xref: /linux/drivers/gpu/drm/i915/gt/intel_ggtt.c (revision b30d7a77c53ec04a6d94683d7680ec406b7f3ac8)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <asm/set_memory.h>
7 #include <asm/smp.h>
8 #include <linux/types.h>
9 #include <linux/stop_machine.h>
10 
11 #include <drm/drm_managed.h>
12 #include <drm/i915_drm.h>
13 #include <drm/intel-gtt.h>
14 
15 #include "display/intel_display.h"
16 #include "gem/i915_gem_lmem.h"
17 
18 #include "intel_ggtt_gmch.h"
19 #include "intel_gt.h"
20 #include "intel_gt_regs.h"
21 #include "intel_pci_config.h"
22 #include "i915_drv.h"
23 #include "i915_pci.h"
24 #include "i915_scatterlist.h"
25 #include "i915_utils.h"
26 #include "i915_vgpu.h"
27 
28 #include "intel_gtt.h"
29 #include "gen8_ppgtt.h"
30 
31 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
32 				   unsigned long color,
33 				   u64 *start,
34 				   u64 *end)
35 {
36 	if (i915_node_color_differs(node, color))
37 		*start += I915_GTT_PAGE_SIZE;
38 
39 	/*
40 	 * Also leave a space between the unallocated reserved node after the
41 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
42 	 * to insert a guard page to prevent prefetches crossing over the
43 	 * GTT boundary.
44 	 */
45 	node = list_next_entry(node, node_list);
46 	if (node->color != color)
47 		*end -= I915_GTT_PAGE_SIZE;
48 }
49 
50 static int ggtt_init_hw(struct i915_ggtt *ggtt)
51 {
52 	struct drm_i915_private *i915 = ggtt->vm.i915;
53 
54 	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
55 
56 	ggtt->vm.is_ggtt = true;
57 
58 	/* Only VLV supports read-only GGTT mappings */
59 	ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
60 
61 	if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
62 		ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
63 
64 	if (ggtt->mappable_end) {
65 		if (!io_mapping_init_wc(&ggtt->iomap,
66 					ggtt->gmadr.start,
67 					ggtt->mappable_end)) {
68 			ggtt->vm.cleanup(&ggtt->vm);
69 			return -EIO;
70 		}
71 
72 		ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
73 					      ggtt->mappable_end);
74 	}
75 
76 	intel_ggtt_init_fences(ggtt);
77 
78 	return 0;
79 }
80 
81 /**
82  * i915_ggtt_init_hw - Initialize GGTT hardware
83  * @i915: i915 device
84  */
85 int i915_ggtt_init_hw(struct drm_i915_private *i915)
86 {
87 	int ret;
88 
89 	/*
90 	 * Note that we use page colouring to enforce a guard page at the
91 	 * end of the address space. This is required as the CS may prefetch
92 	 * beyond the end of the batch buffer, across the page boundary,
93 	 * and beyond the end of the GTT if we do not provide a guard.
94 	 */
95 	ret = ggtt_init_hw(to_gt(i915)->ggtt);
96 	if (ret)
97 		return ret;
98 
99 	return 0;
100 }
101 
102 /**
103  * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM
104  * @vm: The VM to suspend the mappings for
105  *
106  * Suspend the memory mappings for all objects mapped to HW via the GGTT or a
107  * DPT page table.
108  */
109 void i915_ggtt_suspend_vm(struct i915_address_space *vm)
110 {
111 	struct i915_vma *vma, *vn;
112 	int save_skip_rewrite;
113 
114 	drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
115 
116 retry:
117 	i915_gem_drain_freed_objects(vm->i915);
118 
119 	mutex_lock(&vm->mutex);
120 
121 	/*
122 	 * Skip rewriting PTE on VMA unbind.
123 	 * FIXME: Use an argument to i915_vma_unbind() instead?
124 	 */
125 	save_skip_rewrite = vm->skip_pte_rewrite;
126 	vm->skip_pte_rewrite = true;
127 
128 	list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
129 		struct drm_i915_gem_object *obj = vma->obj;
130 
131 		GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
132 
133 		if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
134 			continue;
135 
136 		/* unlikely to race when GPU is idle, so no worry about slowpath.. */
137 		if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) {
138 			/*
139 			 * No dead objects should appear here, GPU should be
140 			 * completely idle, and userspace suspended
141 			 */
142 			i915_gem_object_get(obj);
143 
144 			mutex_unlock(&vm->mutex);
145 
146 			i915_gem_object_lock(obj, NULL);
147 			GEM_WARN_ON(i915_vma_unbind(vma));
148 			i915_gem_object_unlock(obj);
149 			i915_gem_object_put(obj);
150 
151 			vm->skip_pte_rewrite = save_skip_rewrite;
152 			goto retry;
153 		}
154 
155 		if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
156 			i915_vma_wait_for_bind(vma);
157 
158 			__i915_vma_evict(vma, false);
159 			drm_mm_remove_node(&vma->node);
160 		}
161 
162 		i915_gem_object_unlock(obj);
163 	}
164 
165 	vm->clear_range(vm, 0, vm->total);
166 
167 	vm->skip_pte_rewrite = save_skip_rewrite;
168 
169 	mutex_unlock(&vm->mutex);
170 }
171 
172 void i915_ggtt_suspend(struct i915_ggtt *ggtt)
173 {
174 	struct intel_gt *gt;
175 
176 	i915_ggtt_suspend_vm(&ggtt->vm);
177 	ggtt->invalidate(ggtt);
178 
179 	list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
180 		intel_gt_check_and_clear_faults(gt);
181 }
182 
183 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
184 {
185 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
186 
187 	spin_lock_irq(&uncore->lock);
188 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
189 	intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
190 	spin_unlock_irq(&uncore->lock);
191 }
192 
193 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
194 {
195 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
196 
197 	/*
198 	 * Note that as an uncached mmio write, this will flush the
199 	 * WCB of the writes into the GGTT before it triggers the invalidate.
