xref: /linux/drivers/gpu/drm/i915/gt/intel_ggtt.c (revision 48dea9a700c8728cc31a1dd44588b97578de86ee)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <linux/stop_machine.h>
7 
8 #include <asm/set_memory.h>
9 #include <asm/smp.h>
10 
11 #include <drm/i915_drm.h>
12 
13 #include "intel_gt.h"
14 #include "i915_drv.h"
15 #include "i915_scatterlist.h"
16 #include "i915_vgpu.h"
17 
18 #include "intel_gtt.h"
19 
20 static int
21 i915_get_ggtt_vma_pages(struct i915_vma *vma);
22 
23 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
24 				   unsigned long color,
25 				   u64 *start,
26 				   u64 *end)
27 {
28 	if (i915_node_color_differs(node, color))
29 		*start += I915_GTT_PAGE_SIZE;
30 
31 	/*
32 	 * Also leave a space between the unallocated reserved node after the
33 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
34 	 * to insert a guard page to prevent prefetches crossing over the
35 	 * GTT boundary.
36 	 */
37 	node = list_next_entry(node, node_list);
38 	if (node->color != color)
39 		*end -= I915_GTT_PAGE_SIZE;
40 }
41 
42 static int ggtt_init_hw(struct i915_ggtt *ggtt)
43 {
44 	struct drm_i915_private *i915 = ggtt->vm.i915;
45 
46 	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
47 
48 	ggtt->vm.is_ggtt = true;
49 
50 	/* Only VLV supports read-only GGTT mappings */
51 	ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
52 
53 	if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
54 		ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
55 
56 	if (ggtt->mappable_end) {
57 		if (!io_mapping_init_wc(&ggtt->iomap,
58 					ggtt->gmadr.start,
59 					ggtt->mappable_end)) {
60 			ggtt->vm.cleanup(&ggtt->vm);
61 			return -EIO;
62 		}
63 
64 		ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
65 					      ggtt->mappable_end);
66 	}
67 
68 	intel_ggtt_init_fences(ggtt);
69 
70 	return 0;
71 }
72 
73 /**
74  * i915_ggtt_init_hw - Initialize GGTT hardware
75  * @i915: i915 device
76  */
77 int i915_ggtt_init_hw(struct drm_i915_private *i915)
78 {
79 	int ret;
80 
81 	stash_init(&i915->mm.wc_stash);
82 
83 	/*
84 	 * Note that we use page colouring to enforce a guard page at the
85 	 * end of the address space. This is required as the CS may prefetch
86 	 * beyond the end of the batch buffer, across the page boundary,
87 	 * and beyond the end of the GTT if we do not provide a guard.
88 	 */
89 	ret = ggtt_init_hw(&i915->ggtt);
90 	if (ret)
91 		return ret;
92 
93 	return 0;
94 }
95 
96 /*
97  * Certain Gen5 chipsets require require idling the GPU before
98  * unmapping anything from the GTT when VT-d is enabled.
99  */
100 static bool needs_idle_maps(struct drm_i915_private *i915)
101 {
102 	/*
103 	 * Query intel_iommu to see if we need the workaround. Presumably that
104 	 * was loaded first.
105 	 */
106 	return IS_GEN(i915, 5) && IS_MOBILE(i915) && intel_vtd_active();
107 }
108 
109 void i915_ggtt_suspend(struct i915_ggtt *ggtt)
110 {
111 	struct i915_vma *vma, *vn;
112 	int open;
113 
114 	mutex_lock(&ggtt->vm.mutex);
115 
116 	/* Skip rewriting PTE on VMA unbind. */
117 	open = atomic_xchg(&ggtt->vm.open, 0);
118 
119 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
120 		GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
121 		i915_vma_wait_for_bind(vma);
122 
123 		if (i915_vma_is_pinned(vma))
124 			continue;
125 
126 		if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
127 			__i915_vma_evict(vma);
128 			drm_mm_remove_node(&vma->node);
129 		}
130 	}
131 
132 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
133 	ggtt->invalidate(ggtt);
134 	atomic_set(&ggtt->vm.open, open);
135 
136 	mutex_unlock(&ggtt->vm.mutex);
137 
138 	intel_gt_check_and_clear_faults(ggtt->vm.gt);
139 }
140 
141 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
142 {
143 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
144 
145 	spin_lock_irq(&uncore->lock);
146 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
147 	intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
148 	spin_unlock_irq(&uncore->lock);
149 }
150 
151 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
152 {
153 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
154 
155 	/*
156 	 * Note that as an uncached mmio write, this will flush the
157 	 * WCB of the writes into the GGTT before it triggers the invalidate.
158 	 */
159 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
160 }
161 
162 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
163 {
164 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
165 	struct drm_i915_private *i915 = ggtt->vm.i915;
166 
167 	gen8_ggtt_invalidate(ggtt);
168 
169 	if (INTEL_GEN(i915) >= 12)
170 		intel_uncore_write_fw(uncore, GEN12_GUC_TLB_INV_CR,
171 				      GEN12_GUC_TLB_INV_CR_INVALIDATE);
172 	else
173 		intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
174 }
175 
176 static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt)
177 {
178 	intel_gtt_chipset_flush();
179 }
180 
181 static u64 gen8_ggtt_pte_encode(dma_addr_t addr,
182 				enum i915_cache_level level,
183 				u32 flags)
184 {
185 	return addr | _PAGE_PRESENT;
186 }
187 
188 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
189 {
190 	writeq(pte, addr);
191 }
192 
193 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
194 				  dma_addr_t addr,
195 				  u64 offset,
196 				  enum i915_cache_level level,
197 				  u32 unused)
198 {
199 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
200 	gen8_pte_t __iomem *pte =
201 		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
202 
203 	gen8_set_pte(pte, gen8_ggtt_pte_encode(addr, level, 0));
204 
205 	ggtt->invalidate(ggtt);
206 }
207 
208 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
209 				     struct i915_vma *vma,
210 				     enum i915_cache_level level,
211 				     u32 flags)
212 {
213 	const gen8_pte_t pte_encode = gen8_ggtt_pte_encode(0, level, 0);
214 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
215 	gen8_pte_t __iomem *gte;
216 	gen8_pte_t __iomem *end;
217 	struct sgt_iter iter;
218 	dma_addr_t addr;
219 
220 	/*
221 	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
222 	 * not to allow the user to override access to a read only page.
