1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include <linux/agp_backend.h> 7 #include <linux/stop_machine.h> 8 9 #include <asm/set_memory.h> 10 #include <asm/smp.h> 11 12 #include <drm/i915_drm.h> 13 #include <drm/intel-gtt.h> 14 15 #include "gem/i915_gem_lmem.h" 16 17 #include "intel_gt.h" 18 #include "intel_gt_regs.h" 19 #include "i915_drv.h" 20 #include "i915_scatterlist.h" 21 #include "i915_vgpu.h" 22 23 #include "intel_gtt.h" 24 #include "gen8_ppgtt.h" 25 26 static void i915_ggtt_color_adjust(const struct drm_mm_node *node, 27 unsigned long color, 28 u64 *start, 29 u64 *end) 30 { 31 if (i915_node_color_differs(node, color)) 32 *start += I915_GTT_PAGE_SIZE; 33 34 /* 35 * Also leave a space between the unallocated reserved node after the 36 * GTT and any objects within the GTT, i.e. we use the color adjustment 37 * to insert a guard page to prevent prefetches crossing over the 38 * GTT boundary. 39 */ 40 node = list_next_entry(node, node_list); 41 if (node->color != color) 42 *end -= I915_GTT_PAGE_SIZE; 43 } 44 45 static int ggtt_init_hw(struct i915_ggtt *ggtt) 46 { 47 struct drm_i915_private *i915 = ggtt->vm.i915; 48 49 i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT); 50 51 ggtt->vm.is_ggtt = true; 52 53 /* Only VLV supports read-only GGTT mappings */ 54 ggtt->vm.has_read_only = IS_VALLEYVIEW(i915); 55 56 if (!HAS_LLC(i915) && !HAS_PPGTT(i915)) 57 ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust; 58 59 if (ggtt->mappable_end) { 60 if (!io_mapping_init_wc(&ggtt->iomap, 61 ggtt->gmadr.start, 62 ggtt->mappable_end)) { 63 ggtt->vm.cleanup(&ggtt->vm); 64 return -EIO; 65 } 66 67 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, 68 ggtt->mappable_end); 69 } 70 71 intel_ggtt_init_fences(ggtt); 72 73 return 0; 74 } 75 76 /** 77 * i915_ggtt_init_hw - Initialize GGTT hardware 78 * @i915: i915 device 79 */ 80 int i915_ggtt_init_hw(struct drm_i915_private *i915) 81 { 82 int ret; 83 84 /* 85 * Note that we use page colouring to enforce a guard page at the 86 * end of the address space. This is required as the CS may prefetch 87 * beyond the end of the batch buffer, across the page boundary, 88 * and beyond the end of the GTT if we do not provide a guard. 89 */ 90 ret = ggtt_init_hw(&i915->ggtt); 91 if (ret) 92 return ret; 93 94 return 0; 95 } 96 97 /* 98 * Certain Gen5 chipsets require idling the GPU before 99 * unmapping anything from the GTT when VT-d is enabled. 100 */ 101 static bool needs_idle_maps(struct drm_i915_private *i915) 102 { 103 /* 104 * Query intel_iommu to see if we need the workaround. Presumably that 105 * was loaded first. 106 */ 107 if (!intel_vtd_active(i915)) 108 return false; 109 110 if (GRAPHICS_VER(i915) == 5 && IS_MOBILE(i915)) 111 return true; 112 113 if (GRAPHICS_VER(i915) == 12) 114 return true; /* XXX DMAR fault reason 7 */ 115 116 return false; 117 } 118 119 /** 120 * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM 121 * @vm: The VM to suspend the mappings for 122 * 123 * Suspend the memory mappings for all objects mapped to HW via the GGTT or a 124 * DPT page table. 125 */ 126 void i915_ggtt_suspend_vm(struct i915_address_space *vm) 127 { 128 struct i915_vma *vma, *vn; 129 int open; 130 131 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); 132 133 mutex_lock(&vm->mutex); 134 135 /* Skip rewriting PTE on VMA unbind. */ 136 open = atomic_xchg(&vm->open, 0); 137 138 list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) { 139 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 140 i915_vma_wait_for_bind(vma); 141 142 if (i915_vma_is_pinned(vma)) 143 continue; 144 145 if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) { 146 __i915_vma_evict(vma); 147 drm_mm_remove_node(&vma->node); 148 } 149 } 150 151 vm->clear_range(vm, 0, vm->total); 152 153 atomic_set(&vm->open, open); 154 155 mutex_unlock(&vm->mutex); 156 } 157 158 void i915_ggtt_suspend(struct i915_ggtt *ggtt) 159 { 160 i915_ggtt_suspend_vm(&ggtt->vm); 161 ggtt->invalidate(ggtt); 162 163 intel_gt_check_and_clear_faults(ggtt->vm.gt); 164 } 165 166 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt) 167 { 168 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 169 170 spin_lock_irq(&uncore->lock); 171 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 172 intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6); 173 spin_unlock_irq(&uncore->lock); 174 } 175 176 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt) 177 { 178 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 179 180 /* 181 * Note that as an uncached mmio write, this will flush the 182 * WCB of the writes into the GGTT before it triggers the invalidate. 