_gmch_remove; 1240 ggtt->vm.insert_page = gen8_ggtt_insert_page; 1241 ggtt->vm.clear_range = nop_clear_range; 1242 ggtt->vm.scratch_range = gen8_ggtt_clear_range; 1243 1244 ggtt->vm.insert_entries = gen8_ggtt_insert_entries; 1245 1246 /* 1247 * Serialize GTT updates with aperture access on BXT if VT-d is on, 1248 * and always on CHV. 1249 */ 1250 if (intel_vm_no_concurrent_access_wa(i915)) { 1251 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL; 1252 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL; 1253 1254 /* 1255 * Calling stop_machine() version of GGTT update function 1256 * at error capture/reset path will raise lockdep warning. 1257 * Allow calling gen8_ggtt_insert_* directly at reset path 1258 * which is safe from parallel GGTT updates. 1259 */ 1260 ggtt->vm.raw_insert_page = gen8_ggtt_insert_page; 1261 ggtt->vm.raw_insert_entries = gen8_ggtt_insert_entries; 1262 1263 ggtt->vm.bind_async_flags = 1264 I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 1265 } 1266 1267 if (i915_ggtt_require_binder(i915)) { 1268 ggtt->vm.scratch_range = gen8_ggtt_scratch_range_bind; 1269 ggtt->vm.insert_page = gen8_ggtt_insert_page_bind; 1270 ggtt->vm.insert_entries = gen8_ggtt_insert_entries_bind; 1271 /* 1272 * On GPU is hung, we might bind VMAs for error capture. 1273 * Fallback to CPU GGTT updates in that case. 1274 */ 1275 ggtt->vm.raw_insert_page = gen8_ggtt_insert_page; 1276 } 1277 1278 if (intel_uc_wants_guc_submission(&ggtt->vm.gt->uc)) 1279 ggtt->invalidate = guc_ggtt_invalidate; 1280 else 1281 ggtt->invalidate = gen8_ggtt_invalidate; 1282 1283 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; 1284 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; 1285 1286 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) 1287 ggtt->vm.pte_encode = mtl_ggtt_pte_encode; 1288 else 1289 ggtt->vm.pte_encode = gen8_ggtt_pte_encode; 1290 1291 return ggtt_probe_common(ggtt, size); 1292 } 1293 1294 /* 1295 * For pre-gen8 platforms pat_index is the same as enum i915_cache_level, 1296 * so the switch-case statements in these PTE encode functions are still valid. 1297 * See translation table LEGACY_CACHELEVEL. 1298 */ 1299 static u64 snb_pte_encode(dma_addr_t addr, 1300 unsigned int pat_index, 1301 u32 flags) 1302 { 1303 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1304 1305 switch (pat_index) { 1306 case I915_CACHE_L3_LLC: 1307 case I915_CACHE_LLC: 1308 pte |= GEN6_PTE_CACHE_LLC; 1309 break; 1310 case I915_CACHE_NONE: 1311 pte |= GEN6_PTE_UNCACHED; 1312 break; 1313 default: 1314 MISSING_CASE(pat_index); 1315 } 1316 1317 return pte; 1318 } 1319 1320 static u64 ivb_pte_encode(dma_addr_t addr, 1321 unsigned int pat_index, 1322 u32 flags) 1323 { 1324 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1325 1326 switch (pat_index) { 1327 case I915_CACHE_L3_LLC: 1328 pte |= GEN7_PTE_CACHE_L3_LLC; 1329 break; 1330 case I915_CACHE_LLC: 1331 pte |= GEN6_PTE_CACHE_LLC; 1332 break; 1333 case I915_CACHE_NONE: 1334 pte |= GEN6_PTE_UNCACHED; 1335 break; 1336 default: 1337 MISSING_CASE(pat_index); 1338 } 1339 1340 return pte; 1341 } 1342 1343 static u64 byt_pte_encode(dma_addr_t addr, 1344 unsigned int pat_index, 1345 u32 flags) 1346 { 1347 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1348 1349 if (!