223 	 */
224 
225 	gte = (gen8_pte_t __iomem *)ggtt->gsm;
226 	gte += vma->node.start / I915_GTT_PAGE_SIZE;
227 	end = gte + vma->node.size / I915_GTT_PAGE_SIZE;
228 
229 	for_each_sgt_daddr(addr, iter, vma->pages)
230 		gen8_set_pte(gte++, pte_encode | addr);
231 	GEM_BUG_ON(gte > end);
232 
233 	/* Fill the allocated but "unused" space beyond the end of the buffer */
234 	while (gte < end)
235 		gen8_set_pte(gte++, vm->scratch[0].encode);
236 
237 	/*
238 	 * We want to flush the TLBs only after we're certain all the PTE
239 	 * updates have finished.
240 	 */
241 	ggtt->invalidate(ggtt);
242 }
243 
244 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
245 				  dma_addr_t addr,
246 				  u64 offset,
247 				  enum i915_cache_level level,
248 				  u32 flags)
249 {
250 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
251 	gen6_pte_t __iomem *pte =
252 		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
253 
254 	iowrite32(vm->pte_encode(addr, level, flags), pte);
255 
256 	ggtt->invalidate(ggtt);
257 }
258 
259 /*
260  * Binds an object into the global gtt with the specified cache level.
261  * The object will be accessible to the GPU via commands whose operands
262  * reference offsets within the global GTT as well as accessible by the GPU
263  * through the GMADR mapped BAR (i915->mm.gtt->gtt).
264  */
265 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
266 				     struct i915_vma *vma,
267 				     enum i915_cache_level level,
268 				     u32 flags)
269 {
270 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
271 	gen6_pte_t __iomem *gte;
272 	gen6_pte_t __iomem *end;
273 	struct sgt_iter iter;
274 	dma_addr_t addr;
275 
276 	gte = (gen6_pte_t __iomem *)ggtt->gsm;
277 	gte += vma->node.start / I915_GTT_PAGE_SIZE;
278 	end = gte + vma->node.size / I915_GTT_PAGE_SIZE;
279 
280 	for_each_sgt_daddr(addr, iter, vma->pages)
281 		iowrite32(vm->pte_encode(addr, level, flags), gte++);
282 	GEM_BUG_ON(gte > end);
283 
284 	/* Fill the allocated but "unused" space beyond the end of the buffer */
285 	while (gte < end)
286 		iowrite32(vm->scratch[0].encode, gte++);
287 
288 	/*
289 	 * We want to flush the TLBs only after we're certain all the PTE
290 	 * updates have finished.
291 	 */
292 	ggtt->invalidate(ggtt);
293 }
294 
295 static void nop_clear_range(struct i915_address_space *vm,
296 			    u64 start, u64 length)
297 {
298 }
299 
300 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
301 				  u64 start, u64 length)
302 {
303 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
304 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
305 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
306 	const gen8_pte_t scratch_pte = vm->scratch[0].encode;
307 	gen8_pte_t __iomem *gtt_base =
308 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
309 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
310 	int i;
311 
312 	if (WARN(num_entries > max_entries,
313 		 "First entry = %d; Num entries = %d (max=%d)\n",
314 		 first_entry, num_entries, max_entries))
315 		num_entries = max_entries;
316 
317 	for (i = 0; i < num_entries; i++)
318 		gen8_set_pte(&gtt_base[i], scratch_pte);
319 }
320 
321 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
322 {
323 	/*
324 	 * Make sure the internal GAM fifo has been cleared of all GTT
325 	 * writes before exiting stop_machine(). This guarantees that
326 	 * any aperture accesses waiting to start in another process
327 	 * cannot back up behind the GTT writes causing a hang.
328 	 * The register can be any arbitrary GAM register.