200 	 */
201 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
202 }
203 
204 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
205 {
206 	struct drm_i915_private *i915 = ggtt->vm.i915;
207 
208 	gen8_ggtt_invalidate(ggtt);
209 
210 	if (GRAPHICS_VER(i915) >= 12) {
211 		struct intel_gt *gt;
212 
213 		list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
214 			intel_uncore_write_fw(gt->uncore,
215 					      GEN12_GUC_TLB_INV_CR,
216 					      GEN12_GUC_TLB_INV_CR_INVALIDATE);
217 	} else {
218 		intel_uncore_write_fw(ggtt->vm.gt->uncore,
219 				      GEN8_GTCR, GEN8_GTCR_INVALIDATE);
220 	}
221 }
222 
223 static u64 mtl_ggtt_pte_encode(dma_addr_t addr,
224 			       unsigned int pat_index,
225 			       u32 flags)
226 {
227 	gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
228 
229 	WARN_ON_ONCE(addr & ~GEN12_GGTT_PTE_ADDR_MASK);
230 
231 	if (flags & PTE_LM)
232 		pte |= GEN12_GGTT_PTE_LM;
233 
234 	if (pat_index & BIT(0))
235 		pte |= MTL_GGTT_PTE_PAT0;
236 
237 	if (pat_index & BIT(1))
238 		pte |= MTL_GGTT_PTE_PAT1;
239 
240 	return pte;
241 }
242 
243 u64 gen8_ggtt_pte_encode(dma_addr_t addr,
244 			 unsigned int pat_index,
245 			 u32 flags)
246 {
247 	gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
248 
249 	if (flags & PTE_LM)
250 		pte |= GEN12_GGTT_PTE_LM;
251 
252 	return pte;
253 }
254 
255 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
256 {
257 	writeq(pte, addr);
258 }
259 
260 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
261 				  dma_addr_t addr,
262 				  u64 offset,
263 				  unsigned int pat_index,
264 				  u32 flags)
265 {
266 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
267 	gen8_pte_t __iomem *pte =
268 		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
269 
270 	gen8_set_pte(pte, ggtt->vm.pte_encode(addr, pat_index, flags));
271 
272 	ggtt->invalidate(ggtt);
273 }
274 
275 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
276 				     struct i915_vma_resource *vma_res,
277 				     unsigned int pat_index,
278 				     u32 flags)
279 {
280 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
281 	const gen8_pte_t pte_encode = ggtt->vm.pte_encode(0, pat_index, flags);
282 	gen8_pte_t __iomem *gte;
283 	gen8_pte_t __iomem *end;
284 	struct sgt_iter iter;
285 	dma_addr_t addr;
286 
287 	/*
288 	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
289 	 * not to allow the user to override access to a read only page.
290 	 */
291 
292 	gte = (gen8_pte_t __iomem *)ggtt->gsm;
293 	gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
294 	end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
295 	while (gte < end)
296 		gen8_set_pte(gte++, vm->scratch[0]->encode);
297 	end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
298 
299 	for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
300 		gen8_set_pte(gte++, pte_encode | addr);
301 	GEM_BUG_ON(gte > end);
302 
303 	/* Fill the allocated but "unused" space beyond the end of the buffer */
304 	while (gte < end)
305 		gen8_set_pte(gte++, vm->scratch[0]->encode);
306 
307 	/*
308 	 * We want to flush the TLBs only after we're certain all the PTE
309 	 * updates have finished.
310 	 */
311 	ggtt->invalidate(ggtt);
312 }
313 
314 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
315 				  u64 start, u64 length)
316 {
317 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
318 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
319 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
320 	const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
321 	gen8_pte_t __iomem *gtt_base =
322 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
323 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
324 	int i;
325 
326 	if (WARN(num_entries > max_entries,
327 		 "First entry = %d; Num entries = %d (max=%d)\n",
328 		 first_entry, num_entries, max_entries))
329 		num_entries = max_entries;
330 
331 	for (i = 0; i < num_entries; i++)
332 		gen8_set_pte(&gtt_base[i], scratch_pte);
333 }
334 
335 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
336 				  dma_addr_t addr,
337 				  u64 offset,
338 				  unsigned int pat_index,
339 				  u32 flags)
340 {
341 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
342 	gen6_pte_t __iomem *pte =
343 		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
344 
345 	iowrite32(vm->pte_encode(addr, pat_index, flags), pte);
346 
347 	ggtt->invalidate(ggtt);
348 }
349 
350 /*
351  * Binds an object into the global gtt with the specified cache level.
352  * The object will be accessible to the GPU via commands whose operands
353  * reference offsets within the global GTT as well as accessible by the GPU
354  * through the GMADR mapped BAR (i915->mm.gtt->gtt).