183 */ 184 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 185 } 186 187 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt) 188 { 189 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 190 struct drm_i915_private *i915 = ggtt->vm.i915; 191 192 gen8_ggtt_invalidate(ggtt); 193 194 if (GRAPHICS_VER(i915) >= 12) 195 intel_uncore_write_fw(uncore, GEN12_GUC_TLB_INV_CR, 196 GEN12_GUC_TLB_INV_CR_INVALIDATE); 197 else 198 intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE); 199 } 200 201 static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt) 202 { 203 intel_gtt_chipset_flush(); 204 } 205 206 u64 gen8_ggtt_pte_encode(dma_addr_t addr, 207 enum i915_cache_level level, 208 u32 flags) 209 { 210 gen8_pte_t pte = addr | GEN8_PAGE_PRESENT; 211 212 if (flags & PTE_LM) 213 pte |= GEN12_GGTT_PTE_LM; 214 215 return pte; 216 } 217 218 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) 219 { 220 writeq(pte, addr); 221 } 222 223 static void gen8_ggtt_insert_page(struct i915_address_space *vm, 224 dma_addr_t addr, 225 u64 offset, 226 enum i915_cache_level level, 227 u32 flags) 228 { 229 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 230 gen8_pte_t __iomem *pte = 231 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 232 233 gen8_set_pte(pte, gen8_ggtt_pte_encode(addr, level, flags)); 234 235 ggtt->invalidate(ggtt); 236 } 237 238 static void gen8_ggtt_insert_entries(struct i915_address_space *vm, 239 struct i915_vma *vma, 240 enum i915_cache_level level, 241 u32 flags) 242 { 243 const gen8_pte_t pte_encode = gen8_ggtt_pte_encode(0, level, flags); 244 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 245 gen8_pte_t __iomem *gte; 246 gen8_pte_t __iomem *end; 247 struct sgt_iter iter; 248 dma_addr_t addr; 249 250 /* 251 * Note that we ignore PTE_READ_ONLY here. The caller must be careful 252 * not to allow the user to override access to a read only page. 253 */ 254 255 gte = (gen8_pte_t __iomem *)ggtt->gsm; 256 gte += vma->node.start / I915_GTT_PAGE_SIZE; 257 end = gte + vma->node.size / I915_GTT_PAGE_SIZE; 258 259 for_each_sgt_daddr(addr, iter, vma->pages) 260 gen8_set_pte(gte++, pte_encode | addr); 261 GEM_BUG_ON(gte > end); 262 263 /* Fill the allocated but "unused" space beyond the end of the buffer */ 264 while (gte < end) 265 gen8_set_pte(gte++, vm->scratch[0]->encode); 266 267 /* 268 * We want to flush the TLBs only after we're certain all the PTE 269 * updates have finished. 270 */ 271 ggtt->invalidate(ggtt); 272 } 273 274 static void gen6_ggtt_insert_page(struct i915_address_space *vm, 275 dma_addr_t addr, 276 u64 offset, 277 enum i915_cache_level level, 278 u32 flags) 279 { 280 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 281 gen6_pte_t __iomem *pte = 282 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 283 284 iowrite32(vm->pte_encode(addr, level, flags), pte); 285 286 ggtt->invalidate(ggtt); 287 } 288 289 /* 290 * Binds an object into the global gtt with the specified cache level. 291 * The object will be accessible to the GPU via commands whose operands 292 * reference offsets within the global GTT as well as accessible by the GPU 293 * through the GMADR mapped BAR (i915->mm.gtt->gtt). 294 */ 295 static void gen6_ggtt_insert_entries(struct i915_address_space *vm, 296 struct i915_vma *vma, 297 enum i915_cache_level level, 298 u32 flags) 299 { 300 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 301 gen6_pte_t __iomem *gte; 302 gen6_pte_t __iomem *end; 303 struct sgt_iter iter; 304 dma_addr_t addr; 305 306 gte = (gen6_pte_t __iomem *)ggtt->gsm; 307 gte += vma->node.start / I915_GTT_PAGE_SIZE; 308 end = gte + vma->node.size / I915_GTT_PAGE_SIZE; 309 310 for_each_sgt_daddr(addr, iter, vma->pages) 311 iowrite32(vm->pte_encode(addr, level, flags), gte++); 312 GEM_BUG_ON(gte > end); 313 314 /* Fill the allocated but "unused" space beyond the end of the buffer */ 315 while (gte < end) 316 iowrite32(vm->scratch[0]->encode, gte++); 317 318 /* 319 * We want to flush the TLBs only after we're certain all the PTE 320 * updates have finished. 321 */ 322 ggtt->invalidate(ggtt); 323 } 324 325 static void nop_clear_range(struct i915_address_space *vm, 326 u64 start, u64 length) 327 { 328 } 329 330 static void gen8_ggtt_clear_range(struct i915_address_space *vm, 331 u64 start, u64 length) 332 { 333 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 334 unsigned int first_entry = start / I915_GTT_PAGE_SIZE; 335 unsigned int num_entries = length / I915_GTT_PAGE_SIZE; 336 const gen8_pte_t scratch_pte = vm->scratch[0]->encode; 337 gen8_pte_t __iomem *gtt_base = 338 (gen8_pte_t __iomem *)ggtt->gsm + first_entry; 339 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 340 int i; 341 342 if (WARN(num_entries > max_entries, 343 "First entry = %d; Num entries = %d (max=%d)\n", 344 first_entry, num_entries, max_entries)) 345 num_entries = max_entries; 346 347 for (i = 0; i < num_entries; i++) 348 gen8_set_pte(>t_base[i], scratch_pte); 349 } 350 351 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm) 352 { 353 /* 354 * Make sure the internal GAM fifo has been cleared of all GTT 355 * writes before exiting stop_machine(). This guarantees that 356 * any aperture accesses waiting to start in another process 357 * cannot back up behind the GTT writes causing a hang. 358 * The register can be any arbitrary GAM register. 