xref: /linux/drivers/gpu/drm/i915/gt/intel_ggtt.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <linux/stop_machine.h>
7 
8 #include <asm/set_memory.h>
9 #include <asm/smp.h>
10 
11 #include "intel_gt.h"
12 #include "i915_drv.h"
13 #include "i915_scatterlist.h"
14 #include "i915_vgpu.h"
15 
16 #include "intel_gtt.h"
17 
18 static int
19 i915_get_ggtt_vma_pages(struct i915_vma *vma);
20 
21 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
22 				   unsigned long color,
23 				   u64 *start,
24 				   u64 *end)
25 {
26 	if (i915_node_color_differs(node, color))
27 		*start += I915_GTT_PAGE_SIZE;
28 
29 	/*
30 	 * Also leave a space between the unallocated reserved node after the
31 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
32 	 * to insert a guard page to prevent prefetches crossing over the
33 	 * GTT boundary.
34 	 */
35 	node = list_next_entry(node, node_list);
36 	if (node->color != color)
37 		*end -= I915_GTT_PAGE_SIZE;
38 }
39 
40 static int ggtt_init_hw(struct i915_ggtt *ggtt)
41 {
42 	struct drm_i915_private *i915 = ggtt->vm.i915;
43 
44 	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
45 
46 	ggtt->vm.is_ggtt = true;
47 
48 	/* Only VLV supports read-only GGTT mappings */
49 	ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
50 
51 	if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
52 		ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
53 
54 	if (ggtt->mappable_end) {
55 		if (!io_mapping_init_wc(&ggtt->iomap,
56 					ggtt->gmadr.start,
57 					ggtt->mappable_end)) {
58 			ggtt->vm.cleanup(&ggtt->vm);
59 			return -EIO;
60 		}
61 
62 		ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
63 					      ggtt->mappable_end);
64 	}
65 
66 	i915_ggtt_init_fences(ggtt);
67 
68 	return 0;
69 }
70 
71 /**
72  * i915_ggtt_init_hw - Initialize GGTT hardware
73  * @i915: i915 device
74  */
75 int i915_ggtt_init_hw(struct drm_i915_private *i915)
76 {
77 	int ret;
78 
79 	stash_init(&i915->mm.wc_stash);
80 
81 	/*
82 	 * Note that we use page colouring to enforce a guard page at the
83 	 * end of the address space. This is required as the CS may prefetch
84 	 * beyond the end of the batch buffer, across the page boundary,
85 	 * and beyond the end of the GTT if we do not provide a guard.
86 	 */
87 	ret = ggtt_init_hw(&i915->ggtt);
88 	if (ret)
89 		return ret;
90 
91 	return 0;
92 }
93 
94 /*
95  * Certain Gen5 chipsets require require idling the GPU before
96  * unmapping anything from the GTT when VT-d is enabled.
97  */
98 static bool needs_idle_maps(struct drm_i915_private *i915)
99 {
100 	/*
101 	 * Query intel_iommu to see if we need the workaround. Presumably that
102 	 * was loaded first.
103 	 */
104 	return IS_GEN(i915, 5) && IS_MOBILE(i915) && intel_vtd_active();
105 }
106 
107 void i915_ggtt_suspend(struct i915_ggtt *ggtt)
108 {
109 	struct i915_vma *vma;
110 
111 	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
112 		i915_vma_wait_for_bind(vma);
113 
114 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
115 	ggtt->invalidate(ggtt);
116 
117 	intel_gt_check_and_clear_faults(ggtt->vm.gt);
118 }
119 
120 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
121 {
122 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
123 
124 	spin_lock_irq(&uncore->lock);
125 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
126 	intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
127 	spin_unlock_irq(&uncore->lock);
128 }
129 
130 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
131 {
132 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
133 
134 	/*
135 	 * Note that as an uncached mmio write, this will flush the
136 	 * WCB of the writes into the GGTT before it triggers the invalidate.
137 	 */
138 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
139 }
140 
141 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
142 {
143 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
144 	struct drm_i915_private *i915 = ggtt->vm.i915;
145 
146 	gen8_ggtt_invalidate(ggtt);
147 
148 	if (INTEL_GEN(i915) >= 12)
149 		intel_uncore_write_fw(uncore, GEN12_GUC_TLB_INV_CR,
150 				      GEN12_GUC_TLB_INV_CR_INVALIDATE);
151 	else
152 		intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
153 }
154 
155 static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt)
156 {
157 	intel_gtt_chipset_flush();
158 }
159 
160 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
161 {
162 	writeq(pte, addr);
163 }
164 
165 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
166 				  dma_addr_t addr,
167 				  u64 offset,
168 				  enum i915_cache_level level,
169 				  u32 unused)
170 {
171 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
172 	gen8_pte_t __iomem *pte =
173 		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
174 
175 	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
176 
177 	ggtt->invalidate(ggtt);
178 }
179 
180 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
181 				     struct i915_vma *vma,
182 				     enum i915_cache_level level,
183 				     u32 flags)
184 {
185 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
186 	struct sgt_iter sgt_iter;
187 	gen8_pte_t __iomem *gtt_entries;
188 	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
189 	dma_addr_t addr;
190 
191 	/*
192 	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
193 	 * not to allow the user to override access to a read only page.