355  */
356 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
357 				     struct i915_vma_resource *vma_res,
358 				     unsigned int pat_index,
359 				     u32 flags)
360 {
361 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
362 	gen6_pte_t __iomem *gte;
363 	gen6_pte_t __iomem *end;
364 	struct sgt_iter iter;
365 	dma_addr_t addr;
366 
367 	gte = (gen6_pte_t __iomem *)ggtt->gsm;
368 	gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
369 
370 	end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
371 	while (gte < end)
372 		iowrite32(vm->scratch[0]->encode, gte++);
373 	end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
374 	for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
375 		iowrite32(vm->pte_encode(addr, pat_index, flags), gte++);
376 	GEM_BUG_ON(gte > end);
377 
378 	/* Fill the allocated but "unused" space beyond the end of the buffer */
379 	while (gte < end)
380 		iowrite32(vm->scratch[0]->encode, gte++);
381 
382 	/*
383 	 * We want to flush the TLBs only after we're certain all the PTE
384 	 * updates have finished.
385 	 */
386 	ggtt->invalidate(ggtt);
387 }
388 
389 static void nop_clear_range(struct i915_address_space *vm,
390 			    u64 start, u64 length)
391 {
392 }
393 
394 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
395 {
396 	/*
397 	 * Make sure the internal GAM fifo has been cleared of all GTT
398 	 * writes before exiting stop_machine(). This guarantees that
399 	 * any aperture accesses waiting to start in another process
400 	 * cannot back up behind the GTT writes causing a hang.
401 	 * The register can be any arbitrary GAM register.
402 	 */
403 	intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
404 }
405 
406 struct insert_page {
407 	struct i915_address_space *vm;
408 	dma_addr_t addr;
409 	u64 offset;
410 	unsigned int pat_index;
411 };
412 
413 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
414 {
415 	struct insert_page *arg = _arg;
416 
417 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset,
418 			      arg->pat_index, 0);
419 	bxt_vtd_ggtt_wa(arg->vm);
420 
421 	return 0;
422 }
423 
424 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
425 					  dma_addr_t addr,
426 					  u64 offset,
427 					  unsigned int pat_index,
428 					  u32 unused)
429 {
430 	struct insert_page arg = { vm, addr, offset, pat_index };
431 
432 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
433 }
434 
435 struct insert_entries {
436 	struct i915_address_space *vm;
437 	struct i915_vma_resource *vma_res;
438 	unsigned int pat_index;
439 	u32 flags;
440 };
441 
442 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
443 {
444 	struct insert_entries *arg = _arg;
445 
446 	gen8_ggtt_insert_entries(arg->vm, arg->vma_res,
447 				 arg->pat_index, arg->flags);
448 	bxt_vtd_ggtt_wa(arg->vm);
449 
450 	return 0;
451 }
452 
453 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
454 					     struct i915_vma_resource *vma_res,
455 					     unsigned int pat_index,
456 					     u32 flags)
457 {
458 	struct insert_entries arg = { vm, vma_res, pat_index, flags };
459 
460 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
461 }
462 
463 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
464 				  u64 start, u64 length)
465 {
466 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
467 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
468 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
469 	gen6_pte_t scratch_pte, __iomem *gtt_base =
470 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
471 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
472 	int i;
473 
474 	if (WARN(num_entries > max_entries,
475 		 "First entry = %d; Num entries = %d (max=%d)\n",
476 		 first_entry, num_entries, max_entries))
477 		num_entries = max_entries;
478 
479 	scratch_pte = vm->scratch[0]->encode;
480 	for (i = 0; i < num_entries; i++)
481 		iowrite32(scratch_pte, &gtt_base[i]);
482 }
483 
484 void intel_ggtt_bind_vma(struct i915_address_space *vm,
485 			 struct i915_vm_pt_stash *stash,
486 			 struct i915_vma_resource *vma_res,
487 			 unsigned int pat_index,
488 			 u32 flags)
489 {
490 	u32 pte_flags;
491 
492 	if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK))
493 		return;
494 
495 	vma_res->bound_flags |= flags;
496 
497 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
498 	pte_flags = 0;
499 	if (vma_res->bi.readonly)
500 		pte_flags |= PTE_READ_ONLY;
501 	if (vma_res->bi.lmem)
502 		pte_flags |= PTE_LM;
503 
504 	vm->insert_entries(vm, vma_res, pat_index, pte_flags);
505 	vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE;
506 }
507 
508 void intel_ggtt_unbind_vma(struct i915_address_space *vm,
509 			   struct i915_vma_resource *vma_res)
510 {
511 	vm->clear_range(vm, vma_res->start, vma_res->vma_size);
512 }
513 
514 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
515 {
516 	u64 size;
517 	int ret;
518 
519 	if (!intel_uc_uses_guc(&ggtt->vm.gt->uc))
520 		return 0;
521 
522 	GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
523 	size = ggtt->vm.total - GUC_GGTT_TOP;
524 
525 	ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw, size,
526 				   GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
527 				   PIN_NOEVICT);
528 	if (ret)
529 		drm_dbg(&ggtt->vm.i915->drm,
530 			"Failed to reserve top of GGTT for GuC\n");
531 
532 	return ret;
533 }
534 
535 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
536 {
537 	if (drm_mm_node_allocated(&ggtt->uc_fw))
538 		drm_mm_remove_node(&ggtt->uc_fw);
539 }
540 
541 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
542 {
543 	ggtt_release_guc_top(ggtt);
544 	if (drm_mm_node_allocated(&ggtt->error_capture))
545 		drm_mm_remove_node(&ggtt->error_capture);
546 	mutex_destroy(&ggtt->error_mutex);
547 }
548 
549 static int init_ggtt(struct i915_ggtt *ggtt)
550 {
551 	/*
552 	 * Let GEM Manage all of the aperture.