359 */ 360 intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6); 361 } 362 363 struct insert_page { 364 struct i915_address_space *vm; 365 dma_addr_t addr; 366 u64 offset; 367 enum i915_cache_level level; 368 }; 369 370 static int bxt_vtd_ggtt_insert_page__cb(void *_arg) 371 { 372 struct insert_page *arg = _arg; 373 374 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0); 375 bxt_vtd_ggtt_wa(arg->vm); 376 377 return 0; 378 } 379 380 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm, 381 dma_addr_t addr, 382 u64 offset, 383 enum i915_cache_level level, 384 u32 unused) 385 { 386 struct insert_page arg = { vm, addr, offset, level }; 387 388 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL); 389 } 390 391 struct insert_entries { 392 struct i915_address_space *vm; 393 struct i915_vma *vma; 394 enum i915_cache_level level; 395 u32 flags; 396 }; 397 398 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg) 399 { 400 struct insert_entries *arg = _arg; 401 402 gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags); 403 bxt_vtd_ggtt_wa(arg->vm); 404 405 return 0; 406 } 407 408 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm, 409 struct i915_vma *vma, 410 enum i915_cache_level level, 411 u32 flags) 412 { 413 struct insert_entries arg = { vm, vma, level, flags }; 414 415 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL); 416 } 417 418 static void gen6_ggtt_clear_range(struct i915_address_space *vm, 419 u64 start, u64 length) 420 { 421 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 422 unsigned int first_entry = start / I915_GTT_PAGE_SIZE; 423 unsigned int num_entries = length / I915_GTT_PAGE_SIZE; 424 gen6_pte_t scratch_pte, __iomem *gtt_base = 425 (gen6_pte_t __iomem *)ggtt->gsm + first_entry; 426 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 427 int i; 428 429 if (WARN(num_entries > max_entries, 430 "First entry = %d; Num entries = %d (max=%d)\n", 431 first_entry, num_entries, max_entries)) 432 num_entries = max_entries; 433 434 scratch_pte = vm->scratch[0]->encode; 435 for (i = 0; i < num_entries; i++) 436 iowrite32(scratch_pte, >t_base[i]); 437 } 438 439 static void i915_ggtt_insert_page(struct i915_address_space *vm, 440 dma_addr_t addr, 441 u64 offset, 442 enum i915_cache_level cache_level, 443 u32 unused) 444 { 445 unsigned int flags = (cache_level == I915_CACHE_NONE) ? 446 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; 447 448 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags); 449 } 450 451 static void i915_ggtt_insert_entries(struct i915_address_space *vm, 452 struct i915_vma *vma, 453 enum i915_cache_level cache_level, 454 u32 unused) 455 { 456 unsigned int flags = (cache_level == I915_CACHE_NONE) ? 457 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; 458 459 intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT, 460 flags); 461 } 462 463 static void i915_ggtt_clear_range(struct i915_address_space *vm, 464 u64 start, u64 length) 465 { 466 intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT); 467 } 468 469 static void ggtt_bind_vma(struct i915_address_space *vm, 470 struct i915_vm_pt_stash *stash, 471 struct i915_vma *vma, 472 enum i915_cache_level cache_level, 473 u32 flags) 474 { 475 struct drm_i915_gem_object *obj = vma->obj; 476 u32 pte_flags; 477 478 if (i915_vma_is_bound(vma, ~flags & I915_VMA_BIND_MASK)) 479 return; 480 481 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */ 482 pte_flags = 0; 483 if (i915_gem_object_is_readonly(obj)) 484 pte_flags |= PTE_READ_ONLY; 485 if (i915_gem_object_is_lmem(obj)) 486 pte_flags |= PTE_LM; 487 488 vm->insert_entries(vm, vma, cache_level, pte_flags); 489 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; 490 } 491 492 static void ggtt_unbind_vma(struct i915_address_space *vm, struct i915_vma *vma) 493 { 494 vm->clear_range(vm, vma->node.start, vma->size); 495 } 496 497 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt) 498 { 499 u64 size; 500 int ret; 501 502 if (!intel_uc_uses_guc(&ggtt->vm.gt->uc)) 503 return 0; 504 505 GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP); 506 size = ggtt->vm.total - GUC_GGTT_TOP; 507 508 ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size, 509 GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE, 510 PIN_NOEVICT); 511 if (ret) 512 drm_dbg(&ggtt->vm.i915->drm, 513 "Failed to reserve top of GGTT for GuC\n"); 514 515 return ret; 516 } 517 518 static void ggtt_release_guc_top(struct i915_ggtt *ggtt) 519 { 520 if (drm_mm_node_allocated(&ggtt->uc_fw)) 521 drm_mm_remove_node(&ggtt->uc_fw); 522 } 523 524 static void cleanup_init_ggtt(struct i915_ggtt *ggtt) 525 { 526 ggtt_release_guc_top(ggtt); 527 if (drm_mm_node_allocated(&ggtt->error_capture)) 528 drm_mm_remove_node(&ggtt->error_capture); 529 mutex_destroy(&ggtt->error_mutex); 530 } 531 532 static int init_ggtt(struct i915_ggtt *ggtt) 533 { 534 /* 535 * Let GEM Manage all of the aperture. 536 * 537 * However, leave one page at the end still bound to the scratch page. 538 * There are a number of places where the hardware apparently prefetches 539 * past the end of the object, and we've seen multiple hangs with the 540 * GPU head pointer stuck in a batchbuffer bound at the last page of the 541 * aperture. One page should be enough to keep any prefetching inside 542 * of the aperture. 543 */ 544 unsigned long hole_start, hole_end; 545 struct drm_mm_node *entry; 546 int ret; 547 548 /* 549 * GuC requires all resources that we're sharing with it to be placed in 550 * non-WOPCM memory. If GuC is not present or not in use we still need a 551 * small bias as ring wraparound at offset 0 sometimes hangs. No idea 552 * why. 553 */ 554 ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE, 555 intel_wopcm_guc_size(&ggtt->vm.i915->wopcm)); 556 557 ret = intel_vgt_balloon(ggtt); 558 if (ret) 559 return ret; 560 561 mutex_init(&ggtt->error_mutex); 562 if (ggtt->mappable_end) { 563 /* 564 * Reserve a mappable slot for our lockless error capture. 565 * 566 * We strongly prefer taking address 0x0 in order to protect 567 * other critical buffers against accidental overwrites, 568 * as writing to address 0 is a very common mistake. 569 * 570 * Since 0 may already be in use by the system (e.g. the BIOS 571 * framebuffer), we let the reservation fail quietly and hope 572 * 0 remains reserved always. 573 * 574 * If we fail to reserve 0, and then fail to find any space 575 * for an error-capture, remain silent. We can afford not 576 * to reserve an error_capture node as we have fallback 577 * paths, and we trust that 0 will remain reserved. However, 578 * the only likely reason for failure to insert is a driver 579 * bug, which we expect to cause other failures... 580 */ 581 ggtt->error_capture.size = I915_GTT_PAGE_SIZE; 582 ggtt->error_capture.color = I915_COLOR_UNEVICTABLE; 583 if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture)) 584 drm_mm_insert_node_in_range(&ggtt->vm.mm, 585 &ggtt->error_capture, 586 ggtt->error_capture.size, 0, 587 ggtt->error_capture.color, 588 0, ggtt->mappable_end, 589 DRM_MM_INSERT_LOW); 590 } 591 if (drm_mm_node_allocated(&ggtt->error_capture)) 592 drm_dbg(&ggtt->vm.i915->drm, 593 "Reserved GGTT:[%llx, %llx] for use by error capture\n", 594 ggtt->error_capture.start, 595 ggtt->error_capture.start + ggtt->error_capture.size); 596 597 /* 598 * The upper portion of the GuC address space has a sizeable hole 599 * (several MB) that is inaccessible by GuC. Reserve this range within 600 * GGTT as it can comfortably hold GuC/HuC firmware images. 601 */ 602 ret = ggtt_reserve_guc_top(ggtt); 603 if (ret) 604 goto err; 605 606 /* Clear any non-preallocated blocks */ 607 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) { 608 drm_dbg(&ggtt->vm.i915->drm, 609 "clearing unused GTT space: [%lx, %lx]\n", 610 hole_start, hole_end); 611 ggtt->vm.clear_range(&ggtt->vm, hole_start, 612 hole_end - hole_start); 613 } 614 615 /* And finally clear the reserved guard page */ 616 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE); 617 618 return 0; 619 620 err: 621 cleanup_init_ggtt(ggtt); 622 return ret; 623 } 624 625 static void aliasing_gtt_bind_vma(struct i915_address_space *vm, 626 struct i915_vm_pt_stash *stash, 627 struct i915_vma *vma, 628 enum i915_cache_level cache_level, 629 u32 flags) 630 { 631 u32 pte_flags; 632 633 /* Currently applicable only to VLV */ 634 pte_flags = 0; 635 if (i915_gem_object_is_readonly(vma->obj)) 636 pte_flags |= PTE_READ_ONLY; 637 638 if (flags & I915_VMA_LOCAL_BIND) 639 ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm, 640 stash, vma, cache_level, flags); 641 642 if (flags & I915_VMA_GLOBAL_BIND) 643 vm->insert_entries(vm, vma, cache_level, pte_flags); 644 } 645 646 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm, 