194 	 */
195 
196 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
197 	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
198 	for_each_sgt_daddr(addr, sgt_iter, vma->pages)
199 		gen8_set_pte(gtt_entries++, pte_encode | addr);
200 
201 	/*
202 	 * We want to flush the TLBs only after we're certain all the PTE
203 	 * updates have finished.
204 	 */
205 	ggtt->invalidate(ggtt);
206 }
207 
208 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
209 				  dma_addr_t addr,
210 				  u64 offset,
211 				  enum i915_cache_level level,
212 				  u32 flags)
213 {
214 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
215 	gen6_pte_t __iomem *pte =
216 		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
217 
218 	iowrite32(vm->pte_encode(addr, level, flags), pte);
219 
220 	ggtt->invalidate(ggtt);
221 }
222 
223 /*
224  * Binds an object into the global gtt with the specified cache level.
225  * The object will be accessible to the GPU via commands whose operands
226  * reference offsets within the global GTT as well as accessible by the GPU
227  * through the GMADR mapped BAR (i915->mm.gtt->gtt).
228  */
229 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
230 				     struct i915_vma *vma,
231 				     enum i915_cache_level level,
232 				     u32 flags)
233 {
234 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
235 	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
236 	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
237 	struct sgt_iter iter;
238 	dma_addr_t addr;
239 
240 	for_each_sgt_daddr(addr, iter, vma->pages)
241 		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
242 
243 	/*
244 	 * We want to flush the TLBs only after we're certain all the PTE
245 	 * updates have finished.
246 	 */
247 	ggtt->invalidate(ggtt);
248 }
249 
250 static void nop_clear_range(struct i915_address_space *vm,
251 			    u64 start, u64 length)
252 {
253 }
254 
255 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
256 				  u64 start, u64 length)
257 {
258 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
259 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
260 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
261 	const gen8_pte_t scratch_pte = vm->scratch[0].encode;
262 	gen8_pte_t __iomem *gtt_base =
263 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
264 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
265 	int i;
266 
267 	if (WARN(num_entries > max_entries,
268 		 "First entry = %d; Num entries = %d (max=%d)\n",
269 		 first_entry, num_entries, max_entries))
270 		num_entries = max_entries;
271 
272 	for (i = 0; i < num_entries; i++)
273 		gen8_set_pte(&gtt_base[i], scratch_pte);
274 }
275 
276 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
277 {
278 	/*
279 	 * Make sure the internal GAM fifo has been cleared of all GTT
280 	 * writes before exiting stop_machine(). This guarantees that
281 	 * any aperture accesses waiting to start in another process
282 	 * cannot back up behind the GTT writes causing a hang.
283 	 * The register can be any arbitrary GAM register.