553 	 *
554 	 * However, leave one page at the end still bound to the scratch page.
555 	 * There are a number of places where the hardware apparently prefetches
556 	 * past the end of the object, and we've seen multiple hangs with the
557 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
558 	 * aperture.  One page should be enough to keep any prefetching inside
559 	 * of the aperture.
560 	 */
561 	unsigned long hole_start, hole_end;
562 	struct drm_mm_node *entry;
563 	int ret;
564 
565 	/*
566 	 * GuC requires all resources that we're sharing with it to be placed in
567 	 * non-WOPCM memory. If GuC is not present or not in use we still need a
568 	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
569 	 * why.
570 	 */
571 	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
572 			       intel_wopcm_guc_size(&ggtt->vm.gt->wopcm));
573 
574 	ret = intel_vgt_balloon(ggtt);
575 	if (ret)
576 		return ret;
577 
578 	mutex_init(&ggtt->error_mutex);
579 	if (ggtt->mappable_end) {
580 		/*
581 		 * Reserve a mappable slot for our lockless error capture.
582 		 *
583 		 * We strongly prefer taking address 0x0 in order to protect
584 		 * other critical buffers against accidental overwrites,
585 		 * as writing to address 0 is a very common mistake.
586 		 *
587 		 * Since 0 may already be in use by the system (e.g. the BIOS
588 		 * framebuffer), we let the reservation fail quietly and hope
589 		 * 0 remains reserved always.
590 		 *
591 		 * If we fail to reserve 0, and then fail to find any space
592 		 * for an error-capture, remain silent. We can afford not
593 		 * to reserve an error_capture node as we have fallback
594 		 * paths, and we trust that 0 will remain reserved. However,
595 		 * the only likely reason for failure to insert is a driver
596 		 * bug, which we expect to cause other failures...
597 		 *
598 		 * Since CPU can perform speculative reads on error capture
599 		 * (write-combining allows it) add scratch page after error
600 		 * capture to avoid DMAR errors.
601 		 */
602 		ggtt->error_capture.size = 2 * I915_GTT_PAGE_SIZE;
603 		ggtt->error_capture.color = I915_COLOR_UNEVICTABLE;
604 		if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture))
605 			drm_mm_insert_node_in_range(&ggtt->vm.mm,
606 						    &ggtt->error_capture,
607 						    ggtt->error_capture.size, 0,
608 						    ggtt->error_capture.color,
609 						    0, ggtt->mappable_end,
610 						    DRM_MM_INSERT_LOW);
611 	}
612 	if (drm_mm_node_allocated(&ggtt->error_capture)) {
613 		u64 start = ggtt->error_capture.start;
614 		u64 size = ggtt->error_capture.size;
615 
616 		ggtt->vm.scratch_range(&ggtt->vm, start, size);
617 		drm_dbg(&ggtt->vm.i915->drm,
618 			"Reserved GGTT:[%llx, %llx] for use by error capture\n",
619 			start, start + size);
620 	}
621 
622 	/*
623 	 * The upper portion of the GuC address space has a sizeable hole
624 	 * (several MB) that is inaccessible by GuC. Reserve this range within
625 	 * GGTT as it can comfortably hold GuC/HuC firmware images.
626 	 */
627 	ret = ggtt_reserve_guc_top(ggtt);
628 	if (ret)
629 		goto err;
630 
631 	/* Clear any non-preallocated blocks */
632 	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
633 		drm_dbg(&ggtt->vm.i915->drm,
634 			"clearing unused GTT space: [%lx, %lx]\n",
635 			hole_start, hole_end);
636 		ggtt->vm.clear_range(&ggtt->vm, hole_start,
637 				     hole_end - hole_start);
638 	}
639 
640 	/* And finally clear the reserved guard page */
641 	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
642 
643 	return 0;
644 
645 err:
646 	cleanup_init_ggtt(ggtt);
647 	return ret;
648 }
649 
650 static void aliasing_gtt_bind_vma(struct i915_address_space *vm,
651 				  struct i915_vm_pt_stash *stash,
652 				  struct i915_vma_resource *vma_res,
653 				  unsigned int pat_index,
654 				  u32 flags)
655 {
656 	u32 pte_flags;
657 
658 	/* Currently applicable only to VLV */
659 	pte_flags = 0;
660 	if (vma_res->bi.readonly)
661 		pte_flags |= PTE_READ_ONLY;
662 
663 	if (flags & I915_VMA_LOCAL_BIND)
664 		ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm,
665 			       stash, vma_res, pat_index, flags);
666 
667 	if (flags & I915_VMA_GLOBAL_BIND)
668 		vm->insert_entries(vm, vma_res, pat_index, pte_flags);
669 
670 	vma_res->bound_flags |= flags;
671 }
672 
673 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm,
674 				    struct i915_vma_resource *vma_res)
675 {
676 	if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND)
677 		vm->clear_range(vm, vma_res->start, vma_res->vma_size);
678 
679 	if (vma_res->bound_flags & I915_VMA_LOCAL_BIND)
680 		ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res);
681 }
682 
683 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
684 {
685 	struct i915_vm_pt_stash stash = {};
686 	struct i915_ppgtt *ppgtt;
687 	int err;
688 
689 	ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0);
690 	if (IS_ERR(ppgtt))
691 		return PTR_ERR(ppgtt);
692 
693 	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
694 		err = -ENODEV;
695 		goto err_ppgtt;
696 	}
697 
698 	err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total);
699 	if (err)
700 		goto err_ppgtt;
701 
702 	i915_gem_object_lock(ppgtt->vm.scratch[0], NULL);
703 	err = i915_vm_map_pt_stash(&ppgtt->vm, &stash);
704 	i915_gem_object_unlock(ppgtt->vm.scratch[0]);
705 	if (err)
706 		goto err_stash;
707 
708 	/*
709 	 * Note we only pre-allocate as far as the end of the global
710 	 * GTT. On 48b / 4-level page-tables, the difference is very,
711 	 * very significant! We have to preallocate as GVT/vgpu does
712 	 * not like the page directory disappearing.
