xref: /linux/drivers/gpu/drm/i915/gt/intel_ggtt.c (revision cb787f4ac0c2e439ea8d7e6387b925f74576bdf8)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <asm/set_memory.h>
7 #include <asm/smp.h>
8 #include <linux/types.h>
9 #include <linux/stop_machine.h>
10 
11 #include <drm/drm_managed.h>
12 #include <drm/intel/i915_drm.h>
13 #include <drm/intel/intel-gtt.h>
14 
15 #include "gem/i915_gem_lmem.h"
16 
17 #include "intel_context.h"
18 #include "intel_ggtt_gmch.h"
19 #include "intel_gpu_commands.h"
20 #include "intel_gt.h"
21 #include "intel_gt_regs.h"
22 #include "intel_pci_config.h"
23 #include "intel_ring.h"
24 #include "i915_drv.h"
25 #include "i915_pci.h"
26 #include "i915_reg.h"
27 #include "i915_request.h"
28 #include "i915_scatterlist.h"
29 #include "i915_utils.h"
30 #include "i915_vgpu.h"
31 
32 #include "intel_gtt.h"
33 #include "gen8_ppgtt.h"
34 #include "intel_engine_pm.h"
35 
36 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
37 				   unsigned long color,
38 				   u64 *start,
39 				   u64 *end)
40 {
41 	if (i915_node_color_differs(node, color))
42 		*start += I915_GTT_PAGE_SIZE;
43 
44 	/*
45 	 * Also leave a space between the unallocated reserved node after the
46 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
47 	 * to insert a guard page to prevent prefetches crossing over the
48 	 * GTT boundary.
49 	 */
50 	node = list_next_entry(node, node_list);
51 	if (node->color != color)
52 		*end -= I915_GTT_PAGE_SIZE;
53 }
54 
55 static int ggtt_init_hw(struct i915_ggtt *ggtt)
56 {
57 	struct drm_i915_private *i915 = ggtt->vm.i915;
58 
59 	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
60 
61 	ggtt->vm.is_ggtt = true;
62 
63 	/* Only VLV supports read-only GGTT mappings */
64 	ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
65 
66 	if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
67 		ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
68 
69 	if (ggtt->mappable_end) {
70 		if (!io_mapping_init_wc(&ggtt->iomap,
71 					ggtt->gmadr.start,
72 					ggtt->mappable_end)) {
73 			ggtt->vm.cleanup(&ggtt->vm);
74 			return -EIO;
75 		}
76 
77 		ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
78 					      ggtt->mappable_end);
79 	}
80 
81 	intel_ggtt_init_fences(ggtt);
82 
83 	return 0;
84 }
85 
86 /**
87  * i915_ggtt_init_hw - Initialize GGTT hardware
88  * @i915: i915 device
89  */
90 int i915_ggtt_init_hw(struct drm_i915_private *i915)
91 {
92 	int ret;
93 
94 	/*
95 	 * Note that we use page colouring to enforce a guard page at the
96 	 * end of the address space. This is required as the CS may prefetch
97 	 * beyond the end of the batch buffer, across the page boundary,
98 	 * and beyond the end of the GTT if we do not provide a guard.
99 	 */
100 	ret = ggtt_init_hw(to_gt(i915)->ggtt);
101 	if (ret)
102 		return ret;
103 
104 	return 0;
105 }
106 
107 /**
108  * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM
109  * @vm: The VM to suspend the mappings for
110  *
111  * Suspend the memory mappings for all objects mapped to HW via the GGTT or a
112  * DPT page table.
113  */
114 void i915_ggtt_suspend_vm(struct i915_address_space *vm)
115 {
116 	struct i915_vma *vma, *vn;
117 	int save_skip_rewrite;
118 
119 	drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
120 
121 retry:
122 	i915_gem_drain_freed_objects(vm->i915);
123 
124 	mutex_lock(&vm->mutex);
125 
126 	/*
127 	 * Skip rewriting PTE on VMA unbind.
128 	 * FIXME: Use an argument to i915_vma_unbind() instead?
129 	 */
130 	save_skip_rewrite = vm->skip_pte_rewrite;
131 	vm->skip_pte_rewrite = true;
132 
133 	list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
134 		struct drm_i915_gem_object *obj = vma->obj;
135 
136 		GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
137 
138 		if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
139 			continue;
140 
141 		/* unlikely to race when GPU is idle, so no worry about slowpath.. */
142 		if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) {
143 			/*
144 			 * No dead objects should appear here, GPU should be
145 			 * completely idle, and userspace suspended
146 			 */
147 			i915_gem_object_get(obj);
148 
149 			mutex_unlock(&vm->mutex);
150 
151 			i915_gem_object_lock(obj, NULL);
152 			GEM_WARN_ON(i915_vma_unbind(vma));
153 			i915_gem_object_unlock(obj);
154 			i915_gem_object_put(obj);
155 
156 			vm->skip_pte_rewrite = save_skip_rewrite;
157 			goto retry;
158 		}
159 
160 		if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
161 			i915_vma_wait_for_bind(vma);
162 
163 			__i915_vma_evict(vma, false);
164 			drm_mm_remove_node(&vma->node);
165 		}
166 
167 		i915_gem_object_unlock(obj);
168 	}
169 
170 	vm->clear_range(vm, 0, vm->total);
171 
172 	vm->skip_pte_rewrite = save_skip_rewrite;
173 
174 	mutex_unlock(&vm->mutex);
175 }
176 
177 void i915_ggtt_suspend(struct i915_ggtt *ggtt)
178 {
179 	struct intel_gt *gt;
180 
181 	i915_ggtt_suspend_vm(&ggtt->vm);
182 	ggtt->invalidate(ggtt);
183 
184 	list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
185 		intel_gt_check_and_clear_faults(gt);
186 }
187 
188 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
189 {
190 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
191 
192 	spin_lock_irq(&uncore->lock);
193 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
194 	intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
195 	spin_unlock_irq(&uncore->lock);
196 }
197 
198 static bool needs_wc_ggtt_mapping(struct drm_i915_private *i915)
199 {
200 	/*
201 	 * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range
202 	 * will be dropped. For WC mappings in general we have 64 byte burst
203 	 * writes when the WC buffer is flushed, so we can't use it, but have to
204 	 * resort to an uncached mapping. The WC issue is easily caught by the
205 	 * readback check when writing GTT PTE entries.
206 	 */
207 	if (!IS_GEN9_LP(i915) && GRAPHICS_VER(i915) < 11)
208 		return true;
209 
210 	return false;
211 }
212 
213 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
214 {
215 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
216 
217 	/*
218 	 * Note that as an uncached mmio write, this will flush the
219 	 * WCB of the writes into the GGTT before it triggers the invalidate.
220 	 *
221 	 * Only perform this when GGTT is mapped as WC, see ggtt_probe_common().