(flags & PTE_READ_ONLY)) 1350 pte |= BYT_PTE_WRITEABLE; 1351 1352 if (pat_index != I915_CACHE_NONE) 1353 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; 1354 1355 return pte; 1356 } 1357 1358 static u64 hsw_pte_encode(dma_addr_t addr, 1359 unsigned int pat_index, 1360 u32 flags) 1361 { 1362 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1363 1364 if (pat_index != I915_CACHE_NONE) 1365 pte |= HSW_WB_LLC_AGE3; 1366 1367 return pte; 1368 } 1369 1370 static u64 iris_pte_encode(dma_addr_t addr, 1371 unsigned int pat_index, 1372 u32 flags) 1373 { 1374 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1375 1376 switch (pat_index) { 1377 case I915_CACHE_NONE: 1378 break; 1379 case I915_CACHE_WT: 1380 pte |= HSW_WT_ELLC_LLC_AGE3; 1381 break; 1382 default: 1383 pte |= HSW_WB_ELLC_LLC_AGE3; 1384 break; 1385 } 1386 1387 return pte; 1388 } 1389 1390 static int gen6_gmch_probe(struct i915_ggtt *ggtt) 1391 { 1392 struct drm_i915_private *i915 = ggtt->vm.i915; 1393 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 1394 unsigned int size; 1395 u16 snb_gmch_ctl; 1396 1397 if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR)) 1398 return -ENXIO; 1399 1400 ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR); 1401 ggtt->mappable_end = resource_size(&ggtt->gmadr); 1402 1403 /* 1404 * 64/512MB is the current min/max we actually know of, but this is 1405 * just a coarse sanity check. 1406 */ 1407 if (ggtt->mappable_end < (64 << 20) || 1408 ggtt->mappable_end > (512 << 20)) { 1409 drm_err(&i915->drm, "Unknown GMADR size (%pa)\n", 1410 &ggtt->mappable_end); 1411 return -ENXIO; 1412 } 1413 1414 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 1415 1416 size = gen6_get_total_gtt_size(snb_gmch_ctl); 1417 ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE; 1418 1419 ggtt->vm.alloc_pt_dma = alloc_pt_dma; 1420 ggtt->vm.alloc_scratch_dma = alloc_pt_dma; 1421 1422 ggtt->vm.clear_range = nop_clear_range; 1423 if (!HAS_FULL_PPGTT(i915)) 1424 ggtt->vm.clear_range = gen6_ggtt_clear_range; 1425 ggtt->vm.scratch_range = gen6_ggtt_clear_range; 1426 ggtt->vm.insert_page = gen6_ggtt_insert_page; 1427 ggtt->vm.insert_entries = gen6_ggtt_insert_entries; 1428 ggtt->vm.cleanup = gen6_gmch_remove; 1429 1430 ggtt->invalidate = gen6_ggtt_invalidate; 1431 1432 if (HAS_EDRAM(i915)) 1433 ggtt->vm.pte_encode = iris_pte_encode; 1434 else if (IS_HASWELL(i915)) 1435 ggtt->vm.pte_encode = hsw_pte_encode; 1436 else if (IS_VALLEYVIEW(i915)) 1437 ggtt->vm.pte_encode = byt_pte_encode; 1438 else if (GRAPHICS_VER(i915) >= 7) 1439 ggtt->vm.pte_encode = ivb_pte_encode; 1440 else 1441 ggtt->vm.pte_encode = snb_pte_encode; 1442 1443 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; 1444 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; 1445 1446 return ggtt_probe_common(ggtt, size); 1447 } 1448 1449 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt) 1450 { 1451 struct drm_i915_private *i915 = gt->i915; 1452 int ret; 1453 1454 ggtt->vm.gt = gt; 1455 ggtt->vm.i915 = i915; 1456 ggtt->vm.dma = i915->drm.dev; 1457 dma_resv_init(&ggtt->vm._resv); 1458 1459 if (GRAPHICS_VER(i915) >= 8) 1460 ret = gen8_gmch_probe(ggtt); 1461 else if (GRAPHICS_VER(i915) >= 6) 1462 ret = gen6_gmch_probe(ggtt); 1463 else 1464 ret = intel_ggtt_gmch_probe(ggtt); 1465 1466 if (ret) { 1467 dma_resv_fini(&ggtt->vm._resv); 1468 return ret; 1469 } 1470 1471 if ((ggtt->vm.total - 1) >> 32) { 1472 drm_err(&i915->drm, 1473 "We never expected a Global GTT with more than 32bits" 1474 " of address space! Found %lldM!