713 	 */
714 	ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total);
715 
716 	ggtt->alias = ppgtt;
717 	ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
718 
719 	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != intel_ggtt_bind_vma);
720 	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
721 
722 	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != intel_ggtt_unbind_vma);
723 	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
724 
725 	i915_vm_free_pt_stash(&ppgtt->vm, &stash);
726 	return 0;
727 
728 err_stash:
729 	i915_vm_free_pt_stash(&ppgtt->vm, &stash);
730 err_ppgtt:
731 	i915_vm_put(&ppgtt->vm);
732 	return err;
733 }
734 
735 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
736 {
737 	struct i915_ppgtt *ppgtt;
738 
739 	ppgtt = fetch_and_zero(&ggtt->alias);
740 	if (!ppgtt)
741 		return;
742 
743 	i915_vm_put(&ppgtt->vm);
744 
745 	ggtt->vm.vma_ops.bind_vma   = intel_ggtt_bind_vma;
746 	ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
747 }
748 
749 int i915_init_ggtt(struct drm_i915_private *i915)
750 {
751 	int ret;
752 
753 	ret = init_ggtt(to_gt(i915)->ggtt);
754 	if (ret)
755 		return ret;
756 
757 	if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
758 		ret = init_aliasing_ppgtt(to_gt(i915)->ggtt);
759 		if (ret)
760 			cleanup_init_ggtt(to_gt(i915)->ggtt);
761 	}
762 
763 	return 0;
764 }
765 
766 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
767 {
768 	struct i915_vma *vma, *vn;
769 
770 	flush_workqueue(ggtt->vm.i915->wq);
771 	i915_gem_drain_freed_objects(ggtt->vm.i915);
772 
773 	mutex_lock(&ggtt->vm.mutex);
774 
775 	ggtt->vm.skip_pte_rewrite = true;
776 
777 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
778 		struct drm_i915_gem_object *obj = vma->obj;
779 		bool trylock;
780 
781 		trylock = i915_gem_object_trylock(obj, NULL);
782 		WARN_ON(!trylock);
783 
784 		WARN_ON(__i915_vma_unbind(vma));
785 		if (trylock)
786 			i915_gem_object_unlock(obj);
787 	}
788 
789 	if (drm_mm_node_allocated(&ggtt->error_capture))
790 		drm_mm_remove_node(&ggtt->error_capture);
791 	mutex_destroy(&ggtt->error_mutex);
792 
793 	ggtt_release_guc_top(ggtt);
794 	intel_vgt_deballoon(ggtt);
795 
796 	ggtt->vm.cleanup(&ggtt->vm);
797 
798 	mutex_unlock(&ggtt->vm.mutex);
799 	i915_address_space_fini(&ggtt->vm);
800 
801 	arch_phys_wc_del(ggtt->mtrr);
802 
803 	if (ggtt->iomap.size)
804 		io_mapping_fini(&ggtt->iomap);
805 }
806 
807 /**
808  * i915_ggtt_driver_release - Clean up GGTT hardware initialization
809  * @i915: i915 device
810  */
811 void i915_ggtt_driver_release(struct drm_i915_private *i915)
812 {
813 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
814 
815 	fini_aliasing_ppgtt(ggtt);
816 
817 	intel_ggtt_fini_fences(ggtt);
818 	ggtt_cleanup_hw(ggtt);
819 }
820 
821 /**
822  * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after
823  * all free objects have been drained.
824  * @i915: i915 device
825  */
826 void i915_ggtt_driver_late_release(struct drm_i915_private *i915)
827 {
828 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
829 
830 	GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1);
831 	dma_resv_fini(&ggtt->vm._resv);
832 }
833 
834 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
835 {
836 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
837 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
838 	return snb_gmch_ctl << 20;
839 }
840 
841 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
842 {
843 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
844 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
845 	if (bdw_gmch_ctl)
846 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
847 
848 #ifdef CONFIG_X86_32
849 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
850 	if (bdw_gmch_ctl > 4)
851 		bdw_gmch_ctl = 4;
852 #endif
853 
854 	return bdw_gmch_ctl << 20;
855 }
856 
857 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
858 {
859 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
860 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
861 
862 	if (gmch_ctrl)
863 		return 1 << (20 + gmch_ctrl);
864 
865 	return 0;
866 }
867 
868 static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915)
869 {
870 	/*
871 	 * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset
872 	 * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset
873 	 */
874 	GEM_BUG_ON(GRAPHICS_VER(i915) < 6);
875 	return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M;
876 }
877 
878 static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915)
879 {
880 	return gen6_gttmmadr_size(i915) / 2;
881 }
882 
883 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
884 {
885 	struct drm_i915_private *i915 = ggtt->vm.i915;
886 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
887 	phys_addr_t phys_addr;
888 	u32 pte_flags;
889 	int ret;
890 
891 	GEM_WARN_ON(pci_resource_len(pdev, GEN4_GTTMMADR_BAR) != gen6_gttmmadr_size(i915));
892 	phys_addr = pci_resource_start(pdev, GEN4_GTTMMADR_BAR) + gen6_gttadr_offset(i915);
893 
894 	/*
895 	 * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range
896 	 * will be dropped. For WC mappings in general we have 64 byte burst
897 	 * writes when the WC buffer is flushed, so we can't use it, but have to
898 	 * resort to an uncached mapping. The WC issue is easily caught by the
899 	 * readback check when writing GTT PTE entries.