222 	 */
223 	if (needs_wc_ggtt_mapping(ggtt->vm.i915))
224 		intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6,
225 				      GFX_FLSH_CNTL_EN);
226 }
227 
228 static void guc_ggtt_ct_invalidate(struct intel_gt *gt)
229 {
230 	struct intel_uncore *uncore = gt->uncore;
231 	intel_wakeref_t wakeref;
232 
233 	with_intel_runtime_pm_if_active(uncore->rpm, wakeref)
234 		intel_guc_invalidate_tlb_guc(gt_to_guc(gt));
235 }
236 
237 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
238 {
239 	struct drm_i915_private *i915 = ggtt->vm.i915;
240 	struct intel_gt *gt;
241 
242 	gen8_ggtt_invalidate(ggtt);
243 
244 	list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) {
245 		if (intel_guc_tlb_invalidation_is_available(gt_to_guc(gt)))
246 			guc_ggtt_ct_invalidate(gt);
247 		else if (GRAPHICS_VER(i915) >= 12)
248 			intel_uncore_write_fw(gt->uncore,
249 					      GEN12_GUC_TLB_INV_CR,
250 					      GEN12_GUC_TLB_INV_CR_INVALIDATE);
251 		else
252 			intel_uncore_write_fw(gt->uncore,
253 					      GEN8_GTCR, GEN8_GTCR_INVALIDATE);
254 	}
255 }
256 
257 static u64 mtl_ggtt_pte_encode(dma_addr_t addr,
258 			       unsigned int pat_index,
259 			       u32 flags)
260 {
261 	gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
262 
263 	WARN_ON_ONCE(addr & ~GEN12_GGTT_PTE_ADDR_MASK);
264 
265 	if (flags & PTE_LM)
266 		pte |= GEN12_GGTT_PTE_LM;
267 
268 	if (pat_index & BIT(0))
269 		pte |= MTL_GGTT_PTE_PAT0;
270 
271 	if (pat_index & BIT(1))
272 		pte |= MTL_GGTT_PTE_PAT1;
273 
274 	return pte;
275 }
276 
277 u64 gen8_ggtt_pte_encode(dma_addr_t addr,
278 			 unsigned int pat_index,
279 			 u32 flags)
280 {
281 	gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
282 
283 	if (flags & PTE_LM)
284 		pte |= GEN12_GGTT_PTE_LM;
285 
286 	return pte;
287 }
288 
289 static bool should_update_ggtt_with_bind(struct i915_ggtt *ggtt)
290 {
291 	struct intel_gt *gt = ggtt->vm.gt;
292 
293 	return intel_gt_is_bind_context_ready(gt);
294 }
295 
296 static struct intel_context *gen8_ggtt_bind_get_ce(struct i915_ggtt *ggtt, intel_wakeref_t *wakeref)
297 {
298 	struct intel_context *ce;
299 	struct intel_gt *gt = ggtt->vm.gt;
300 
301 	if (intel_gt_is_wedged(gt))
302 		return NULL;
303 
304 	ce = gt->engine[BCS0]->bind_context;
305 	GEM_BUG_ON(!ce);
306 
307 	/*
308 	 * If the GT is not awake already at this stage then fallback
309 	 * to pci based GGTT update otherwise __intel_wakeref_get_first()
310 	 * would conflict with fs_reclaim trying to allocate memory while
311 	 * doing rpm_resume().
312 	 */
313 	*wakeref = intel_gt_pm_get_if_awake(gt);
314 	if (!*wakeref)
315 		return NULL;
316 
317 	intel_engine_pm_get(ce->engine);
318 
319 	return ce;
320 }
321 
322 static void gen8_ggtt_bind_put_ce(struct intel_context *ce, intel_wakeref_t wakeref)
323 {
324 	intel_engine_pm_put(ce->engine);
325 	intel_gt_pm_put(ce->engine->gt, wakeref);
326 }
327 
328 static bool gen8_ggtt_bind_ptes(struct i915_ggtt *ggtt, u32 offset,
329 				struct sg_table *pages, u32 num_entries,
330 				const gen8_pte_t pte)
331 {
332 	struct i915_sched_attr attr = {};
333 	struct intel_gt *gt = ggtt->vm.gt;
334 	const gen8_pte_t scratch_pte = ggtt->vm.scratch[0]->encode;
335 	struct sgt_iter iter;
336 	struct i915_request *rq;
337 	struct intel_context *ce;
338 	intel_wakeref_t wakeref;
339 	u32 *cs;
340 
341 	if (!num_entries)
342 		return true;
343 
344 	ce = gen8_ggtt_bind_get_ce(ggtt, &wakeref);
345 	if (!ce)
346 		return false;
347 
348 	if (pages)
349 		iter = __sgt_iter(pages->sgl, true);
350 
351 	while (num_entries) {
352 		int count = 0;
353 		dma_addr_t addr;
354 		/*
355 		 * MI_UPDATE_GTT can update 512 entries in a single command but
356 		 * that end up with engine reset, 511 works.