329 	 */
330 	intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
331 }
332 
333 struct insert_page {
334 	struct i915_address_space *vm;
335 	dma_addr_t addr;
336 	u64 offset;
337 	enum i915_cache_level level;
338 };
339 
340 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
341 {
342 	struct insert_page *arg = _arg;
343 
344 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
345 	bxt_vtd_ggtt_wa(arg->vm);
346 
347 	return 0;
348 }
349 
350 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
351 					  dma_addr_t addr,
352 					  u64 offset,
353 					  enum i915_cache_level level,
354 					  u32 unused)
355 {
356 	struct insert_page arg = { vm, addr, offset, level };
357 
358 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
359 }
360 
361 struct insert_entries {
362 	struct i915_address_space *vm;
363 	struct i915_vma *vma;
364 	enum i915_cache_level level;
365 	u32 flags;
366 };
367 
368 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
369 {
370 	struct insert_entries *arg = _arg;
371 
372 	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
373 	bxt_vtd_ggtt_wa(arg->vm);
374 
375 	return 0;
376 }
377 
378 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
379 					     struct i915_vma *vma,
380 					     enum i915_cache_level level,
381 					     u32 flags)
382 {
383 	struct insert_entries arg = { vm, vma, level, flags };
384 
385 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
386 }
387 
388 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
389 				  u64 start, u64 length)
390 {
391 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
392 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
393 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
394 	gen6_pte_t scratch_pte, __iomem *gtt_base =
395 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
396 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
397 	int i;
398 
399 	if (WARN(num_entries > max_entries,
400 		 "First entry = %d; Num entries = %d (max=%d)\n",
401 		 first_entry, num_entries, max_entries))
402 		num_entries = max_entries;
403 
404 	scratch_pte = vm->scratch[0].encode;
405 	for (i = 0; i < num_entries; i++)
406 		iowrite32(scratch_pte, &gtt_base[i]);
407 }
408 
409 static void i915_ggtt_insert_page(struct i915_address_space *vm,
410 				  dma_addr_t addr,
411 				  u64 offset,
412 				  enum i915_cache_level cache_level,
413 				  u32 unused)
414 {
415 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
416 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
417 
418 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
419 }
420 
421 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
422 				     struct i915_vma *vma,
423 				     enum i915_cache_level cache_level,
424 				     u32 unused)
425 {
426 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
427 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
428 
429 	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
430 				    flags);
431 }
432 
433 static void i915_ggtt_clear_range(struct i915_address_space *vm,
434 				  u64 start, u64 length)
435 {
436 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
437 }
438 
439 static int ggtt_bind_vma(struct i915_address_space *vm,
440 			 struct i915_vma *vma,
441 			 enum i915_cache_level cache_level,
442 			 u32 flags)
443 {
444 	struct drm_i915_gem_object *obj = vma->obj;
445 	u32 pte_flags;
446 
447 	if (i915_vma_is_bound(vma, ~flags & I915_VMA_BIND_MASK))
448 		return 0;
449 
450 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
451 	pte_flags = 0;
452 	if (i915_gem_object_is_readonly(obj))
453 		pte_flags |= PTE_READ_ONLY;
454 
455 	vm->insert_entries(vm, vma, cache_level, pte_flags);
456 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
457 
458 	return 0;
459 }
460 
461 static void ggtt_unbind_vma(struct i915_address_space *vm, struct i915_vma *vma)
462 {
463 	vm->clear_range(vm, vma->node.start, vma->size);
464 }
465 
466 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
467 {
468 	u64 size;
469 	int ret;
470 
471 	if (!intel_uc_uses_guc(&ggtt->vm.gt->uc))
472 		return 0;
473 
474 	GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
475 	size = ggtt->vm.total - GUC_GGTT_TOP;
476 
477 	ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size,
478 				   GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
479 				   PIN_NOEVICT);
480 	if (ret)
481 		drm_dbg(&ggtt->vm.i915->drm,
482 			"Failed to reserve top of GGTT for GuC\n");
483 
484 	return ret;
485 }
486 
487 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
488 {
489 	if (drm_mm_node_allocated(&ggtt->uc_fw))
490 		drm_mm_remove_node(&ggtt->uc_fw);
491 }
492 
493 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
494 {
495 	ggtt_release_guc_top(ggtt);
496 	if (drm_mm_node_allocated(&ggtt->error_capture))
497 		drm_mm_remove_node(&ggtt->error_capture);
498 	mutex_destroy(&ggtt->error_mutex);
499 }
500 
501 static int init_ggtt(struct i915_ggtt *ggtt)
502 {
503 	/*
504 	 * Let GEM Manage all of the aperture.
505 	 *
506 	 * However, leave one page at the end still bound to the scratch page.
507 	 * There are a number of places where the hardware apparently prefetches
508 	 * past the end of the object, and we've seen multiple hangs with the
509 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
510 	 * aperture.  One page should be enough to keep any prefetching inside
511 	 * of the aperture.
512 	 */
513 	unsigned long hole_start, hole_end;
514 	struct drm_mm_node *entry;
515 	int ret;
516 
517 	/*
518 	 * GuC requires all resources that we're sharing with it to be placed in
519 	 * non-WOPCM memory. If GuC is not present or not in use we still need a
520 	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
521 	 * why.
522 	 */
523 	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
524 			       intel_wopcm_guc_size(&ggtt->vm.i915->wopcm));
525 
526 	ret = intel_vgt_balloon(ggtt);
527 	if (ret)
528 		return ret;
529 
530 	mutex_init(&ggtt->error_mutex);
531 	if (ggtt->mappable_end) {
532 		/* Reserve a mappable slot for our lockless error capture */
533 		ret = drm_mm_insert_node_in_range(&ggtt->vm.mm,
534 						  &ggtt->error_capture,
535 						  PAGE_SIZE, 0,
536 						  I915_COLOR_UNEVICTABLE,
537 						  0, ggtt->mappable_end,
538 						  DRM_MM_INSERT_LOW);
539 		if (ret)
540 			return ret;
541 	}
542 
543 	/*
544 	 * The upper portion of the GuC address space has a sizeable hole
545 	 * (several MB) that is inaccessible by GuC. Reserve this range within
546 	 * GGTT as it can comfortably hold GuC/HuC firmware images.