900 	 */
901 	if (IS_GEN9_LP(i915) || GRAPHICS_VER(i915) >= 11)
902 		ggtt->gsm = ioremap(phys_addr, size);
903 	else
904 		ggtt->gsm = ioremap_wc(phys_addr, size);
905 	if (!ggtt->gsm) {
906 		drm_err(&i915->drm, "Failed to map the ggtt page table\n");
907 		return -ENOMEM;
908 	}
909 
910 	kref_init(&ggtt->vm.resv_ref);
911 	ret = setup_scratch_page(&ggtt->vm);
912 	if (ret) {
913 		drm_err(&i915->drm, "Scratch setup failed\n");
914 		/* iounmap will also get called at remove, but meh */
915 		iounmap(ggtt->gsm);
916 		return ret;
917 	}
918 
919 	pte_flags = 0;
920 	if (i915_gem_object_is_lmem(ggtt->vm.scratch[0]))
921 		pte_flags |= PTE_LM;
922 
923 	ggtt->vm.scratch[0]->encode =
924 		ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]),
925 				    i915_gem_get_pat_index(i915,
926 							   I915_CACHE_NONE),
927 				    pte_flags);
928 
929 	return 0;
930 }
931 
932 static void gen6_gmch_remove(struct i915_address_space *vm)
933 {
934 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
935 
936 	iounmap(ggtt->gsm);
937 	free_scratch(vm);
938 }
939 
940 static struct resource pci_resource(struct pci_dev *pdev, int bar)
941 {
942 	return DEFINE_RES_MEM(pci_resource_start(pdev, bar),
943 			      pci_resource_len(pdev, bar));
944 }
945 
946 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
947 {
948 	struct drm_i915_private *i915 = ggtt->vm.i915;
949 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
950 	unsigned int size;
951 	u16 snb_gmch_ctl;
952 
953 	if (!HAS_LMEM(i915) && !HAS_LMEMBAR_SMEM_STOLEN(i915)) {
954 		if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
955 			return -ENXIO;
956 
957 		ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
958 		ggtt->mappable_end = resource_size(&ggtt->gmadr);
959 	}
960 
961 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
962 	if (IS_CHERRYVIEW(i915))
963 		size = chv_get_total_gtt_size(snb_gmch_ctl);
964 	else
965 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
966 
967 	ggtt->vm.alloc_pt_dma = alloc_pt_dma;
968 	ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
969 	ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY;
970 
971 	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
972 	ggtt->vm.cleanup = gen6_gmch_remove;
973 	ggtt->vm.insert_page = gen8_ggtt_insert_page;
974 	ggtt->vm.clear_range = nop_clear_range;
975 	ggtt->vm.scratch_range = gen8_ggtt_clear_range;
976 
977 	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
978 
979 	/*
980 	 * Serialize GTT updates with aperture access on BXT if VT-d is on,
981 	 * and always on CHV.
982 	 */
983 	if (intel_vm_no_concurrent_access_wa(i915)) {
984 		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
985 		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
986 
987 		/*
988 		 * Calling stop_machine() version of GGTT update function
989 		 * at error capture/reset path will raise lockdep warning.
990 		 * Allow calling gen8_ggtt_insert_* directly at reset path
991 		 * which is safe from parallel GGTT updates.
992 		 */
993 		ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
994 		ggtt->vm.raw_insert_entries = gen8_ggtt_insert_entries;
995 
996 		ggtt->vm.bind_async_flags =
997 			I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
998 	}
999 
1000 	if (intel_uc_wants_guc(&ggtt->vm.gt->uc))
1001 		ggtt->invalidate = guc_ggtt_invalidate;
1002 	else
1003 		ggtt->invalidate = gen8_ggtt_invalidate;
1004 
1005 	ggtt->vm.vma_ops.bind_vma    = intel_ggtt_bind_vma;
1006 	ggtt->vm.vma_ops.unbind_vma  = intel_ggtt_unbind_vma;
1007 
1008 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
1009 		ggtt->vm.pte_encode = mtl_ggtt_pte_encode;
1010 	else
1011 		ggtt->vm.pte_encode = gen8_ggtt_pte_encode;
1012 
1013 	return ggtt_probe_common(ggtt, size);
1014 }
1015 
1016 /*
1017  * For pre-gen8 platforms pat_index is the same as enum i915_cache_level,
1018  * so the switch-case statements in these PTE encode functions are still valid.
1019  * See translation table LEGACY_CACHELEVEL.