357 		 */
358 		u32 n_ptes = min_t(u32, 511, num_entries);
359 
360 		if (mutex_lock_interruptible(&ce->timeline->mutex))
361 			goto put_ce;
362 
363 		intel_context_enter(ce);
364 		rq = __i915_request_create(ce, GFP_NOWAIT | GFP_ATOMIC);
365 		intel_context_exit(ce);
366 		if (IS_ERR(rq)) {
367 			GT_TRACE(gt, "Failed to get bind request\n");
368 			mutex_unlock(&ce->timeline->mutex);
369 			goto put_ce;
370 		}
371 
372 		cs = intel_ring_begin(rq, 2 * n_ptes + 2);
373 		if (IS_ERR(cs)) {
374 			GT_TRACE(gt, "Failed to ring space for GGTT bind\n");
375 			i915_request_set_error_once(rq, PTR_ERR(cs));
376 			/* once a request is created, it must be queued */
377 			goto queue_err_rq;
378 		}
379 
380 		*cs++ = MI_UPDATE_GTT | (2 * n_ptes);
381 		*cs++ = offset << 12;
382 
383 		if (pages) {
384 			for_each_sgt_daddr_next(addr, iter) {
385 				if (count == n_ptes)
386 					break;
387 				*cs++ = lower_32_bits(pte | addr);
388 				*cs++ = upper_32_bits(pte | addr);
389 				count++;
390 			}
391 			/* fill remaining with scratch pte, if any */
392 			if (count < n_ptes) {
393 				memset64((u64 *)cs, scratch_pte,
394 					 n_ptes - count);
395 				cs += (n_ptes - count) * 2;
396 			}
397 		} else {
398 			memset64((u64 *)cs, pte, n_ptes);
399 			cs += n_ptes * 2;
400 		}
401 
402 		intel_ring_advance(rq, cs);
403 queue_err_rq:
404 		i915_request_get(rq);
405 		__i915_request_commit(rq);
406 		__i915_request_queue(rq, &attr);
407 
408 		mutex_unlock(&ce->timeline->mutex);
409 		/* This will break if the request is complete or after engine reset */
410 		i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT);
411 		if (rq->fence.error)
412 			goto err_rq;
413 
414 		i915_request_put(rq);
415 
416 		num_entries -= n_ptes;
417 		offset += n_ptes;
418 	}
419 
420 	gen8_ggtt_bind_put_ce(ce, wakeref);
421 	return true;
422 
423 err_rq:
424 	i915_request_put(rq);
425 put_ce:
426 	gen8_ggtt_bind_put_ce(ce, wakeref);
427 	return false;
428 }
429 
430 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
431 {
432 	writeq(pte, addr);
433 }
434 
435 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
436 				  dma_addr_t addr,
437 				  u64 offset,
438 				  unsigned int pat_index,
439 				  u32 flags)
440 {
441 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
442 	gen8_pte_t __iomem *pte =
443 		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
444 
445 	gen8_set_pte(pte, ggtt->vm.pte_encode(addr, pat_index, flags));
446 
447 	ggtt->invalidate(ggtt);
448 }
449 
450 static void gen8_ggtt_insert_page_bind(struct i915_address_space *vm,
451 				       dma_addr_t addr, u64 offset,
452 				       unsigned int pat_index, u32 flags)
453 {
454 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
455 	gen8_pte_t pte;
456 
457 	pte = ggtt->vm.pte_encode(addr, pat_index, flags);
458 	if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) &&
459 	    gen8_ggtt_bind_ptes(ggtt, offset, NULL, 1, pte))
460 		return ggtt->invalidate(ggtt);
461 
462 	gen8_ggtt_insert_page(vm, addr, offset, pat_index, flags);
463 }
464 
465 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
466 				     struct i915_vma_resource *vma_res,
467 				     unsigned int pat_index,
468 				     u32 flags)
469 {
470 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
471 	const gen8_pte_t pte_encode = ggtt->vm.pte_encode(0, pat_index, flags);
472 	gen8_pte_t __iomem *gte;
473 	gen8_pte_t __iomem *end;
474 	struct sgt_iter iter;
475 	dma_addr_t addr;
476 
477 	/*
478 	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
479 	 * not to allow the user to override access to a read only page.
480 	 */
481 
482 	gte = (gen8_pte_t __iomem *)ggtt->gsm;
483 	gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
484 	end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
485 	while (gte < end)
486 		gen8_set_pte(gte++, vm->scratch[0]->encode);
487 	end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
488 
489 	for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
490 		gen8_set_pte(gte++, pte_encode | addr);
491 	GEM_BUG_ON(gte > end);
492 
493 	/* Fill the allocated but "unused" space beyond the end of the buffer */
494 	while (gte < end)
495 		gen8_set_pte(gte++, vm->scratch[0]->encode);
496 
497 	/*
498 	 * We want to flush the TLBs only after we're certain all the PTE
499 	 * updates have finished.
500 	 */
501 	ggtt->invalidate(ggtt);
502 }
503 
504 static bool __gen8_ggtt_insert_entries_bind(struct i915_address_space *vm,
505 					    struct i915_vma_resource *vma_res,
506 					    unsigned int pat_index, u32 flags)
507 {
508 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
509 	gen8_pte_t scratch_pte = vm->scratch[0]->encode;
510 	gen8_pte_t pte_encode;
511 	u64 start, end;
512 
513 	pte_encode = ggtt->vm.pte_encode(0, pat_index, flags);
514 	start = (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
515 	end = start + vma_res->guard / I915_GTT_PAGE_SIZE;
516 	if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte))
517 		goto err;
518 
519 	start = end;
520 	end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
521 	if (!gen8_ggtt_bind_ptes(ggtt, start, vma_res->bi.pages,
522 	      vma_res->node_size / I915_GTT_PAGE_SIZE, pte_encode))
523 		goto err;
524 
525 	start += vma_res->node_size / I915_GTT_PAGE_SIZE;
526 	if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte))
527 		goto err;
528 
529 	return true;
530 
531 err:
532 	return false;
533 }
534 
535 static void gen8_ggtt_insert_entries_bind(struct i915_address_space *vm,
536 					  struct i915_vma_resource *vma_res,
537 					  unsigned int pat_index, u32 flags)
538 {
539 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
540 
541 	if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) &&
542 	    __gen8_ggtt_insert_entries_bind(vm, vma_res, pat_index, flags))
543 		return ggtt->invalidate(ggtt);
544 
545 	gen8_ggtt_insert_entries(vm, vma_res, pat_index, flags);
546 }
547 
548 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
549 				  u64 start, u64 length)
550 {
551 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
552 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
553 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
554 	const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
555 	gen8_pte_t __iomem *gtt_base =
556 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
557 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
558 	int i;
559 
560 	if (WARN(num_entries > max_entries,
561 		 "First entry = %d; Num entries = %d (max=%d)\n",
562 		 first_entry, num_entries, max_entries))
563 		num_entries = max_entries;
564 
565 	for (i = 0; i < num_entries; i++)
566 		gen8_set_pte(&gtt_base[i], scratch_pte);
567 }
568 
569 static void gen8_ggtt_scratch_range_bind(struct i915_address_space *vm,
570 					 u64 start, u64 length)
571 {
572 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
573 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
574 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
575 	const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
576 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
577 
578 	if (WARN(num_entries > max_entries,
579 		 "First entry = %d; Num entries = %d (max=%d)\n",
580 		 first_entry, num_entries, max_entries))
581 		num_entries = max_entries;
582 
583 	if (should_update_ggtt_with_bind(ggtt) && gen8_ggtt_bind_ptes(ggtt, first_entry,
584 	     NULL, num_entries, scratch_pte))
585 		return ggtt->invalidate(ggtt);
586 
587 	gen8_ggtt_clear_range(vm, start, length);
588 }
589 
590 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
591 				  dma_addr_t addr,
592 				  u64 offset,
593 				  unsigned int pat_index,
594 				  u32 flags)
595 {
596 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
597 	gen6_pte_t __iomem *pte =
598 		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
599 
600 	iowrite32(vm->pte_encode(addr, pat_index, flags), pte);
601 
602 	ggtt->invalidate(ggtt);
603 }
604 
605 /*
606  * Binds an object into the global gtt with the specified cache level.
607  * The object will be accessible to the GPU via commands whose operands
608  * reference offsets within the global GTT as well as accessible by the GPU
609  * through the GMADR mapped BAR (i915->mm.gtt->gtt).