284 	 */
285 	intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
286 }
287 
288 struct insert_page {
289 	struct i915_address_space *vm;
290 	dma_addr_t addr;
291 	u64 offset;
292 	enum i915_cache_level level;
293 };
294 
295 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
296 {
297 	struct insert_page *arg = _arg;
298 
299 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
300 	bxt_vtd_ggtt_wa(arg->vm);
301 
302 	return 0;
303 }
304 
305 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
306 					  dma_addr_t addr,
307 					  u64 offset,
308 					  enum i915_cache_level level,
309 					  u32 unused)
310 {
311 	struct insert_page arg = { vm, addr, offset, level };
312 
313 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
314 }
315 
316 struct insert_entries {
317 	struct i915_address_space *vm;
318 	struct i915_vma *vma;
319 	enum i915_cache_level level;
320 	u32 flags;
321 };
322 
323 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
324 {
325 	struct insert_entries *arg = _arg;
326 
327 	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
328 	bxt_vtd_ggtt_wa(arg->vm);
329 
330 	return 0;
331 }
332 
333 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
334 					     struct i915_vma *vma,
335 					     enum i915_cache_level level,
336 					     u32 flags)
337 {
338 	struct insert_entries arg = { vm, vma, level, flags };
339 
340 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
341 }
342 
343 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
344 				  u64 start, u64 length)
345 {
346 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
347 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
348 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
349 	gen6_pte_t scratch_pte, __iomem *gtt_base =
350 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
351 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
352 	int i;
353 
354 	if (WARN(num_entries > max_entries,
355 		 "First entry = %d; Num entries = %d (max=%d)\n",
356 		 first_entry, num_entries, max_entries))
357 		num_entries = max_entries;
358 
359 	scratch_pte = vm->scratch[0].encode;
360 	for (i = 0; i < num_entries; i++)
361 		iowrite32(scratch_pte, &gtt_base[i]);
362 }
363 
364 static void i915_ggtt_insert_page(struct i915_address_space *vm,
365 				  dma_addr_t addr,
366 				  u64 offset,
367 				  enum i915_cache_level cache_level,
368 				  u32 unused)
369 {
370 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
371 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
372 
373 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
374 }
375 
376 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
377 				     struct i915_vma *vma,
378 				     enum i915_cache_level cache_level,
379 				     u32 unused)
380 {
381 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
382 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
383 
384 	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
385 				    flags);
386 }
387 
388 static void i915_ggtt_clear_range(struct i915_address_space *vm,
389 				  u64 start, u64 length)
390 {
391 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
392 }
393 
394 static int ggtt_bind_vma(struct i915_vma *vma,
395 			 enum i915_cache_level cache_level,
396 			 u32 flags)
397 {
398 	struct drm_i915_gem_object *obj = vma->obj;
399 	u32 pte_flags;
400 
401 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
402 	pte_flags = 0;
403 	if (i915_gem_object_is_readonly(obj))
404 		pte_flags |= PTE_READ_ONLY;
405 
406 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
407 
408 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
409 
410 	/*
411 	 * Without aliasing PPGTT there's no difference between
412 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
413 	 * upgrade to both bound if we bind either to avoid double-binding.
414 	 */
415 	atomic_or(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND, &vma->flags);
416 
417 	return 0;
418 }
419 
420 static void ggtt_unbind_vma(struct i915_vma *vma)
421 {
422 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
423 }
424 
425 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
426 {
427 	u64 size;
428 	int ret;
429 
430 	if (!intel_uc_uses_guc(&ggtt->vm.gt->uc))
431 		return 0;
432 
433 	GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
434 	size = ggtt->vm.total - GUC_GGTT_TOP;
435 
436 	ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size,
437 				   GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
438 				   PIN_NOEVICT);
439 	if (ret)
440 		drm_dbg(&ggtt->vm.i915->drm,
441 			"Failed to reserve top of GGTT for GuC\n");
442 
443 	return ret;
444 }
445 
446 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
447 {
448 	if (drm_mm_node_allocated(&ggtt->uc_fw))
449 		drm_mm_remove_node(&ggtt->uc_fw);
450 }
451 
452 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
453 {
454 	ggtt_release_guc_top(ggtt);
455 	if (drm_mm_node_allocated(&ggtt->error_capture))
456 		drm_mm_remove_node(&ggtt->error_capture);
457 	mutex_destroy(&ggtt->error_mutex);
458 }
459 
460 static int init_ggtt(struct i915_ggtt *ggtt)
461 {
462 	/*
463 	 * Let GEM Manage all of the aperture.
464 	 *
465 	 * However, leave one page at the end still bound to the scratch page.
466 	 * There are a number of places where the hardware apparently prefetches
467 	 * past the end of the object, and we've seen multiple hangs with the
468 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
469 	 * aperture.  One page should be enough to keep any prefetching inside
470 	 * of the aperture.
471 	 */
472 	unsigned long hole_start, hole_end;
473 	struct drm_mm_node *entry;
474 	int ret;
475 
476 	/*
477 	 * GuC requires all resources that we're sharing with it to be placed in
478 	 * non-WOPCM memory. If GuC is not present or not in use we still need a
479 	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
480 	 * why.
481 	 */
482 	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
483 			       intel_wopcm_guc_size(&ggtt->vm.i915->wopcm));
484 
485 	ret = intel_vgt_balloon(ggtt);
486 	if (ret)
487 		return ret;
488 
489 	mutex_init(&ggtt->error_mutex);
490 	if (ggtt->mappable_end) {
491 		/* Reserve a mappable slot for our lockless error capture */
492 		ret = drm_mm_insert_node_in_range(&ggtt->vm.mm,
493 						  &ggtt->error_capture,
494 						  PAGE_SIZE, 0,
495 						  I915_COLOR_UNEVICTABLE,
496 						  0, ggtt->mappable_end,
497 						  DRM_MM_INSERT_LOW);
498 		if (ret)
499 			return ret;
500 	}
501 
502 	/*
503 	 * The upper portion of the GuC address space has a sizeable hole
504 	 * (several MB) that is inaccessible by GuC. Reserve this range within
505 	 * GGTT as it can comfortably hold GuC/HuC firmware images.