1020  */
1021 static u64 snb_pte_encode(dma_addr_t addr,
1022 			  unsigned int pat_index,
1023 			  u32 flags)
1024 {
1025 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1026 
1027 	switch (pat_index) {
1028 	case I915_CACHE_L3_LLC:
1029 	case I915_CACHE_LLC:
1030 		pte |= GEN6_PTE_CACHE_LLC;
1031 		break;
1032 	case I915_CACHE_NONE:
1033 		pte |= GEN6_PTE_UNCACHED;
1034 		break;
1035 	default:
1036 		MISSING_CASE(pat_index);
1037 	}
1038 
1039 	return pte;
1040 }
1041 
1042 static u64 ivb_pte_encode(dma_addr_t addr,
1043 			  unsigned int pat_index,
1044 			  u32 flags)
1045 {
1046 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1047 
1048 	switch (pat_index) {
1049 	case I915_CACHE_L3_LLC:
1050 		pte |= GEN7_PTE_CACHE_L3_LLC;
1051 		break;
1052 	case I915_CACHE_LLC:
1053 		pte |= GEN6_PTE_CACHE_LLC;
1054 		break;
1055 	case I915_CACHE_NONE:
1056 		pte |= GEN6_PTE_UNCACHED;
1057 		break;
1058 	default:
1059 		MISSING_CASE(pat_index);
1060 	}
1061 
1062 	return pte;
1063 }
1064 
1065 static u64 byt_pte_encode(dma_addr_t addr,
1066 			  unsigned int pat_index,
1067 			  u32 flags)
1068 {
1069 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1070 
1071 	if (!(flags & PTE_READ_ONLY))
1072 		pte |= BYT_PTE_WRITEABLE;
1073 
1074 	if (pat_index != I915_CACHE_NONE)
1075 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
1076 
1077 	return pte;
1078 }
1079 
1080 static u64 hsw_pte_encode(dma_addr_t addr,
1081 			  unsigned int pat_index,
1082 			  u32 flags)
1083 {
1084 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1085 
1086 	if (pat_index != I915_CACHE_NONE)
1087 		pte |= HSW_WB_LLC_AGE3;
1088 
1089 	return pte;
1090 }
1091 
1092 static u64 iris_pte_encode(dma_addr_t addr,
1093 			   unsigned int pat_index,
1094 			   u32 flags)
1095 {
1096 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1097 
1098 	switch (pat_index) {
1099 	case I915_CACHE_NONE:
1100 		break;
1101 	case I915_CACHE_WT:
1102 		pte |= HSW_WT_ELLC_LLC_AGE3;
1103 		break;
1104 	default:
1105 		pte |= HSW_WB_ELLC_LLC_AGE3;
1106 		break;
1107 	}
1108 
1109 	return pte;
1110 }
1111 
1112 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
1113 {
1114 	struct drm_i915_private *i915 = ggtt->vm.i915;
1115 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1116 	unsigned int size;
1117 	u16 snb_gmch_ctl;
1118 
1119 	if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
1120 		return -ENXIO;
1121 
1122 	ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
1123 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
1124 
1125 	/*
1126 	 * 64/512MB is the current min/max we actually know of, but this is
1127 	 * just a coarse sanity check.
1128 	 */
1129 	if (ggtt->mappable_end < (64 << 20) ||
1130 	    ggtt->mappable_end > (512 << 20)) {
1131 		drm_err(&i915->drm, "Unknown GMADR size (%pa)\n",
1132 			&ggtt->mappable_end);
1133 		return -ENXIO;
1134 	}
1135 
1136 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1137 
1138 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
1139 	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
1140 
1141 	ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1142 	ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1143 
1144 	ggtt->vm.clear_range = nop_clear_range;
1145 	if (!HAS_FULL_PPGTT(i915))
1146 		ggtt->vm.clear_range = gen6_ggtt_clear_range;
1147 	ggtt->vm.scratch_range = gen6_ggtt_clear_range;
1148 	ggtt->vm.insert_page = gen6_ggtt_insert_page;
1149 	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
1150 	ggtt->vm.cleanup = gen6_gmch_remove;
1151 
1152 	ggtt->invalidate = gen6_ggtt_invalidate;
1153 
1154 	if (HAS_EDRAM(i915))
1155 		ggtt->vm.pte_encode = iris_pte_encode;
1156 	else if (IS_HASWELL(i915))
1157 		ggtt->vm.pte_encode = hsw_pte_encode;
1158 	else if (IS_VALLEYVIEW(i915))
1159 		ggtt->vm.pte_encode = byt_pte_encode;
1160 	else if (GRAPHICS_VER(i915) >= 7)
1161 		ggtt->vm.pte_encode = ivb_pte_encode;
1162 	else
1163 		ggtt->vm.pte_encode = snb_pte_encode;
1164 
1165 	ggtt->vm.vma_ops.bind_vma    = intel_ggtt_bind_vma;
1166 	ggtt->vm.vma_ops.unbind_vma  = intel_ggtt_unbind_vma;
1167 
1168 	return ggtt_probe_common(ggtt, size);
1169 }
1170 
1171 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
1172 {
1173 	struct drm_i915_private *i915 = gt->i915;
1174 	int ret;
1175 
1176 	ggtt->vm.gt = gt;
1177 	ggtt->vm.i915 = i915;
1178 	ggtt->vm.dma = i915->drm.dev;
1179 	dma_resv_init(&ggtt->vm._resv);
1180 
1181 	if (GRAPHICS_VER(i915) >= 8)
1182 		ret = gen8_gmch_probe(ggtt);
1183 	else if (GRAPHICS_VER(i915) >= 6)