610  */
611 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
612 				     struct i915_vma_resource *vma_res,
613 				     unsigned int pat_index,
614 				     u32 flags)
615 {
616 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
617 	gen6_pte_t __iomem *gte;
618 	gen6_pte_t __iomem *end;
619 	struct sgt_iter iter;
620 	dma_addr_t addr;
621 
622 	gte = (gen6_pte_t __iomem *)ggtt->gsm;
623 	gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
624 
625 	end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
626 	while (gte < end)
627 		iowrite32(vm->scratch[0]->encode, gte++);
628 	end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
629 	for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
630 		iowrite32(vm->pte_encode(addr, pat_index, flags), gte++);
631 	GEM_BUG_ON(gte > end);
632 
633 	/* Fill the allocated but "unused" space beyond the end of the buffer */
634 	while (gte < end)
635 		iowrite32(vm->scratch[0]->encode, gte++);
636 
637 	/*
638 	 * We want to flush the TLBs only after we're certain all the PTE
639 	 * updates have finished.
640 	 */
641 	ggtt->invalidate(ggtt);
642 }
643 
644 static void nop_clear_range(struct i915_address_space *vm,
645 			    u64 start, u64 length)
646 {
647 }
648 
649 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
650 {
651 	/*
652 	 * Make sure the internal GAM fifo has been cleared of all GTT
653 	 * writes before exiting stop_machine(). This guarantees that
654 	 * any aperture accesses waiting to start in another process
655 	 * cannot back up behind the GTT writes causing a hang.
656 	 * The register can be any arbitrary GAM register.
657 	 */
658 	intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
659 }
660 
661 struct insert_page {
662 	struct i915_address_space *vm;
663 	dma_addr_t addr;
664 	u64 offset;
665 	unsigned int pat_index;
666 };
667 
668 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
669 {
670 	struct insert_page *arg = _arg;
671 
672 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset,
673 			      arg->pat_index, 0);
674 	bxt_vtd_ggtt_wa(arg->vm);
675 
676 	return 0;
677 }
678 
679 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
680 					  dma_addr_t addr,
681 					  u64 offset,
682 					  unsigned int pat_index,
683 					  u32 unused)
684 {
685 	struct insert_page arg = { vm, addr, offset, pat_index };
686 
687 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
688 }
689 
690 struct insert_entries {
691 	struct i915_address_space *vm;
692 	struct i915_vma_resource *vma_res;
693 	unsigned int pat_index;
694 	u32 flags;
695 };
696 
697 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
698 {
699 	struct insert_entries *arg = _arg;
700 
701 	gen8_ggtt_insert_entries(arg->vm, arg->vma_res,
702 				 arg->pat_index, arg->flags);
703 	bxt_vtd_ggtt_wa(arg->vm);
704 
705 	return 0;
706 }
707 
708 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
709 					     struct i915_vma_resource *vma_res,
710 					     unsigned int pat_index,
711 					     u32 flags)
712 {
713 	struct insert_entries arg = { vm, vma_res, pat_index, flags };
714 
715 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
716 }
717 
718 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
719 				  u64 start, u64 length)
720 {
721 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
722 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
723 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
724 	gen6_pte_t scratch_pte, __iomem *gtt_base =
725 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
726 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
727 	int i;
728 
729 	if (WARN(num_entries > max_entries,
730 		 "First entry = %d; Num entries = %d (max=%d)\n",
731 		 first_entry, num_entries, max_entries))
732 		num_entries = max_entries;
733 
734 	scratch_pte = vm->scratch[0]->encode;
735 	for (i = 0; i < num_entries; i++)
736 		iowrite32(scratch_pte, &gtt_base[i]);
737 }
738 
739 void intel_ggtt_bind_vma(struct i915_address_space *vm,
740 			 struct i915_vm_pt_stash *stash,
741 			 struct i915_vma_resource *vma_res,
742 			 unsigned int pat_index,
743 			 u32 flags)
744 {
745 	u32 pte_flags;
746 
747 	if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK))
748 		return;
749 
750 	vma_res->bound_flags |= flags;
751 
752 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
753 	pte_flags = 0;
754 	if (vma_res->bi.readonly)
755 		pte_flags |= PTE_READ_ONLY;
756 	if (vma_res->bi.lmem)
757 		pte_flags |= PTE_LM;
758 
759 	vm->insert_entries(vm, vma_res, pat_index, pte_flags);
760 	vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE;
761 }
762 
763 void intel_ggtt_unbind_vma(struct i915_address_space *vm,
764 			   struct i915_vma_resource *vma_res)
765 {
766 	vm->clear_range(vm, vma_res->start, vma_res->vma_size);
767 }
768 
769 /*
770  * Reserve the top of the GuC address space for firmware images. Addresses
771  * beyond GUC_GGTT_TOP in the GuC address space are inaccessible by GuC,
772  * which makes for a suitable range to hold GuC/HuC firmware images if the
773  * size of the GGTT is 4G. However, on a 32-bit platform the size of the GGTT
774  * is limited to 2G, which is less than GUC_GGTT_TOP, but we reserve a chunk
775  * of the same size anyway, which is far more than needed, to keep the logic
776  * in uc_fw_ggtt_offset() simple.
777  */
778 #define GUC_TOP_RESERVE_SIZE (SZ_4G - GUC_GGTT_TOP)
779 
780 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
781 {
782 	u64 offset;
783 	int ret;
784 
785 	if (!intel_uc_uses_guc(&ggtt->vm.gt->uc))
786 		return 0;
787 
788 	GEM_BUG_ON(ggtt->vm.total <= GUC_TOP_RESERVE_SIZE);
789 	offset = ggtt->vm.total - GUC_TOP_RESERVE_SIZE;
790 
791 	ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw,
792 				   GUC_TOP_RESERVE_SIZE, offset,
793 				   I915_COLOR_UNEVICTABLE, PIN_NOEVICT);
794 	if (ret)
795 		drm_dbg(&ggtt->vm.i915->drm,
796 			"Failed to reserve top of GGTT for GuC\n");
797 
798 	return ret;
799 }
800 
801 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
802 {
803 	if (drm_mm_node_allocated(&ggtt->uc_fw))
804 		drm_mm_remove_node(&ggtt->uc_fw);
805 }
806 
807 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
808 {
809 	ggtt_release_guc_top(ggtt);
810 	if (drm_mm_node_allocated(&ggtt->error_capture))
811 		drm_mm_remove_node(&ggtt->error_capture);
812 	mutex_destroy(&ggtt->error_mutex);
813 }
814 
815 static int init_ggtt(struct i915_ggtt *ggtt)
816 {
817 	/*
818 	 * Let GEM Manage all of the aperture.
819 	 *
820 	 * However, leave one page at the end still bound to the scratch page.
821 	 * There are a number of places where the hardware apparently prefetches
822 	 * past the end of the object, and we've seen multiple hangs with the
823 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
824 	 * aperture.  One page should be enough to keep any prefetching inside
825 	 * of the aperture.
826 	 */
827 	unsigned long hole_start, hole_end;
828 	struct drm_mm_node *entry;
829 	int ret;
830 
831 	/*
832 	 * GuC requires all resources that we're sharing with it to be placed in
833 	 * non-WOPCM memory. If GuC is not present or not in use we still need a
834 	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
835 	 * why.