647 struct i915_vma *vma) 648 { 649 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) 650 vm->clear_range(vm, vma->node.start, vma->size); 651 652 if (i915_vma_is_bound(vma, I915_VMA_LOCAL_BIND)) 653 ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma); 654 } 655 656 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt) 657 { 658 struct i915_vm_pt_stash stash = {}; 659 struct i915_ppgtt *ppgtt; 660 int err; 661 662 ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0); 663 if (IS_ERR(ppgtt)) 664 return PTR_ERR(ppgtt); 665 666 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) { 667 err = -ENODEV; 668 goto err_ppgtt; 669 } 670 671 err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total); 672 if (err) 673 goto err_ppgtt; 674 675 i915_gem_object_lock(ppgtt->vm.scratch[0], NULL); 676 err = i915_vm_map_pt_stash(&ppgtt->vm, &stash); 677 i915_gem_object_unlock(ppgtt->vm.scratch[0]); 678 if (err) 679 goto err_stash; 680 681 /* 682 * Note we only pre-allocate as far as the end of the global 683 * GTT. On 48b / 4-level page-tables, the difference is very, 684 * very significant! We have to preallocate as GVT/vgpu does 685 * not like the page directory disappearing. 686 */ 687 ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total); 688 689 ggtt->alias = ppgtt; 690 ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags; 691 692 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma); 693 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma; 694 695 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma); 696 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma; 697 698 i915_vm_free_pt_stash(&ppgtt->vm, &stash); 699 return 0; 700 701 err_stash: 702 i915_vm_free_pt_stash(&ppgtt->vm, &stash); 703 err_ppgtt: 704 i915_vm_put(&ppgtt->vm); 705 return err; 706 } 707 708 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt) 709 { 710 struct i915_ppgtt *ppgtt; 711 712 ppgtt = fetch_and_zero(&ggtt->alias); 713 if (!ppgtt) 714 return; 715 716 i915_vm_put(&ppgtt->vm); 717 718 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; 719 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; 720 } 721 722 int i915_init_ggtt(struct drm_i915_private *i915) 723 { 724 int ret; 725 726 ret = init_ggtt(&i915->ggtt); 727 if (ret) 728 return ret; 729 730 if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) { 731 ret = init_aliasing_ppgtt(&i915->ggtt); 732 if (ret) 733 cleanup_init_ggtt(&i915->ggtt); 734 } 735 736 return 0; 737 } 738 739 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt) 740 { 741 struct i915_vma *vma, *vn; 742 743 atomic_set(&ggtt->vm.open, 0); 744 745 flush_workqueue(ggtt->vm.i915->wq); 746 747 mutex_lock(&ggtt->vm.mutex); 748 749 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) 750 WARN_ON(__i915_vma_unbind(vma)); 751 752 if (drm_mm_node_allocated(&ggtt->error_capture)) 753 drm_mm_remove_node(&ggtt->error_capture); 754 mutex_destroy(&ggtt->error_mutex); 755 756 ggtt_release_guc_top(ggtt); 757 intel_vgt_deballoon(ggtt); 758 759 ggtt->vm.cleanup(&ggtt->vm); 760 761 mutex_unlock(&ggtt->vm.mutex); 762 i915_address_space_fini(&ggtt->vm); 763 764 arch_phys_wc_del(ggtt->mtrr); 765 766 if (ggtt->iomap.size) 767 io_mapping_fini(&ggtt->iomap); 768 } 769 770 /** 771 * i915_ggtt_driver_release - Clean up GGTT hardware initialization 772 * @i915: i915 device 773 */ 774 void i915_ggtt_driver_release(struct drm_i915_private *i915) 775 { 776 struct i915_ggtt *ggtt = &i915->ggtt; 777 778 fini_aliasing_ppgtt(ggtt); 779 780 intel_ggtt_fini_fences(ggtt); 781 ggtt_cleanup_hw(ggtt); 782 } 783 784 /** 785 * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after 786 * all free objects have been drained. 787 * @i915: i915 device 788 */ 789 void i915_ggtt_driver_late_release(struct drm_i915_private *i915) 790 { 791 struct i915_ggtt *ggtt = &i915->ggtt; 792 793 GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1); 794 dma_resv_fini(&ggtt->vm._resv); 795 } 796 797 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) 798 { 799 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; 800 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; 801 return snb_gmch_ctl << 20; 802 } 803 804 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) 805 { 806 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; 807 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; 808 if (bdw_gmch_ctl) 809 bdw_gmch_ctl = 1 << bdw_gmch_ctl; 810 811 #ifdef CONFIG_X86_32 812 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */ 813 if (bdw_gmch_ctl > 4) 814 bdw_gmch_ctl = 4; 815 #endif 816 817 return bdw_gmch_ctl << 20; 818 } 819 820 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) 