1184 		ret = gen6_gmch_probe(ggtt);
1185 	else
1186 		ret = intel_ggtt_gmch_probe(ggtt);
1187 
1188 	if (ret) {
1189 		dma_resv_fini(&ggtt->vm._resv);
1190 		return ret;
1191 	}
1192 
1193 	if ((ggtt->vm.total - 1) >> 32) {
1194 		drm_err(&i915->drm,
1195 			"We never expected a Global GTT with more than 32bits"
1196 			" of address space! Found %lldM!\n",
1197 			ggtt->vm.total >> 20);
1198 		ggtt->vm.total = 1ULL << 32;
1199 		ggtt->mappable_end =
1200 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
1201 	}
1202 
1203 	if (ggtt->mappable_end > ggtt->vm.total) {
1204 		drm_err(&i915->drm,
1205 			"mappable aperture extends past end of GGTT,"
1206 			" aperture=%pa, total=%llx\n",
1207 			&ggtt->mappable_end, ggtt->vm.total);
1208 		ggtt->mappable_end = ggtt->vm.total;
1209 	}
1210 
1211 	/* GMADR is the PCI mmio aperture into the global GTT. */
1212 	drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20);
1213 	drm_dbg(&i915->drm, "GMADR size = %lluM\n",
1214 		(u64)ggtt->mappable_end >> 20);
1215 	drm_dbg(&i915->drm, "DSM size = %lluM\n",
1216 		(u64)resource_size(&intel_graphics_stolen_res) >> 20);
1217 
1218 	return 0;
1219 }
1220 
1221 /**
1222  * i915_ggtt_probe_hw - Probe GGTT hardware location
1223  * @i915: i915 device
1224  */
1225 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
1226 {
1227 	struct intel_gt *gt;
1228 	int ret, i;
1229 
1230 	for_each_gt(gt, i915, i) {
1231 		ret = intel_gt_assign_ggtt(gt);
1232 		if (ret)
1233 			return ret;
1234 	}
1235 
1236 	ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915));
1237 	if (ret)
1238 		return ret;
1239 
1240 	if (i915_vtd_active(i915))
1241 		drm_info(&i915->drm, "VT-d active for gfx access\n");
1242 
1243 	return 0;
1244 }
1245 
1246 struct i915_ggtt *i915_ggtt_create(struct drm_i915_private *i915)
1247 {
1248 	struct i915_ggtt *ggtt;
1249 
1250 	ggtt = drmm_kzalloc(&i915->drm, sizeof(*ggtt), GFP_KERNEL);
1251 	if (!ggtt)
1252 		return ERR_PTR(-ENOMEM);
1253 
1254 	INIT_LIST_HEAD(&ggtt->gt_list);
1255 
1256 	return ggtt;
1257 }
1258 
1259 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
1260 {
1261 	if (GRAPHICS_VER(i915) < 6)
1262 		return intel_ggtt_gmch_enable_hw(i915);
1263 
1264 	return 0;
1265 }
1266 
1267 /**
1268  * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM
1269  * @vm: The VM to restore the mappings for
1270  *
1271  * Restore the memory mappings for all objects mapped to HW via the GGTT or a
1272  * DPT page table.
1273  *
1274  * Returns %true if restoring the mapping for any object that was in a write
1275  * domain before suspend.
1276  */
1277 bool i915_ggtt_resume_vm(struct i915_address_space *vm)
1278 {
1279 	struct i915_vma *vma;
1280 	bool write_domain_objs = false;
1281 
1282 	drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
1283 
1284 	/* First fill our portion of the GTT with scratch pages */
1285 	vm->clear_range(vm, 0, vm->total);
1286 
1287 	/* clflush objects bound into the GGTT and rebind them. */
1288 	list_for_each_entry(vma, &vm->bound_list, vm_link) {
1289 		struct drm_i915_gem_object *obj = vma->obj;
1290 		unsigned int was_bound =
1291 			atomic_read(&vma->flags) & I915_VMA_BIND_MASK;
1292 
1293 		GEM_BUG_ON(!was_bound);
1294 
1295 		/*
1296 		 * Clear the bound flags of the vma resource to allow
1297 		 * ptes to be repopulated.
1298 		 */
1299 		vma->resource->bound_flags = 0;
1300 		vma->ops->bind_vma(vm, NULL, vma->resource,
1301 				   obj ? obj->pat_index :
1302 					 i915_gem_get_pat_index(vm->i915,
1303 								I915_CACHE_NONE),
1304 				   was_bound);
1305 
1306 		if (obj) { /* only used during resume => exclusive access */
1307 			write_domain_objs |= fetch_and_zero(&obj->write_domain);
1308 			obj->read_domains |= I915_GEM_DOMAIN_GTT;
1309 		}
1310 	}
1311 
1312 	return write_domain_objs;
1313 }
1314 
1315 void i915_ggtt_resume(struct i915_ggtt *ggtt)
1316 {
1317 	struct intel_gt *gt;
1318 	bool flush;
1319 
1320 	list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1321 		intel_gt_check_and_clear_faults(gt);
1322 
1323 	flush = i915_ggtt_resume_vm(&ggtt->vm);
1324 
1325 	if (drm_mm_node_allocated(&ggtt->error_capture))
1326 		ggtt->vm.scratch_range(&ggtt->vm, ggtt->error_capture.start,
1327 				       ggtt->error_capture.size);
1328 
1329 	list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1330 		intel_uc_resume_mappings(&gt->uc);
1331 
1332 	ggtt->invalidate(ggtt);
1333 
1334 	if (flush)
1335 		wbinvd_on_all_cpus();
1336 
1337 	intel_ggtt_restore_fences(ggtt);
1338 }
1339