547 	 */
548 	ret = ggtt_reserve_guc_top(ggtt);
549 	if (ret)
550 		goto err;
551 
552 	/* Clear any non-preallocated blocks */
553 	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
554 		drm_dbg_kms(&ggtt->vm.i915->drm,
555 			    "clearing unused GTT space: [%lx, %lx]\n",
556 			    hole_start, hole_end);
557 		ggtt->vm.clear_range(&ggtt->vm, hole_start,
558 				     hole_end - hole_start);
559 	}
560 
561 	/* And finally clear the reserved guard page */
562 	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
563 
564 	return 0;
565 
566 err:
567 	cleanup_init_ggtt(ggtt);
568 	return ret;
569 }
570 
571 static int aliasing_gtt_bind_vma(struct i915_address_space *vm,
572 				 struct i915_vma *vma,
573 				 enum i915_cache_level cache_level,
574 				 u32 flags)
575 {
576 	u32 pte_flags;
577 	int ret;
578 
579 	/* Currently applicable only to VLV */
580 	pte_flags = 0;
581 	if (i915_gem_object_is_readonly(vma->obj))
582 		pte_flags |= PTE_READ_ONLY;
583 
584 	if (flags & I915_VMA_LOCAL_BIND) {
585 		struct i915_ppgtt *alias = i915_vm_to_ggtt(vm)->alias;
586 
587 		ret = ppgtt_bind_vma(&alias->vm, vma, cache_level, flags);
588 		if (ret)
589 			return ret;
590 	}
591 
592 	if (flags & I915_VMA_GLOBAL_BIND)
593 		vm->insert_entries(vm, vma, cache_level, pte_flags);
594 
595 	return 0;
596 }
597 
598 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm,
599 				    struct i915_vma *vma)
600 {
601 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
602 		vm->clear_range(vm, vma->node.start, vma->size);
603 
604 	if (i915_vma_is_bound(vma, I915_VMA_LOCAL_BIND))
605 		ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma);
606 }
607 
608 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
609 {
610 	struct i915_ppgtt *ppgtt;
611 	int err;
612 
613 	ppgtt = i915_ppgtt_create(ggtt->vm.gt);
614 	if (IS_ERR(ppgtt))
615 		return PTR_ERR(ppgtt);
616 
617 	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
618 		err = -ENODEV;
619 		goto err_ppgtt;
620 	}
621 
622 	/*
623 	 * Note we only pre-allocate as far as the end of the global
624 	 * GTT. On 48b / 4-level page-tables, the difference is very,
625 	 * very significant! We have to preallocate as GVT/vgpu does
626 	 * not like the page directory disappearing.
627 	 */
628 	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
629 	if (err)
630 		goto err_ppgtt;
631 
632 	ggtt->alias = ppgtt;
633 	ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
634 
635 	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
636 	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
637 
638 	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
639 	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
640 
641 	return 0;
642 
643 err_ppgtt:
644 	i915_vm_put(&ppgtt->vm);
645 	return err;
646 }
647 
648 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
649 {
650 	struct i915_ppgtt *ppgtt;
651 
652 	ppgtt = fetch_and_zero(&ggtt->alias);
653 	if (!ppgtt)
654 		return;
655 
656 	i915_vm_put(&ppgtt->vm);
657 
658 	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
659 	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
660 }
661 
662 int i915_init_ggtt(struct drm_i915_private *i915)
663 {
664 	int ret;
665 
666 	ret = init_ggtt(&i915->ggtt);
667 	if (ret)
668 		return ret;
669 
670 	if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
671 		ret = init_aliasing_ppgtt(&i915->ggtt);
672 		if (ret)
673 			cleanup_init_ggtt(&i915->ggtt);
674 	}
675 
676 	return 0;
677 }
678 
679 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
680 {
681 	struct i915_vma *vma, *vn;
682 
683 	atomic_set(&ggtt->vm.open, 0);
684 
685 	rcu_barrier(); /* flush the RCU'ed__i915_vm_release */
686 	flush_workqueue(ggtt->vm.i915->wq);
687 
688 	mutex_lock(&ggtt->vm.mutex);
689 
690 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
691 		WARN_ON(__i915_vma_unbind(vma));
692 
693 	if (drm_mm_node_allocated(&ggtt->error_capture))
694 		drm_mm_remove_node(&ggtt->error_capture);
695 	mutex_destroy(&ggtt->error_mutex);
696 
697 	ggtt_release_guc_top(ggtt);
698 	intel_vgt_deballoon(ggtt);
699 
700 	ggtt->vm.cleanup(&ggtt->vm);
701 
702 	mutex_unlock(&ggtt->vm.mutex);
703 	i915_address_space_fini(&ggtt->vm);
704 
705 	arch_phys_wc_del(ggtt->mtrr);
706 
707 	if (ggtt->iomap.size)
708 		io_mapping_fini(&ggtt->iomap);
709 }
710 
711 /**
712  * i915_ggtt_driver_release - Clean up GGTT hardware initialization
713  * @i915: i915 device
714  */
715 void i915_ggtt_driver_release(struct drm_i915_private *i915)
716 {
717 	struct i915_ggtt *ggtt = &i915->ggtt;
718 	struct pagevec *pvec;
719 
720 	fini_aliasing_ppgtt(ggtt);
721 
722 	intel_ggtt_fini_fences(ggtt);
723 	ggtt_cleanup_hw(ggtt);
724 
725 	pvec = &i915->mm.wc_stash.pvec;
726 	if (pvec->nr) {
727 		set_pages_array_wb(pvec->pages, pvec->nr);
728 		__pagevec_release(pvec);
729 	}
730 }
731 
732 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
733 {
734 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
735 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
736 	return snb_gmch_ctl << 20;
737 }
738 
739 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
740 {
741 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
742 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
743 	if (bdw_gmch_ctl)
744 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
745 
746 #ifdef CONFIG_X86_32
747 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
748 	if (bdw_gmch_ctl > 4)
749 		bdw_gmch_ctl = 4;
750 #endif
751 
752 	return bdw_gmch_ctl << 20;
753 }
754 
755 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
756 {
757 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
758 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
759 
760 	if (gmch_ctrl)
761 		return 1 << (20 + gmch_ctrl);
762 
763 	return 0;
764 }
765 
766 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
767 {
768 	struct drm_i915_private *i915 = ggtt->vm.i915;
769 	struct pci_dev *pdev = i915->drm.pdev;
770 	phys_addr_t phys_addr;
771 	int ret;
772 
773 	/* For Modern GENs the PTEs and register space are split in the BAR */
774 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
775 
776 	/*
777 	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
778 	 * will be dropped. For WC mappings in general we have 64 byte burst
779 	 * writes when the WC buffer is flushed, so we can't use it, but have to
780 	 * resort to an uncached mapping. The WC issue is easily caught by the
781 	 * readback check when writing GTT PTE entries.