836 	 */
837 	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
838 			       intel_wopcm_guc_size(&ggtt->vm.gt->wopcm));
839 
840 	ret = intel_vgt_balloon(ggtt);
841 	if (ret)
842 		return ret;
843 
844 	mutex_init(&ggtt->error_mutex);
845 	if (ggtt->mappable_end) {
846 		/*
847 		 * Reserve a mappable slot for our lockless error capture.
848 		 *
849 		 * We strongly prefer taking address 0x0 in order to protect
850 		 * other critical buffers against accidental overwrites,
851 		 * as writing to address 0 is a very common mistake.
852 		 *
853 		 * Since 0 may already be in use by the system (e.g. the BIOS
854 		 * framebuffer), we let the reservation fail quietly and hope
855 		 * 0 remains reserved always.
856 		 *
857 		 * If we fail to reserve 0, and then fail to find any space
858 		 * for an error-capture, remain silent. We can afford not
859 		 * to reserve an error_capture node as we have fallback
860 		 * paths, and we trust that 0 will remain reserved. However,
861 		 * the only likely reason for failure to insert is a driver
862 		 * bug, which we expect to cause other failures...
863 		 *
864 		 * Since CPU can perform speculative reads on error capture
865 		 * (write-combining allows it) add scratch page after error
866 		 * capture to avoid DMAR errors.
867 		 */
868 		ggtt->error_capture.size = 2 * I915_GTT_PAGE_SIZE;
869 		ggtt->error_capture.color = I915_COLOR_UNEVICTABLE;
870 		if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture))
871 			drm_mm_insert_node_in_range(&ggtt->vm.mm,
872 						    &ggtt->error_capture,
873 						    ggtt->error_capture.size, 0,
874 						    ggtt->error_capture.color,
875 						    0, ggtt->mappable_end,
876 						    DRM_MM_INSERT_LOW);
877 	}
878 	if (drm_mm_node_allocated(&ggtt->error_capture)) {
879 		u64 start = ggtt->error_capture.start;
880 		u64 size = ggtt->error_capture.size;
881 
882 		ggtt->vm.scratch_range(&ggtt->vm, start, size);
883 		drm_dbg(&ggtt->vm.i915->drm,
884 			"Reserved GGTT:[%llx, %llx] for use by error capture\n",
885 			start, start + size);
886 	}
887 
888 	/*
889 	 * The upper portion of the GuC address space has a sizeable hole
890 	 * (several MB) that is inaccessible by GuC. Reserve this range within
891 	 * GGTT as it can comfortably hold GuC/HuC firmware images.
892 	 */
893 	ret = ggtt_reserve_guc_top(ggtt);
894 	if (ret)
895 		goto err;
896 
897 	/* Clear any non-preallocated blocks */
898 	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
899 		drm_dbg(&ggtt->vm.i915->drm,
900 			"clearing unused GTT space: [%lx, %lx]\n",
901 			hole_start, hole_end);
902 		ggtt->vm.clear_range(&ggtt->vm, hole_start,
903 				     hole_end - hole_start);
904 	}
905 
906 	/* And finally clear the reserved guard page */
907 	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
908 
909 	return 0;
910 
911 err:
912 	cleanup_init_ggtt(ggtt);
913 	return ret;
914 }
915 
916 static void aliasing_gtt_bind_vma(struct i915_address_space *vm,
917 				  struct i915_vm_pt_stash *stash,
918 				  struct i915_vma_resource *vma_res,
919 				  unsigned int pat_index,
920 				  u32 flags)
921 {
922 	u32 pte_flags;
923 
924 	/* Currently applicable only to VLV */
925 	pte_flags = 0;
926 	if (vma_res->bi.readonly)
927 		pte_flags |= PTE_READ_ONLY;
928 
929 	if (flags & I915_VMA_LOCAL_BIND)
930 		ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm,
931 			       stash, vma_res, pat_index, flags);
932 
933 	if (flags & I915_VMA_GLOBAL_BIND)
934 		vm->insert_entries(vm, vma_res, pat_index, pte_flags);
935 
936 	vma_res->bound_flags |= flags;
937 }
938 
939 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm,
940 				    struct i915_vma_resource *vma_res)
941 {
942 	if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND)
943 		vm->clear_range(vm, vma_res->start, vma_res->vma_size);
944 
945 	if (vma_res->bound_flags & I915_VMA_LOCAL_BIND)
946 		ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res);
947 }
948 
949 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
950 {
951 	struct i915_vm_pt_stash stash = {};
952 	struct i915_ppgtt *ppgtt;
953 	int err;
954 
955 	ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0);
956 	if (IS_ERR(ppgtt))
957 		return PTR_ERR(ppgtt);
958 
959 	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
960 		err = -ENODEV;
961 		goto err_ppgtt;
962 	}
963 
964 	err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total);
965 	if (err)
966 		goto err_ppgtt;
967 
968 	i915_gem_object_lock(ppgtt->vm.scratch[0], NULL);
969 	err = i915_vm_map_pt_stash(&ppgtt->vm, &stash);
970 	i915_gem_object_unlock(ppgtt->vm.scratch[0]);
971 	if (err)
972 		goto err_stash;
973 
974 	/*
975 	 * Note we only pre-allocate as far as the end of the global
976 	 * GTT. On 48b / 4-level page-tables, the difference is very,
977 	 * very significant! We have to preallocate as GVT/vgpu does
978 	 * not like the page directory disappearing.