821 { 822 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; 823 gmch_ctrl &= SNB_GMCH_GGMS_MASK; 824 825 if (gmch_ctrl) 826 return 1 << (20 + gmch_ctrl); 827 828 return 0; 829 } 830 831 static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915) 832 { 833 /* 834 * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset 835 * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset 836 */ 837 GEM_BUG_ON(GRAPHICS_VER(i915) < 6); 838 return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M; 839 } 840 841 static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915) 842 { 843 return gen6_gttmmadr_size(i915) / 2; 844 } 845 846 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) 847 { 848 struct drm_i915_private *i915 = ggtt->vm.i915; 849 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 850 phys_addr_t phys_addr; 851 u32 pte_flags; 852 int ret; 853 854 GEM_WARN_ON(pci_resource_len(pdev, 0) != gen6_gttmmadr_size(i915)); 855 phys_addr = pci_resource_start(pdev, 0) + gen6_gttadr_offset(i915); 856 857 /* 858 * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range 859 * will be dropped. For WC mappings in general we have 64 byte burst 860 * writes when the WC buffer is flushed, so we can't use it, but have to 861 * resort to an uncached mapping. The WC issue is easily caught by the 862 * readback check when writing GTT PTE entries. 863 */ 864 if (IS_GEN9_LP(i915) || GRAPHICS_VER(i915) >= 11) 865 ggtt->gsm = ioremap(phys_addr, size); 866 else 867 ggtt->gsm = ioremap_wc(phys_addr, size); 868 if (!ggtt->gsm) { 869 drm_err(&i915->drm, "Failed to map the ggtt page table\n"); 870 return -ENOMEM; 871 } 872 873 kref_init(&ggtt->vm.resv_ref); 874 ret = setup_scratch_page(&ggtt->vm); 875 if (ret) { 876 drm_err(&i915->drm, "Scratch setup failed\n"); 877 /* iounmap will also get called at remove, but meh */ 878 iounmap(ggtt->gsm); 879 return ret; 880 } 881 882 pte_flags = 0; 883 if (i915_gem_object_is_lmem(ggtt->vm.scratch[0])) 884 pte_flags |= PTE_LM; 885 886 ggtt->vm.scratch[0]->encode = 887 ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]), 888 I915_CACHE_NONE, pte_flags); 889 890 return 0; 891 } 892 893 static void gen6_gmch_remove(struct i915_address_space *vm) 894 { 895 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 896 897 iounmap(ggtt->gsm); 898 free_scratch(vm); 899 } 900 901 static struct resource pci_resource(struct pci_dev *pdev, int bar) 902 { 903 return (struct resource)DEFINE_RES_MEM(pci_resource_start(pdev, bar), 904 pci_resource_len(pdev, bar)); 905 } 906 907 static int gen8_gmch_probe(struct i915_ggtt *ggtt) 908 { 909 struct drm_i915_private *i915 = ggtt->vm.i915; 910 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 911 unsigned int size; 912 u16 snb_gmch_ctl; 913 914 /* TODO: We're not aware of mappable constraints on gen8 yet */ 915 if (!HAS_LMEM(i915)) { 916 ggtt->gmadr = pci_resource(pdev, 2); 917 ggtt->mappable_end = resource_size(&ggtt->gmadr); 918 } 919 920 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 921 if (IS_CHERRYVIEW(i915)) 922 size = chv_get_total_gtt_size(snb_gmch_ctl); 923 else 924 size = gen8_get_total_gtt_size(snb_gmch_ctl); 925 926 ggtt->vm.alloc_pt_dma = alloc_pt_dma; 927 ggtt->vm.alloc_scratch_dma = alloc_pt_dma; 928 ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY; 929 930 ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE; 931 ggtt->vm.cleanup = gen6_gmch_remove; 932 ggtt->vm.insert_page = gen8_ggtt_insert_page; 933 ggtt->vm.clear_range = nop_clear_range; 934 if (intel_scanout_needs_vtd_wa(i915)) 935 ggtt->vm.clear_range = gen8_ggtt_clear_range; 936 937 ggtt->vm.insert_entries = gen8_ggtt_insert_entries; 938 939 /* 940 * Serialize GTT updates with aperture access on BXT if VT-d is on, 941 * and always on CHV. 942 */ 943 if (intel_vm_no_concurrent_access_wa(i915)) { 944 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL; 945 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL; 946 ggtt->vm.bind_async_flags = 947 I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 948 } 949 950 ggtt->invalidate = gen8_ggtt_invalidate; 951 952 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; 953 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; 954 955 ggtt->vm.pte_encode = gen8_ggtt_pte_encode; 956 957 setup_private_pat(ggtt->vm.gt->uncore); 958 959 return ggtt_probe_common(ggtt, size); 960 } 961 962 static u64 snb_pte_encode(dma_addr_t addr, 963 enum i915_cache_level level, 964 u32 flags) 965 { 966 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 967 968 switch (level) { 969 case I915_CACHE_L3_LLC: 970 case I915_CACHE_LLC: 971 pte |= GEN6_PTE_CACHE_LLC; 972 break; 973 case I915_CACHE_NONE: 974 