782 	 */
783 	if (IS_GEN9_LP(i915) || INTEL_GEN(i915) >= 10)
784 		ggtt->gsm = ioremap(phys_addr, size);
785 	else
786 		ggtt->gsm = ioremap_wc(phys_addr, size);
787 	if (!ggtt->gsm) {
788 		drm_err(&i915->drm, "Failed to map the ggtt page table\n");
789 		return -ENOMEM;
790 	}
791 
792 	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
793 	if (ret) {
794 		drm_err(&i915->drm, "Scratch setup failed\n");
795 		/* iounmap will also get called at remove, but meh */
796 		iounmap(ggtt->gsm);
797 		return ret;
798 	}
799 
800 	ggtt->vm.scratch[0].encode =
801 		ggtt->vm.pte_encode(px_dma(&ggtt->vm.scratch[0]),
802 				    I915_CACHE_NONE, 0);
803 
804 	return 0;
805 }
806 
807 int ggtt_set_pages(struct i915_vma *vma)
808 {
809 	int ret;
810 
811 	GEM_BUG_ON(vma->pages);
812 
813 	ret = i915_get_ggtt_vma_pages(vma);
814 	if (ret)
815 		return ret;
816 
817 	vma->page_sizes = vma->obj->mm.page_sizes;
818 
819 	return 0;
820 }
821 
822 static void gen6_gmch_remove(struct i915_address_space *vm)
823 {
824 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
825 
826 	iounmap(ggtt->gsm);
827 	cleanup_scratch_page(vm);
828 }
829 
830 static struct resource pci_resource(struct pci_dev *pdev, int bar)
831 {
832 	return (struct resource)DEFINE_RES_MEM(pci_resource_start(pdev, bar),
833 					       pci_resource_len(pdev, bar));
834 }
835 
836 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
837 {
838 	struct drm_i915_private *i915 = ggtt->vm.i915;
839 	struct pci_dev *pdev = i915->drm.pdev;
840 	unsigned int size;
841 	u16 snb_gmch_ctl;
842 
843 	/* TODO: We're not aware of mappable constraints on gen8 yet */
844 	if (!IS_DGFX(i915)) {
845 		ggtt->gmadr = pci_resource(pdev, 2);
846 		ggtt->mappable_end = resource_size(&ggtt->gmadr);
847 	}
848 
849 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
850 	if (IS_CHERRYVIEW(i915))
851 		size = chv_get_total_gtt_size(snb_gmch_ctl);
852 	else
853 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
854 
855 	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
856 	ggtt->vm.cleanup = gen6_gmch_remove;
857 	ggtt->vm.insert_page = gen8_ggtt_insert_page;
858 	ggtt->vm.clear_range = nop_clear_range;
859 	if (intel_scanout_needs_vtd_wa(i915))
860 		ggtt->vm.clear_range = gen8_ggtt_clear_range;
861 
862 	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
863 
864 	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
865 	if (intel_ggtt_update_needs_vtd_wa(i915) ||
866 	    IS_CHERRYVIEW(i915) /* fails with concurrent use/update */) {
867 		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
868 		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
869 		ggtt->vm.bind_async_flags =
870 			I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
871 	}
872 
873 	ggtt->invalidate = gen8_ggtt_invalidate;
874 
875 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
876 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
877 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
878 	ggtt->vm.vma_ops.clear_pages = clear_pages;
879 
880 	ggtt->vm.pte_encode = gen8_ggtt_pte_encode;
881 
882 	setup_private_pat(ggtt->vm.gt->uncore);
883 
884 	return ggtt_probe_common(ggtt, size);
885 }
886 
887 static u64 snb_pte_encode(dma_addr_t addr,
888 			  enum i915_cache_level level,
889 			  u32 flags)
890 {
891 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
892 
893 	switch (level) {
894 	case I915_CACHE_L3_LLC:
895 	case I915_CACHE_LLC:
896 		pte |= GEN6_PTE_CACHE_LLC;
897 		break;
898 	case I915_CACHE_NONE:
899 		pte |= GEN6_PTE_UNCACHED;
900 		break;
901 	default:
902 		MISSING_CASE(level);
903 	}
904 
905 	return pte;
906 }
907 
908 static u64 ivb_pte_encode(dma_addr_t addr,
909 			  enum i915_cache_level level,
910 			  u32 flags)
911 {
912 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
913 
914 	switch (level) {
915 	case I915_CACHE_L3_LLC:
916 		pte |= GEN7_PTE_CACHE_L3_LLC;
917 		break;
918 	case I915_CACHE_LLC:
919 		pte |= GEN6_PTE_CACHE_LLC;
920 		break;
921 	case I915_CACHE_NONE:
922 		pte |= GEN6_PTE_UNCACHED;
923 		break;
924 	default:
925 		MISSING_CASE(level);
926 	}
927 
928 	return pte;
929 }
930 
931 static u64 byt_pte_encode(dma_addr_t addr,
932 			  enum i915_cache_level level,
933 			  u32 flags)
934 {
935 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
936 
937 	if (!(flags & PTE_READ_ONLY))
938 		pte |= BYT_PTE_WRITEABLE;
939 
940 	if (level != I915_CACHE_NONE)
941 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
942 
943 	return pte;
944 }
945 
946 static u64 hsw_pte_encode(dma_addr_t addr,
947 			  enum i915_cache_level level,
948 			  u32 flags)
949 {
950 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
951 
952 	if (level != I915_CACHE_NONE)
953 		pte |= HSW_WB_LLC_AGE3;
954 
955 	return pte;
956 }
957 
958 static u64 iris_pte_encode(dma_addr_t addr,
959 			   enum i915_cache_level level,
960 			   u32 flags)
961 {
962 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
963 
964 	switch (level) {
965 	case I915_CACHE_NONE:
966 		break;
967 	case I915_CACHE_WT:
968 		pte |= HSW_WT_ELLC_LLC_AGE3;
969 		break;
970 	default:
971 		pte |= HSW_WB_ELLC_LLC_AGE3;
972 		break;
973 	}
974 
975 	return pte;
976 }
977 
978 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
979 {
980 	struct drm_i915_private *i915 = ggtt->vm.i915;
981 	struct pci_dev *pdev = i915->drm.pdev;
982 	unsigned int size;
983 	u16 snb_gmch_ctl;
984 
985 	ggtt->gmadr = pci_resource(pdev, 2);
986 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
987 
988 	/*
989 	 * 64/512MB is the current min/max we actually know of, but this is
990 	 * just a coarse sanity check.