979 	 */
980 	ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total);
981 
982 	ggtt->alias = ppgtt;
983 	ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
984 
985 	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != intel_ggtt_bind_vma);
986 	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
987 
988 	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != intel_ggtt_unbind_vma);
989 	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
990 
991 	i915_vm_free_pt_stash(&ppgtt->vm, &stash);
992 	return 0;
993 
994 err_stash:
995 	i915_vm_free_pt_stash(&ppgtt->vm, &stash);
996 err_ppgtt:
997 	i915_vm_put(&ppgtt->vm);
998 	return err;
999 }
1000 
1001 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
1002 {
1003 	struct i915_ppgtt *ppgtt;
1004 
1005 	ppgtt = fetch_and_zero(&ggtt->alias);
1006 	if (!ppgtt)
1007 		return;
1008 
1009 	i915_vm_put(&ppgtt->vm);
1010 
1011 	ggtt->vm.vma_ops.bind_vma   = intel_ggtt_bind_vma;
1012 	ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
1013 }
1014 
1015 int i915_init_ggtt(struct drm_i915_private *i915)
1016 {
1017 	int ret;
1018 
1019 	ret = init_ggtt(to_gt(i915)->ggtt);
1020 	if (ret)
1021 		return ret;
1022 
1023 	if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
1024 		ret = init_aliasing_ppgtt(to_gt(i915)->ggtt);
1025 		if (ret)
1026 			cleanup_init_ggtt(to_gt(i915)->ggtt);
1027 	}
1028 
1029 	return 0;
1030 }
1031 
1032 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
1033 {
1034 	struct i915_vma *vma, *vn;
1035 
1036 	flush_workqueue(ggtt->vm.i915->wq);
1037 	i915_gem_drain_freed_objects(ggtt->vm.i915);
1038 
1039 	mutex_lock(&ggtt->vm.mutex);
1040 
1041 	ggtt->vm.skip_pte_rewrite = true;
1042 
1043 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
1044 		struct drm_i915_gem_object *obj = vma->obj;
1045 		bool trylock;
1046 
1047 		trylock = i915_gem_object_trylock(obj, NULL);
1048 		WARN_ON(!trylock);
1049 
1050 		WARN_ON(__i915_vma_unbind(vma));
1051 		if (trylock)
1052 			i915_gem_object_unlock(obj);
1053 	}
1054 
1055 	if (drm_mm_node_allocated(&ggtt->error_capture))
1056 		drm_mm_remove_node(&ggtt->error_capture);
1057 	mutex_destroy(&ggtt->error_mutex);
1058 
1059 	ggtt_release_guc_top(ggtt);
1060 	intel_vgt_deballoon(ggtt);
1061 
1062 	ggtt->vm.cleanup(&ggtt->vm);
1063 
1064 	mutex_unlock(&ggtt->vm.mutex);
1065 	i915_address_space_fini(&ggtt->vm);
1066 
1067 	arch_phys_wc_del(ggtt->mtrr);
1068 
1069 	if (ggtt->iomap.size)
1070 		io_mapping_fini(&ggtt->iomap);
1071 }
1072 
1073 /**
1074  * i915_ggtt_driver_release - Clean up GGTT hardware initialization
1075  * @i915: i915 device
1076  */
1077 void i915_ggtt_driver_release(struct drm_i915_private *i915)
1078 {
1079 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
1080 
1081 	fini_aliasing_ppgtt(ggtt);
1082 
1083 	intel_ggtt_fini_fences(ggtt);
1084 	ggtt_cleanup_hw(ggtt);
1085 }
1086 
1087 /**
1088  * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after
1089  * all free objects have been drained.
1090  * @i915: i915 device
1091  */
1092 void i915_ggtt_driver_late_release(struct drm_i915_private *i915)
1093 {
1094 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
1095 
1096 	GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1);
1097 	dma_resv_fini(&ggtt->vm._resv);
1098 }
1099 
1100 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1101 {
1102 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1103 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1104 	return snb_gmch_ctl << 20;
1105 }
1106 
1107 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1108 {
1109 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1110 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1111 	if (bdw_gmch_ctl)
1112 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1113 
1114 #ifdef CONFIG_X86_32
1115 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
1116 	if (bdw_gmch_ctl > 4)
1117 		bdw_gmch_ctl = 4;
1118 #endif
1119 
1120 	return bdw_gmch_ctl << 20;
1121 }
1122 
1123 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
1124 {
1125 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
1126 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
1127 
1128 	if (gmch_ctrl)
1129 		return 1 << (20 + gmch_ctrl);
1130 
1131 	return 0;
1132 }
1133 
1134 static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915)
1135 {
1136 	/*
1137 	 * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset
1138 	 * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset
1139 	 */
1140 	GEM_BUG_ON(GRAPHICS_VER(i915) < 6);
1141 	return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M;
1142 }
1143 
1144 static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915)
1145 {
1146 	return gen6_gttmmadr_size(i915) / 2;
1147 }
1148 
1149 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
1150 {
1151 	struct drm_i915_private *i915 = ggtt->vm.i915;
1152 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
1153 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1154 	phys_addr_t phys_addr;
1155 	u32 pte_flags;
1156 	int ret;
1157 
1158 	GEM_WARN_ON(pci_resource_len(pdev, GEN4_GTTMMADR_BAR) != gen6_gttmmadr_size(i915));
1159 
1160 	if (i915_direct_stolen_access(i915)) {
1161 		drm_dbg(&i915->drm, "Using direct GSM access\n");
1162 		phys_addr = intel_uncore_read64(uncore, GEN6_GSMBASE) & GEN11_BDSM_MASK;
1163 	} else {
1164 		phys_addr = pci_resource_start(pdev, GEN4_GTTMMADR_BAR) + gen6_gttadr_offset(i915);
1165 	}
1166 
1167 	if (needs_wc_ggtt_mapping(i915))
1168 		ggtt->gsm = ioremap_wc(phys_addr, size);
1169 	else
1170 		ggtt->gsm = ioremap(phys_addr, size);
1171 
1172 	if (!ggtt->gsm) {
1173 		drm_err(&i915->drm, "Failed to map the ggtt page table\n");
1174 		return -ENOMEM;
1175 	}
1176 
1177 	kref_init(&ggtt->vm.resv_ref);
1178 	ret = setup_scratch_page(&ggtt->vm);
1179 	if (ret) {
1180 		drm_err(&i915->drm, "Scratch setup failed\n");
1181 		/* iounmap will also get called at remove, but meh */
1182 		iounmap(ggtt->gsm);
1183 		return ret;
1184 	}
1185 
1186 	pte_flags = 0;
1187 	if (i915_gem_object_is_lmem(ggtt->vm.scratch[0]))
1188 		pte_flags |= PTE_LM;
1189 
1190 	ggtt->vm.scratch[0]->encode =
1191 		ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]),
1192 				    i915_gem_get_pat_index(i915,
1193 							   I915_CACHE_NONE),
1194 				    pte_flags);
1195 
1196 	return 0;
1197 }
1198 
1199 static void gen6_gmch_remove(struct i915_address_space *vm)
1200 {
1201 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
1202 
1203 	iounmap(ggtt->gsm);
1204 	free_scratch(vm);
1205 }
1206 
1207 static struct resource pci_resource(struct pci_dev *pdev, int bar)
1208 {
1209 	return DEFINE_RES_MEM(pci_resource_start(pdev, bar),
1210 			      pci_resource_len(pdev, bar));
1211 }
1212 
1213 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
1214 {
1215 	struct drm_i915_private *i915 = ggtt->vm.i915;
1216 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1217 	unsigned int size;
1218 	u16 snb_gmch_ctl;
1219 
1220 	if (!HAS_LMEM(i915) && !HAS_LMEMBAR_SMEM_STOLEN(i915)) {
1221 		if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
1222 			return -ENXIO;
1223 
1224 		ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
1225 		ggtt->mappable_end = resource_size(&ggtt->gmadr);
1226 	}
1227 
1228 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1229 	if (IS_CHERRYVIEW(i915))
1230 		size = chv_get_total_gtt_size(snb_gmch_ctl);
1231 	else
1232 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
1233 
1234 	ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1235 	ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1236 	ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY;
1237 
1238 	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
1239 	ggtt->vm.cleanup = gen6_gmch_remove;
1240 	ggtt->vm.insert_page = gen8_ggtt_insert_page;
1241 	ggtt->vm.clear_range = nop_clear_range;
1242 	ggtt->vm.scratch_range = gen8_ggtt_clear_range;
1243 
1244 	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
1245 
1246 	/*
1247 	 * Serialize GTT updates with aperture access on BXT if VT-d is on,
1248 	 * and always on CHV.