pte |= GEN6_PTE_UNCACHED; 975 break; 976 default: 977 MISSING_CASE(level); 978 } 979 980 return pte; 981 } 982 983 static u64 ivb_pte_encode(dma_addr_t addr, 984 enum i915_cache_level level, 985 u32 flags) 986 { 987 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 988 989 switch (level) { 990 case I915_CACHE_L3_LLC: 991 pte |= GEN7_PTE_CACHE_L3_LLC; 992 break; 993 case I915_CACHE_LLC: 994 pte |= GEN6_PTE_CACHE_LLC; 995 break; 996 case I915_CACHE_NONE: 997 pte |= GEN6_PTE_UNCACHED; 998 break; 999 default: 1000 MISSING_CASE(level); 1001 } 1002 1003 return pte; 1004 } 1005 1006 static u64 byt_pte_encode(dma_addr_t addr, 1007 enum i915_cache_level level, 1008 u32 flags) 1009 { 1010 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1011 1012 if (!(flags & PTE_READ_ONLY)) 1013 pte |= BYT_PTE_WRITEABLE; 1014 1015 if (level != I915_CACHE_NONE) 1016 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; 1017 1018 return pte; 1019 } 1020 1021 static u64 hsw_pte_encode(dma_addr_t addr, 1022 enum i915_cache_level level, 1023 u32 flags) 1024 { 1025 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1026 1027 if (level != I915_CACHE_NONE) 1028 pte |= HSW_WB_LLC_AGE3; 1029 1030 return pte; 1031 } 1032 1033 static u64 iris_pte_encode(dma_addr_t addr, 1034 enum i915_cache_level level, 1035 u32 flags) 1036 { 1037 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1038 1039 switch (level) { 1040 case I915_CACHE_NONE: 1041 break; 1042 case I915_CACHE_WT: 1043 pte |= HSW_WT_ELLC_LLC_AGE3; 1044 break; 1045 default: 1046 pte |= HSW_WB_ELLC_LLC_AGE3; 1047 break; 1048 } 1049 1050 return pte; 1051 } 1052 1053 static int gen6_gmch_probe(struct i915_ggtt *ggtt) 1054 { 1055 struct drm_i915_private *i915 = ggtt->vm.i915; 1056 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 1057 unsigned int size; 1058 u16 snb_gmch_ctl; 1059 1060 ggtt->gmadr = pci_resource(pdev, 2); 1061 ggtt->mappable_end = resource_size(&ggtt->gmadr); 1062 1063 /* 1064 * 64/512MB is the current min/max we actually know of, but this is 1065 * just a coarse sanity check. 1066 */ 1067 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) { 1068 drm_err(&i915->drm, "Unknown GMADR size (%pa)\n", 1069 &ggtt->mappable_end); 1070 return -ENXIO; 1071 } 1072 1073 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 1074 1075 size = gen6_get_total_gtt_size(snb_gmch_ctl); 1076 ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE; 1077 1078 ggtt->vm.alloc_pt_dma = alloc_pt_dma; 1079 ggtt->vm.alloc_scratch_dma = alloc_pt_dma; 1080 1081 ggtt->vm.clear_range = nop_clear_range; 1082 if (!HAS_FULL_PPGTT(i915) || intel_scanout_needs_vtd_wa(i915)) 1083 ggtt->vm.clear_range = gen6_ggtt_clear_range; 1084 ggtt->vm.insert_page = gen6_ggtt_insert_page; 1085 ggtt->vm.insert_entries = gen6_ggtt_insert_entries; 1086 ggtt->vm.cleanup = gen6_gmch_remove; 1087 1088 ggtt->invalidate = gen6_ggtt_invalidate; 1089 1090 if (HAS_EDRAM(i915)) 1091 ggtt->vm.pte_encode = iris_pte_encode; 1092 else if (IS_HASWELL(i915)) 1093 ggtt->vm.pte_encode = hsw_pte_encode; 1094 else if (IS_VALLEYVIEW(i915)) 1095 ggtt->vm.pte_encode = byt_pte_encode; 1096 else if (GRAPHICS_VER(i915) >= 7) 1097 ggtt->vm.pte_encode = ivb_pte_encode; 1098 else 1099 ggtt->vm.pte_encode = snb_pte_encode; 1100 1101 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; 1102 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; 1103 1104 return ggtt_probe_common(ggtt, size); 1105 } 1106 1107 static void i915_gmch_remove(struct i915_address_space *vm) 1108 { 1109 intel_gmch_remove(); 1110 } 1111 1112 static int i915_gmch_probe(struct i915_ggtt *ggtt) 1113 { 1114 struct drm_i915_private *i915 = ggtt->vm.i915; 1115 phys_addr_t gmadr_base; 1116 int ret; 1117 1118 ret = intel_gmch_probe(i915->bridge_dev, to_pci_dev(i915->drm.dev), NULL); 1119 if (!ret) { 1120 drm_err(&i915->drm, "failed to set up gmch\n"); 1121 return -EIO; 1122 } 1123 1124 intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end); 1125 1126 ggtt->gmadr = 1127 (struct resource)DEFINE_RES_MEM(gmadr_base, ggtt->mappable_end); 1128 1129 ggtt->vm.alloc_pt_dma = alloc_pt_dma; 1130 ggtt->vm.alloc_scratch_dma = alloc_pt_dma; 1131 1132 if (needs_idle_maps(i915)) { 1133 drm_notice(&i915->drm, 1134 "Flushing DMA requests before IOMMU unmaps; performance may be degraded\n"); 1135 ggtt->do_idle_maps = true; 1136 } 1137 1138 ggtt->vm.insert_page = i915_ggtt_insert_page; 1139 ggtt->vm.insert_entries = i915_ggtt_insert_entries; 1140 ggtt->vm.clear_range = i915_ggtt_clear_range; 1141 ggtt->vm.cleanup = i915_gmch_remove; 1142 1143 ggtt->invalidate = gmch_ggtt_invalidate; 1144 1145 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; 1146 