991 	 */
992 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
993 		drm_err(&i915->drm, "Unknown GMADR size (%pa)\n",
994 			&ggtt->mappable_end);
995 		return -ENXIO;
996 	}
997 
998 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
999 
1000 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
1001 	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
1002 
1003 	ggtt->vm.clear_range = nop_clear_range;
1004 	if (!HAS_FULL_PPGTT(i915) || intel_scanout_needs_vtd_wa(i915))
1005 		ggtt->vm.clear_range = gen6_ggtt_clear_range;
1006 	ggtt->vm.insert_page = gen6_ggtt_insert_page;
1007 	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
1008 	ggtt->vm.cleanup = gen6_gmch_remove;
1009 
1010 	ggtt->invalidate = gen6_ggtt_invalidate;
1011 
1012 	if (HAS_EDRAM(i915))
1013 		ggtt->vm.pte_encode = iris_pte_encode;
1014 	else if (IS_HASWELL(i915))
1015 		ggtt->vm.pte_encode = hsw_pte_encode;
1016 	else if (IS_VALLEYVIEW(i915))
1017 		ggtt->vm.pte_encode = byt_pte_encode;
1018 	else if (INTEL_GEN(i915) >= 7)
1019 		ggtt->vm.pte_encode = ivb_pte_encode;
1020 	else
1021 		ggtt->vm.pte_encode = snb_pte_encode;
1022 
1023 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
1024 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
1025 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
1026 	ggtt->vm.vma_ops.clear_pages = clear_pages;
1027 
1028 	return ggtt_probe_common(ggtt, size);
1029 }
1030 
1031 static void i915_gmch_remove(struct i915_address_space *vm)
1032 {
1033 	intel_gmch_remove();
1034 }
1035 
1036 static int i915_gmch_probe(struct i915_ggtt *ggtt)
1037 {
1038 	struct drm_i915_private *i915 = ggtt->vm.i915;
1039 	phys_addr_t gmadr_base;
1040 	int ret;
1041 
1042 	ret = intel_gmch_probe(i915->bridge_dev, i915->drm.pdev, NULL);
1043 	if (!ret) {
1044 		drm_err(&i915->drm, "failed to set up gmch\n");
1045 		return -EIO;
1046 	}
1047 
1048 	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
1049 
1050 	ggtt->gmadr =
1051 		(struct resource)DEFINE_RES_MEM(gmadr_base, ggtt->mappable_end);
1052 
1053 	ggtt->do_idle_maps = needs_idle_maps(i915);
1054 	ggtt->vm.insert_page = i915_ggtt_insert_page;
1055 	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
1056 	ggtt->vm.clear_range = i915_ggtt_clear_range;
1057 	ggtt->vm.cleanup = i915_gmch_remove;
1058 
1059 	ggtt->invalidate = gmch_ggtt_invalidate;
1060 
1061 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
1062 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
1063 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
1064 	ggtt->vm.vma_ops.clear_pages = clear_pages;
1065 
1066 	if (unlikely(ggtt->do_idle_maps))
1067 		drm_notice(&i915->drm,
1068 			   "Applying Ironlake quirks for intel_iommu\n");
1069 
1070 	return 0;
1071 }
1072 
1073 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
1074 {
1075 	struct drm_i915_private *i915 = gt->i915;
1076 	int ret;
1077 
1078 	ggtt->vm.gt = gt;
1079 	ggtt->vm.i915 = i915;
1080 	ggtt->vm.dma = &i915->drm.pdev->dev;
1081 
1082 	if (INTEL_GEN(i915) <= 5)
1083 		ret = i915_gmch_probe(ggtt);
1084 	else if (INTEL_GEN(i915) < 8)
1085 		ret = gen6_gmch_probe(ggtt);
1086 	else
1087 		ret = gen8_gmch_probe(ggtt);
1088 	if (ret)
1089 		return ret;
1090 
1091 	if ((ggtt->vm.total - 1) >> 32) {
1092 		drm_err(&i915->drm,
1093 			"We never expected a Global GTT with more than 32bits"
1094 			" of address space! Found %lldM!\n",
1095 			ggtt->vm.total >> 20);
1096 		ggtt->vm.total = 1ULL << 32;
1097 		ggtt->mappable_end =
1098 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
1099 	}
1100 
1101 	if (ggtt->mappable_end > ggtt->vm.total) {
1102 		drm_err(&i915->drm,
1103 			"mappable aperture extends past end of GGTT,"
1104 			" aperture=%pa, total=%llx\n",
1105 			&ggtt->mappable_end, ggtt->vm.total);
1106 		ggtt->mappable_end = ggtt->vm.total;
1107 	}
1108 
1109 	/* GMADR is the PCI mmio aperture into the global GTT. */
1110 	drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20);
1111 	drm_dbg(&i915->drm, "GMADR size = %lluM\n",
1112 		(u64)ggtt->mappable_end >> 20);
1113 	drm_dbg(&i915->drm, "DSM size = %lluM\n",
1114 		(u64)resource_size(&intel_graphics_stolen_res) >> 20);
1115 
1116 	return 0;
1117 }
1118 
1119 /**
1120  * i915_ggtt_probe_hw - Probe GGTT hardware location
1121  * @i915: i915 device
1122  */
1123 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
1124 {
1125 	int ret;
1126 
1127 	ret = ggtt_probe_hw(&i915->ggtt, &i915->gt);
1128 	if (ret)
1129 		return ret;
1130 
1131 	if (intel_vtd_active())
1132 		drm_info(&i915->drm, "VT-d active for gfx access\n");
1133 
1134 	return 0;
1135 }
1136 
1137 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
1138 {
1139 	if (INTEL_GEN(i915) < 6 && !intel_enable_gtt())
1140 		return -EIO;
1141 
1142 	return 0;
1143 }
1144 