1249 	 */
1250 	if (intel_vm_no_concurrent_access_wa(i915)) {
1251 		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
1252 		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
1253 
1254 		/*
1255 		 * Calling stop_machine() version of GGTT update function
1256 		 * at error capture/reset path will raise lockdep warning.
1257 		 * Allow calling gen8_ggtt_insert_* directly at reset path
1258 		 * which is safe from parallel GGTT updates.
1259 		 */
1260 		ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
1261 		ggtt->vm.raw_insert_entries = gen8_ggtt_insert_entries;
1262 
1263 		ggtt->vm.bind_async_flags =
1264 			I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
1265 	}
1266 
1267 	if (i915_ggtt_require_binder(i915)) {
1268 		ggtt->vm.scratch_range = gen8_ggtt_scratch_range_bind;
1269 		ggtt->vm.insert_page = gen8_ggtt_insert_page_bind;
1270 		ggtt->vm.insert_entries = gen8_ggtt_insert_entries_bind;
1271 		/*
1272 		 * On GPU is hung, we might bind VMAs for error capture.
1273 		 * Fallback to CPU GGTT updates in that case.
1274 		 */
1275 		ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
1276 	}
1277 
1278 	if (intel_uc_wants_guc_submission(&ggtt->vm.gt->uc))
1279 		ggtt->invalidate = guc_ggtt_invalidate;
1280 	else
1281 		ggtt->invalidate = gen8_ggtt_invalidate;
1282 
1283 	ggtt->vm.vma_ops.bind_vma    = intel_ggtt_bind_vma;
1284 	ggtt->vm.vma_ops.unbind_vma  = intel_ggtt_unbind_vma;
1285 
1286 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
1287 		ggtt->vm.pte_encode = mtl_ggtt_pte_encode;
1288 	else
1289 		ggtt->vm.pte_encode = gen8_ggtt_pte_encode;
1290 
1291 	return ggtt_probe_common(ggtt, size);
1292 }
1293 
1294 /*
1295  * For pre-gen8 platforms pat_index is the same as enum i915_cache_level,
1296  * so the switch-case statements in these PTE encode functions are still valid.
1297  * See translation table LEGACY_CACHELEVEL.
1298  */
1299 static u64 snb_pte_encode(dma_addr_t addr,
1300 			  unsigned int pat_index,
1301 			  u32 flags)
1302 {
1303 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1304 
1305 	switch (pat_index) {
1306 	case I915_CACHE_L3_LLC:
1307 	case I915_CACHE_LLC:
1308 		pte |= GEN6_PTE_CACHE_LLC;
1309 		break;
1310 	case I915_CACHE_NONE:
1311 		pte |= GEN6_PTE_UNCACHED;
1312 		break;
1313 	default:
1314 		MISSING_CASE(pat_index);
1315 	}
1316 
1317 	return pte;
1318 }
1319 
1320 static u64 ivb_pte_encode(dma_addr_t addr,
1321 			  unsigned int pat_index,
1322 			  u32 flags)
1323 {
1324 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1325 
1326 	switch (pat_index) {
1327 	case I915_CACHE_L3_LLC:
1328 		pte |= GEN7_PTE_CACHE_L3_LLC;
1329 		break;
1330 	case I915_CACHE_LLC:
1331 		pte |= GEN6_PTE_CACHE_LLC;
1332 		break;
1333 	case I915_CACHE_NONE:
1334 		pte |= GEN6_PTE_UNCACHED;
1335 		break;
1336 	default:
1337 		MISSING_CASE(pat_index);
1338 	}
1339 
1340 	return pte;
1341 }
1342 
1343 static u64 byt_pte_encode(dma_addr_t addr,
1344 			  unsigned int pat_index,
1345 			  u32 flags)
1346 {
1347 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1348 
1349 	if (!(flags & PTE_READ_ONLY))
1350 		pte |= BYT_PTE_WRITEABLE;
1351 
1352 	if (pat_index != I915_CACHE_NONE)
1353 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
1354 
1355 	return pte;
1356 }
1357 
1358 static u64 hsw_pte_encode(dma_addr_t addr,
1359 			  unsigned int pat_index,
1360 			  u32 flags)
1361 {
1362 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1363 
1364 	if (pat_index != I915_CACHE_NONE)
1365 		pte |= HSW_WB_LLC_AGE3;
1366 
1367 	return pte;
1368 }
1369 
1370 static u64 iris_pte_encode(dma_addr_t addr,
1371 			   unsigned int pat_index,
1372 			   u32 flags)
1373 {
1374 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1375 
1376 	switch (pat_index) {
1377 	case I915_CACHE_NONE:
1378 		break;
1379 	case I915_CACHE_WT:
1380 		pte |= HSW_WT_ELLC_LLC_AGE3;
1381 		break;
1382 	default:
1383 		pte |= HSW_WB_ELLC_LLC_AGE3;
1384 		break;
1385 	}
1386 
1387 	return pte;
1388 }
1389 
1390 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
1391 {
1392 	struct drm_i915_private *i915 = ggtt->vm.i915;
1393 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1394 	unsigned int size;
1395 	u16 snb_gmch_ctl;
1396 
1397 	if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
1398 		return -ENXIO;
1399 
1400 	ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
1401 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
1402 
1403 	/*
1404 	 * 64/512MB is the current min/max we actually know of, but this is
1405 	 * just a coarse sanity check.