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; 1147 1148 if (unlikely(ggtt->do_idle_maps)) 1149 drm_notice(&i915->drm, 1150 "Applying Ironlake quirks for intel_iommu\n"); 1151 1152 return 0; 1153 } 1154 1155 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt) 1156 { 1157 struct drm_i915_private *i915 = gt->i915; 1158 int ret; 1159 1160 ggtt->vm.gt = gt; 1161 ggtt->vm.i915 = i915; 1162 ggtt->vm.dma = i915->drm.dev; 1163 dma_resv_init(&ggtt->vm._resv); 1164 1165 if (GRAPHICS_VER(i915) <= 5) 1166 ret = i915_gmch_probe(ggtt); 1167 else if (GRAPHICS_VER(i915) < 8) 1168 ret = gen6_gmch_probe(ggtt); 1169 else 1170 ret = gen8_gmch_probe(ggtt); 1171 if (ret) { 1172 dma_resv_fini(&ggtt->vm._resv); 1173 return ret; 1174 } 1175 1176 if ((ggtt->vm.total - 1) >> 32) { 1177 drm_err(&i915->drm, 1178 "We never expected a Global GTT with more than 32bits" 1179 " of address space! Found %lldM!\n", 1180 ggtt->vm.total >> 20); 1181 ggtt->vm.total = 1ULL << 32; 1182 ggtt->mappable_end = 1183 min_t(u64, ggtt->mappable_end, ggtt->vm.total); 1184 } 1185 1186 if (ggtt->mappable_end > ggtt->vm.total) { 1187 drm_err(&i915->drm, 1188 "mappable aperture extends past end of GGTT," 1189 " aperture=%pa, total=%llx\n", 1190 &ggtt->mappable_end, ggtt->vm.total); 1191 ggtt->mappable_end = ggtt->vm.total; 1192 } 1193 1194 /* GMADR is the PCI mmio aperture into the global GTT. */ 1195 drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20); 1196 drm_dbg(&i915->drm, "GMADR size = %lluM\n", 1197 (u64)ggtt->mappable_end >> 20); 1198 drm_dbg(&i915->drm, "DSM size = %lluM\n", 1199 (u64)resource_size(&intel_graphics_stolen_res) >> 20); 1200 1201 return 0; 1202 } 1203 1204 /** 1205 * i915_ggtt_probe_hw - Probe GGTT hardware location 1206 * @i915: i915 device 1207 */ 1208 int i915_ggtt_probe_hw(struct drm_i915_private *i915) 1209 { 1210 int ret; 1211 1212 ret = ggtt_probe_hw(&i915->ggtt, to_gt(i915)); 1213 if (ret) 1214 return ret; 1215 1216 if (intel_vtd_active(i915)) 1217 drm_info(&i915->drm, "VT-d active for gfx access\n"); 1218 1219 return 0; 1220 } 1221 1222 int i915_ggtt_enable_hw(struct drm_i915_private *i915) 1223 { 1224 if (GRAPHICS_VER(i915) < 6 && !intel_enable_gtt()) 1225 return -EIO; 1226 1227 return 0; 1228 } 1229 1230 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt) 1231 { 1232 GEM_BUG_ON(ggtt->invalidate != gen8_ggtt_invalidate); 1233 1234 ggtt->invalidate = guc_ggtt_invalidate; 1235 1236 ggtt->invalidate(ggtt); 1237 } 1238 1239 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt) 1240 { 1241 /* XXX Temporary pardon for error unload */ 1242 if (ggtt->invalidate == gen8_ggtt_invalidate) 1243 return; 1244 1245 /* We should only be called after i915_ggtt_enable_guc() */ 1246 GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate); 1247 1248 ggtt->invalidate = gen8_ggtt_invalidate; 1249 1250 ggtt->invalidate(ggtt); 1251 } 1252 1253 /** 1254 * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM 1255 * @vm: The VM to restore the mappings for 1256 * 1257 * Restore the memory mappings for all objects mapped to HW via the GGTT or a 1258 * DPT page table. 1259 * 1260 * Returns %true if restoring the mapping for any object that was in a write 1261 * domain before suspend. 1262 */ 1263 bool i915_ggtt_resume_vm(struct i915_address_space *vm) 1264 { 1265 struct i915_vma *vma; 1266 bool write_domain_objs = false; 1267 int open; 1268 1269 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); 1270 1271 /* First fill our portion of the GTT with scratch pages */ 1272 vm->clear_range(vm, 0, vm->total); 1273 1274 /* Skip rewriting PTE on VMA unbind. */ 1275 open = atomic_xchg(&vm->open, 0); 1276 1277 /* clflush objects bound into the GGTT and rebind them. */ 1278 list_for_each_entry(vma, &vm->bound_list, vm_link) { 1279 struct drm_i915_gem_object *obj = vma->obj; 1280 unsigned int was_bound = 1281 atomic_read(&vma->flags) & I915_VMA_BIND_MASK; 1282 1283 GEM_BUG_ON(!was_bound); 1284 vma->ops->bind_vma(vm, NULL, vma, 1285 obj ? obj->cache_level : 0, 1286 was_bound); 1287 if (obj) { /* only used during resume => exclusive access */ 1288 write_domain_objs |= fetch_and_zero(&obj->write_domain); 1289 obj->read_domains |= I915_GEM_DOMAIN_GTT; 1290 } 1291 } 1292 1293 atomic_set(&vm->open, open); 1294 1295 return write_domain_objs; 1296 } 1297 1298 void i915_ggtt_resume(struct i915_ggtt *ggtt) 1299 { 1300 bool flush; 1301 1302 intel_gt_check_and_clear_faults(ggtt->vm.gt); 1303 1304 flush = i915_ggtt_resume_vm(&ggtt->vm); 1305 1306 ggtt->invalidate(ggtt); 1307 1308 if (flush) 1309 wbinvd_on_all_cpus(); 1310 1311 if (GRAPHICS_VER(ggtt->vm.i915) >= 8) 1312 setup_private_pat(ggtt->vm.gt->uncore); 1313 1314 intel_ggtt_restore_fences(ggtt); 1315 } 1316