1145 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt)
1146 {
1147 	GEM_BUG_ON(ggtt->invalidate != gen8_ggtt_invalidate);
1148 
1149 	ggtt->invalidate = guc_ggtt_invalidate;
1150 
1151 	ggtt->invalidate(ggtt);
1152 }
1153 
1154 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt)
1155 {
1156 	/* XXX Temporary pardon for error unload */
1157 	if (ggtt->invalidate == gen8_ggtt_invalidate)
1158 		return;
1159 
1160 	/* We should only be called after i915_ggtt_enable_guc() */
1161 	GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate);
1162 
1163 	ggtt->invalidate = gen8_ggtt_invalidate;
1164 
1165 	ggtt->invalidate(ggtt);
1166 }
1167 
1168 static unsigned int clear_bind(struct i915_vma *vma)
1169 {
1170 	return atomic_fetch_and(~I915_VMA_BIND_MASK, &vma->flags);
1171 }
1172 
1173 void i915_ggtt_resume(struct i915_ggtt *ggtt)
1174 {
1175 	struct i915_vma *vma;
1176 	bool flush = false;
1177 	int open;
1178 
1179 	intel_gt_check_and_clear_faults(ggtt->vm.gt);
1180 
1181 	/* First fill our portion of the GTT with scratch pages */
1182 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
1183 
1184 	/* Skip rewriting PTE on VMA unbind. */
1185 	open = atomic_xchg(&ggtt->vm.open, 0);
1186 
1187 	/* clflush objects bound into the GGTT and rebind them. */
1188 	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link) {
1189 		struct drm_i915_gem_object *obj = vma->obj;
1190 		unsigned int was_bound = clear_bind(vma);
1191 
1192 		WARN_ON(i915_vma_bind(vma,
1193 				      obj ? obj->cache_level : 0,
1194 				      was_bound, NULL));
1195 		if (obj) { /* only used during resume => exclusive access */
1196 			flush |= fetch_and_zero(&obj->write_domain);
1197 			obj->read_domains |= I915_GEM_DOMAIN_GTT;
1198 		}
1199 	}
1200 
1201 	atomic_set(&ggtt->vm.open, open);
1202 	ggtt->invalidate(ggtt);
1203 
1204 	if (flush)
1205 		wbinvd_on_all_cpus();
1206 
1207 	if (INTEL_GEN(ggtt->vm.i915) >= 8)
1208 		setup_private_pat(ggtt->vm.gt->uncore);
1209 
1210 	intel_ggtt_restore_fences(ggtt);
1211 }
1212 
1213 static struct scatterlist *
1214 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
1215 	     unsigned int width, unsigned int height,
1216 	     unsigned int stride,
1217 	     struct sg_table *st, struct scatterlist *sg)
1218 {
1219 	unsigned int column, row;
1220 	unsigned int src_idx;
1221 
1222 	for (column = 0; column < width; column++) {
1223 		src_idx = stride * (height - 1) + column + offset;
1224 		for (row = 0; row < height; row++) {
1225 			st->nents++;
1226 			/*
1227 			 * We don't need the pages, but need to initialize
1228 			 * the entries so the sg list can be happily traversed.
1229 			 * The only thing we need are DMA addresses.
1230 			 */
1231 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
1232 			sg_dma_address(sg) =
1233 				i915_gem_object_get_dma_address(obj, src_idx);
1234 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
1235 			sg = sg_next(sg);
1236 			src_idx -= stride;
1237 		}
1238 	}
1239 
1240 	return sg;
1241 }
1242 
1243 static noinline struct sg_table *
1244 intel_rotate_pages(struct intel_rotation_info *rot_info,
1245 		   struct drm_i915_gem_object *obj)
1246 {
1247 	unsigned int size = intel_rotation_info_size(rot_info);
1248 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1249 	struct sg_table *st;
1250 	struct scatterlist *sg;
1251 	int ret = -ENOMEM;
1252 	int i;
1253 
1254 	/* Allocate target SG list. */
1255 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1256 	if (!st)
1257 		goto err_st_alloc;
1258 
1259 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1260 	if (ret)
1261 		goto err_sg_alloc;
1262 
1263 	st->nents = 0;
1264 	sg = st->sgl;
1265 
1266 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
1267 		sg = rotate_pages(obj, rot_info->plane[i].offset,
1268 				  rot_info->plane[i].width, rot_info->plane[i].height,
1269 				  rot_info->plane[i].stride, st, sg);
1270 	}
1271 
1272 	return st;
1273 
1274 err_sg_alloc:
1275 	kfree(st);
1276 err_st_alloc:
1277 
1278 	drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1279 		obj->base.size, rot_info->plane[0].width,
1280 		rot_info->plane[0].height, size);
1281 
1282 	return ERR_PTR(ret);
1283 }
1284 
1285 static struct scatterlist *
1286 remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
1287 	    unsigned int width, unsigned int height,
1288 	    unsigned int stride,
1289 	    struct sg_table *st, struct scatterlist *sg)
1290 {
1291 	unsigned int row;
1292 
1293 	for (row = 0; row < height; row++) {
1294 		unsigned int left = width * I915_GTT_PAGE_SIZE;
1295 
1296 		while (left) {
1297 			dma_addr_t addr;
1298 			unsigned int length;
1299 
1300 			/*
1301 			 * We don't need the pages, but need to initialize
1302 			 * the entries so the sg list can be happily traversed.