\n", 1475 ggtt->vm.total >> 20); 1476 ggtt->vm.total = 1ULL << 32; 1477 ggtt->mappable_end = 1478 min_t(u64, ggtt->mappable_end, ggtt->vm.total); 1479 } 1480 1481 if (ggtt->mappable_end > ggtt->vm.total) { 1482 drm_err(&i915->drm, 1483 "mappable aperture extends past end of GGTT," 1484 " aperture=%pa, total=%llx\n", 1485 &ggtt->mappable_end, ggtt->vm.total); 1486 ggtt->mappable_end = ggtt->vm.total; 1487 } 1488 1489 /* GMADR is the PCI mmio aperture into the global GTT. */ 1490 drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20); 1491 drm_dbg(&i915->drm, "GMADR size = %lluM\n", 1492 (u64)ggtt->mappable_end >> 20); 1493 drm_dbg(&i915->drm, "DSM size = %lluM\n", 1494 (u64)resource_size(&intel_graphics_stolen_res) >> 20); 1495 1496 return 0; 1497 } 1498 1499 /** 1500 * i915_ggtt_probe_hw - Probe GGTT hardware location 1501 * @i915: i915 device 1502 */ 1503 int i915_ggtt_probe_hw(struct drm_i915_private *i915) 1504 { 1505 struct intel_gt *gt; 1506 int ret, i; 1507 1508 for_each_gt(gt, i915, i) { 1509 ret = intel_gt_assign_ggtt(gt); 1510 if (ret) 1511 return ret; 1512 } 1513 1514 ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915)); 1515 if (ret) 1516 return ret; 1517 1518 if (i915_vtd_active(i915)) 1519 drm_info(&i915->drm, "VT-d active for gfx access\n"); 1520 1521 return 0; 1522 } 1523 1524 struct i915_ggtt *i915_ggtt_create(struct drm_i915_private *i915) 1525 { 1526 struct i915_ggtt *ggtt; 1527 1528 ggtt = drmm_kzalloc(&i915->drm, sizeof(*ggtt), GFP_KERNEL); 1529 if (!ggtt) 1530 return ERR_PTR(-ENOMEM); 1531 1532 INIT_LIST_HEAD(&ggtt->gt_list); 1533 1534 return ggtt; 1535 } 1536 1537 int i915_ggtt_enable_hw(struct drm_i915_private *i915) 1538 { 1539 if (GRAPHICS_VER(i915) < 6) 1540 return intel_ggtt_gmch_enable_hw(i915); 1541 1542 return 0; 1543 } 1544 1545 /** 1546 * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM 1547 * @vm: The VM to restore the mappings for 1548 * 1549 * Restore the memory mappings for all objects mapped to HW via the GGTT or a 1550 * DPT page table. 1551 * 1552 * Returns %true if restoring the mapping for any object that was in a write 1553 * domain before suspend. 1554 */ 1555 bool i915_ggtt_resume_vm(struct i915_address_space *vm) 1556 { 1557 struct i915_vma *vma; 1558 bool write_domain_objs = false; 1559 1560 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); 1561 1562 /* First fill our portion of the GTT with scratch pages */ 1563 vm->clear_range(vm, 0, vm->total); 1564 1565 /* clflush objects bound into the GGTT and rebind them. */ 1566 list_for_each_entry(vma, &vm->bound_list, vm_link) { 1567 struct drm_i915_gem_object *obj = vma->obj; 1568 unsigned int was_bound = 1569 atomic_read(&vma->flags) & I915_VMA_BIND_MASK; 1570 1571 GEM_BUG_ON(!was_bound); 1572 1573 /* 1574 * Clear the bound flags of the vma resource to allow 1575 * ptes to be repopulated. 1576 */ 1577 vma->resource->bound_flags = 0; 1578 vma->ops->bind_vma(vm, NULL, vma->resource, 1579 obj ? obj->pat_index : 1580 i915_gem_get_pat_index(vm->i915, 1581 I915_CACHE_NONE), 1582 was_bound); 1583 1584 if (obj) { /* only used during resume => exclusive access */ 1585 write_domain_objs |= fetch_and_zero(&obj->write_domain); 1586 obj->read_domains |= I915_GEM_DOMAIN_GTT; 1587 } 1588 } 1589 1590 return write_domain_objs; 1591 } 1592 1593 void i915_ggtt_resume(struct i915_ggtt *ggtt) 1594 { 1595 struct intel_gt *gt; 1596 bool flush; 1597 1598 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) 1599 intel_gt_check_and_clear_faults(gt); 1600 1601 flush = i915_ggtt_resume_vm(&ggtt->vm); 1602 1603 if (drm_mm_node_allocated(&ggtt->error_capture)) 1604 ggtt->vm.scratch_range(&ggtt->vm, ggtt->error_capture.start, 1605 ggtt->error_capture.size); 1606 1607 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) 1608 intel_uc_resume_mappings(>->uc); 1609 1610 ggtt->invalidate(ggtt); 1611 1612 if (flush) 1613 wbinvd_on_all_cpus(); 1614 1615 intel_ggtt_restore_fences(ggtt); 1616 } 1617