1406 	 */
1407 	if (ggtt->mappable_end < (64 << 20) ||
1408 	    ggtt->mappable_end > (512 << 20)) {
1409 		drm_err(&i915->drm, "Unknown GMADR size (%pa)\n",
1410 			&ggtt->mappable_end);
1411 		return -ENXIO;
1412 	}
1413 
1414 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1415 
1416 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
1417 	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
1418 
1419 	ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1420 	ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1421 
1422 	ggtt->vm.clear_range = nop_clear_range;
1423 	if (!HAS_FULL_PPGTT(i915))
1424 		ggtt->vm.clear_range = gen6_ggtt_clear_range;
1425 	ggtt->vm.scratch_range = gen6_ggtt_clear_range;
1426 	ggtt->vm.insert_page = gen6_ggtt_insert_page;
1427 	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
1428 	ggtt->vm.cleanup = gen6_gmch_remove;
1429 
1430 	ggtt->invalidate = gen6_ggtt_invalidate;
1431 
1432 	if (HAS_EDRAM(i915))
1433 		ggtt->vm.pte_encode = iris_pte_encode;
1434 	else if (IS_HASWELL(i915))
1435 		ggtt->vm.pte_encode = hsw_pte_encode;
1436 	else if (IS_VALLEYVIEW(i915))
1437 		ggtt->vm.pte_encode = byt_pte_encode;
1438 	else if (GRAPHICS_VER(i915) >= 7)
1439 		ggtt->vm.pte_encode = ivb_pte_encode;
1440 	else
1441 		ggtt->vm.pte_encode = snb_pte_encode;
1442 
1443 	ggtt->vm.vma_ops.bind_vma    = intel_ggtt_bind_vma;
1444 	ggtt->vm.vma_ops.unbind_vma  = intel_ggtt_unbind_vma;
1445 
1446 	return ggtt_probe_common(ggtt, size);
1447 }
1448 
1449 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
1450 {
1451 	struct drm_i915_private *i915 = gt->i915;
1452 	int ret;
1453 
1454 	ggtt->vm.gt = gt;
1455 	ggtt->vm.i915 = i915;
1456 	ggtt->vm.dma = i915->drm.dev;
1457 	dma_resv_init(&ggtt->vm._resv);
1458 
1459 	if (GRAPHICS_VER(i915) >= 8)
1460 		ret = gen8_gmch_probe(ggtt);
1461 	else if (GRAPHICS_VER(i915) >= 6)
1462 		ret = gen6_gmch_probe(ggtt);
1463 	else
1464 		ret = intel_ggtt_gmch_probe(ggtt);
1465 
1466 	if (ret) {
1467 		dma_resv_fini(&ggtt->vm._resv);
1468 		return ret;
1469 	}
1470 
1471 	if ((ggtt->vm.total - 1) >> 32) {
1472 		drm_err(&i915->drm,
1473 			"We never expected a Global GTT with more than 32bits"
1474 			" of address space! Found %lldM!\n",
1475 			ggtt->vm.total >> 20);
1476 		ggtt->vm.total = 1ULL << 32;
1477 		ggtt->mappable_end =
1478 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
1479 	}
1480 
1481 	if (ggtt->mappable_end > ggtt->vm.total) {
1482 		drm_err(&i915->drm,
1483 			"mappable aperture extends past end of GGTT,"
1484 			" aperture=%pa, total=%llx\n",
1485 			&ggtt->mappable_end, ggtt->vm.total);
1486 		ggtt->mappable_end = ggtt->vm.total;
1487 	}
1488 
1489 	/* GMADR is the PCI mmio aperture into the global GTT. */
1490 	drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20);
1491 	drm_dbg(&i915->drm, "GMADR size = %lluM\n",
1492 		(u64)ggtt->mappable_end >> 20);
1493 	drm_dbg(&i915->drm, "DSM size = %lluM\n",
1494 		(u64)resource_size(&intel_graphics_stolen_res) >> 20);
1495 
1496 	return 0;
1497 }
1498 
1499 /**
1500  * i915_ggtt_probe_hw - Probe GGTT hardware location
1501  * @i915: i915 device
1502  */
1503 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
1504 {
1505 	struct intel_gt *gt;
1506 	int ret, i;
1507 
1508 	for_each_gt(gt, i915, i) {
1509 		ret = intel_gt_assign_ggtt(gt);
1510 		if (ret)
1511 			return ret;
1512 	}
1513 
1514 	ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915));
1515 	if (ret)
1516 		return ret;
1517 
1518 	if (i915_vtd_active(i915))
1519 		drm_info(&i915->drm, "VT-d active for gfx access\n");
1520 
1521 	return 0;
1522 }
1523 
1524 struct i915_ggtt *i915_ggtt_create(struct drm_i915_private *i915)
1525 {
1526 	struct i915_ggtt *ggtt;
1527 
1528 	ggtt = drmm_kzalloc(&i915->drm, sizeof(*ggtt), GFP_KERNEL);
1529 	if (!ggtt)
1530 		return ERR_PTR(-ENOMEM);
1531 
1532 	INIT_LIST_HEAD(&ggtt->gt_list);
1533 
1534 	return ggtt;
1535 }
1536 
1537 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
1538 {
1539 	if (GRAPHICS_VER(i915) < 6)
1540 		return intel_ggtt_gmch_enable_hw(i915);
1541 
1542 	return 0;
1543 }
1544 
1545 /**
1546  * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM
1547  * @vm: The VM to restore the mappings for
1548  *
1549  * Restore the memory mappings for all objects mapped to HW via the GGTT or a
1550  * DPT page table.
1551  *
1552  * Returns %true if restoring the mapping for any object that was in a write
1553  * domain before suspend.
1554  */
1555 bool i915_ggtt_resume_vm(struct i915_address_space *vm)
1556 {
1557 	struct i915_vma *vma;
1558 	bool write_domain_objs = false;
1559 
1560 	drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
1561 
1562 	/* First fill our portion of the GTT with scratch pages */
1563 	vm->clear_range(vm, 0, vm->total);
1564 
1565 	/* clflush objects bound into the GGTT and rebind them. */
1566 	list_for_each_entry(vma, &vm->bound_list, vm_link) {
1567 		struct drm_i915_gem_object *obj = vma->obj;
1568 		unsigned int was_bound =
1569 			atomic_read(&vma->flags) & I915_VMA_BIND_MASK;
1570 
1571 		GEM_BUG_ON(!was_bound);
1572 
1573 		/*
1574 		 * Clear the bound flags of the vma resource to allow
1575 		 * ptes to be repopulated.
1576 		 */
1577 		vma->resource->bound_flags = 0;
1578 		vma->ops->bind_vma(vm, NULL, vma->resource,
1579 				   obj ? obj->pat_index :
1580 					 i915_gem_get_pat_index(vm->i915,
1581 								I915_CACHE_NONE),
1582 				   was_bound);
1583 
1584 		if (obj) { /* only used during resume => exclusive access */
1585 			write_domain_objs |= fetch_and_zero(&obj->write_domain);
1586 			obj->read_domains |= I915_GEM_DOMAIN_GTT;
1587 		}
1588 	}
1589 
1590 	return write_domain_objs;
1591 }
1592 
1593 void i915_ggtt_resume(struct i915_ggtt *ggtt)
1594 {
1595 	struct intel_gt *gt;
1596 	bool flush;
1597 
1598 	list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1599 		intel_gt_check_and_clear_faults(gt);
1600 
1601 	flush = i915_ggtt_resume_vm(&ggtt->vm);
1602 
1603 	if (drm_mm_node_allocated(&ggtt->error_capture))
1604 		ggtt->vm.scratch_range(&ggtt->vm, ggtt->error_capture.start,
1605 				       ggtt->error_capture.size);
1606 
1607 	list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1608 		intel_uc_resume_mappings(&gt->uc);
1609 
1610 	ggtt->invalidate(ggtt);
1611 
1612 	if (flush)
1613 		wbinvd_on_all_cpus();
1614 
1615 	intel_ggtt_restore_fences(ggtt);
1616 }
1617