1303 			 * The only thing we need are DMA addresses.
1304 			 */
1305 
1306 			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1307 
1308 			length = min(left, length);
1309 
1310 			st->nents++;
1311 
1312 			sg_set_page(sg, NULL, length, 0);
1313 			sg_dma_address(sg) = addr;
1314 			sg_dma_len(sg) = length;
1315 			sg = sg_next(sg);
1316 
1317 			offset += length / I915_GTT_PAGE_SIZE;
1318 			left -= length;
1319 		}
1320 
1321 		offset += stride - width;
1322 	}
1323 
1324 	return sg;
1325 }
1326 
1327 static noinline struct sg_table *
1328 intel_remap_pages(struct intel_remapped_info *rem_info,
1329 		  struct drm_i915_gem_object *obj)
1330 {
1331 	unsigned int size = intel_remapped_info_size(rem_info);
1332 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1333 	struct sg_table *st;
1334 	struct scatterlist *sg;
1335 	int ret = -ENOMEM;
1336 	int i;
1337 
1338 	/* Allocate target SG list. */
1339 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1340 	if (!st)
1341 		goto err_st_alloc;
1342 
1343 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1344 	if (ret)
1345 		goto err_sg_alloc;
1346 
1347 	st->nents = 0;
1348 	sg = st->sgl;
1349 
1350 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
1351 		sg = remap_pages(obj, rem_info->plane[i].offset,
1352 				 rem_info->plane[i].width, rem_info->plane[i].height,
1353 				 rem_info->plane[i].stride, st, sg);
1354 	}
1355 
1356 	i915_sg_trim(st);
1357 
1358 	return st;
1359 
1360 err_sg_alloc:
1361 	kfree(st);
1362 err_st_alloc:
1363 
1364 	drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1365 		obj->base.size, rem_info->plane[0].width,
1366 		rem_info->plane[0].height, size);
1367 
1368 	return ERR_PTR(ret);
1369 }
1370 
1371 static noinline struct sg_table *
1372 intel_partial_pages(const struct i915_ggtt_view *view,
1373 		    struct drm_i915_gem_object *obj)
1374 {
1375 	struct sg_table *st;
1376 	struct scatterlist *sg, *iter;
1377 	unsigned int count = view->partial.size;
1378 	unsigned int offset;
1379 	int ret = -ENOMEM;
1380 
1381 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1382 	if (!st)
1383 		goto err_st_alloc;
1384 
1385 	ret = sg_alloc_table(st, count, GFP_KERNEL);
1386 	if (ret)
1387 		goto err_sg_alloc;
1388 
1389 	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
1390 	GEM_BUG_ON(!iter);
1391 
1392 	sg = st->sgl;
1393 	st->nents = 0;
1394 	do {
1395 		unsigned int len;
1396 
1397 		len = min(iter->length - (offset << PAGE_SHIFT),
1398 			  count << PAGE_SHIFT);
1399 		sg_set_page(sg, NULL, len, 0);
1400 		sg_dma_address(sg) =
1401 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
1402 		sg_dma_len(sg) = len;
1403 
1404 		st->nents++;
1405 		count -= len >> PAGE_SHIFT;
1406 		if (count == 0) {
1407 			sg_mark_end(sg);
1408 			i915_sg_trim(st); /* Drop any unused tail entries. */
1409 
1410 			return st;
1411 		}
1412 
1413 		sg = __sg_next(sg);
1414 		iter = __sg_next(iter);
1415 		offset = 0;
1416 	} while (1);
1417 
1418 err_sg_alloc:
1419 	kfree(st);
1420 err_st_alloc:
1421 	return ERR_PTR(ret);
1422 }
1423 
1424 static int
1425 i915_get_ggtt_vma_pages(struct i915_vma *vma)
1426 {
1427 	int ret;
1428 
1429 	/*
1430 	 * The vma->pages are only valid within the lifespan of the borrowed
1431 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1432 	 * must be the vma->pages. A simple rule is that vma->pages must only
1433 	 * be accessed when the obj->mm.pages are pinned.
1434 	 */
1435 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1436 
1437 	switch (vma->ggtt_view.type) {
1438 	default:
1439 		GEM_BUG_ON(vma->ggtt_view.type);
1440 		/* fall through */
1441 	case I915_GGTT_VIEW_NORMAL:
1442 		vma->pages = vma->obj->mm.pages;
1443 		return 0;
1444 
1445 	case I915_GGTT_VIEW_ROTATED:
1446 		vma->pages =
1447 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
1448 		break;
1449 
1450 	case I915_GGTT_VIEW_REMAPPED:
1451 		vma->pages =
1452 			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
1453 		break;
1454 
1455 	case I915_GGTT_VIEW_PARTIAL:
1456 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
1457 		break;
1458 	}
1459 
1460 	ret = 0;
1461 	if (IS_ERR(vma->pages)) {
1462 		ret = PTR_ERR(vma->pages);
1463 		vma->pages = NULL;
1464 		drm_err(&vma->vm->i915->drm,
1465 			"Failed to get pages for VMA view type %u (%d)!\n",
1466 			vma->ggtt_view.type, ret);
1467 	}
1468 	return ret;
1469 }
1470