506 	 */
507 	ret = ggtt_reserve_guc_top(ggtt);
508 	if (ret)
509 		goto err;
510 
511 	/* Clear any non-preallocated blocks */
512 	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
513 		drm_dbg_kms(&ggtt->vm.i915->drm,
514 			    "clearing unused GTT space: [%lx, %lx]\n",
515 			    hole_start, hole_end);
516 		ggtt->vm.clear_range(&ggtt->vm, hole_start,
517 				     hole_end - hole_start);
518 	}
519 
520 	/* And finally clear the reserved guard page */
521 	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
522 
523 	return 0;
524 
525 err:
526 	cleanup_init_ggtt(ggtt);
527 	return ret;
528 }
529 
530 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
531 				 enum i915_cache_level cache_level,
532 				 u32 flags)
533 {
534 	u32 pte_flags;
535 	int ret;
536 
537 	/* Currently applicable only to VLV */
538 	pte_flags = 0;
539 	if (i915_gem_object_is_readonly(vma->obj))
540 		pte_flags |= PTE_READ_ONLY;
541 
542 	if (flags & I915_VMA_LOCAL_BIND) {
543 		struct i915_ppgtt *alias = i915_vm_to_ggtt(vma->vm)->alias;
544 
545 		if (flags & I915_VMA_ALLOC) {
546 			ret = alias->vm.allocate_va_range(&alias->vm,
547 							  vma->node.start,
548 							  vma->size);
549 			if (ret)
550 				return ret;
551 
552 			set_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma));
553 		}
554 
555 		GEM_BUG_ON(!test_bit(I915_VMA_ALLOC_BIT,
556 				     __i915_vma_flags(vma)));
557 		alias->vm.insert_entries(&alias->vm, vma,
558 					 cache_level, pte_flags);
559 	}
560 
561 	if (flags & I915_VMA_GLOBAL_BIND)
562 		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
563 
564 	return 0;
565 }
566 
567 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
568 {
569 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
570 		struct i915_address_space *vm = vma->vm;
571 
572 		vm->clear_range(vm, vma->node.start, vma->size);
573 	}
574 
575 	if (test_and_clear_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma))) {
576 		struct i915_address_space *vm =
577 			&i915_vm_to_ggtt(vma->vm)->alias->vm;
578 
579 		vm->clear_range(vm, vma->node.start, vma->size);
580 	}
581 }
582 
583 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
584 {
585 	struct i915_ppgtt *ppgtt;
586 	int err;
587 
588 	ppgtt = i915_ppgtt_create(ggtt->vm.gt);
589 	if (IS_ERR(ppgtt))
590 		return PTR_ERR(ppgtt);
591 
592 	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
593 		err = -ENODEV;
594 		goto err_ppgtt;
595 	}
596 
597 	/*
598 	 * Note we only pre-allocate as far as the end of the global
599 	 * GTT. On 48b / 4-level page-tables, the difference is very,
600 	 * very significant! We have to preallocate as GVT/vgpu does
601 	 * not like the page directory disappearing.
602 	 */
603 	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
604 	if (err)
605 		goto err_ppgtt;
606 
607 	ggtt->alias = ppgtt;
608 	ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
609 
610 	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
611 	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
612 
613 	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
614 	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
615 
616 	return 0;
617 
618 err_ppgtt:
619 	i915_vm_put(&ppgtt->vm);
620 	return err;
621 }
622 
623 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
624 {
625 	struct i915_ppgtt *ppgtt;
626 
627 	ppgtt = fetch_and_zero(&ggtt->alias);
628 	if (!ppgtt)
629 		return;
630 
631 	i915_vm_put(&ppgtt->vm);
632 
633 	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
634 	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
635 }
636 
637 int i915_init_ggtt(struct drm_i915_private *i915)
638 {
639 	int ret;
640 
641 	ret = init_ggtt(&i915->ggtt);
642 	if (ret)
643 		return ret;
644 
645 	if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
646 		ret = init_aliasing_ppgtt(&i915->ggtt);
647 		if (ret)
648 			cleanup_init_ggtt(&i915->ggtt);
649 	}
650 
651 	return 0;
652 }
653 
654 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
655 {
656 	struct i915_vma *vma, *vn;
657 
658 	atomic_set(&ggtt->vm.open, 0);
659 
660 	rcu_barrier(); /* flush the RCU'ed__i915_vm_release */
661 	flush_workqueue(ggtt->vm.i915->wq);
662 
663 	mutex_lock(&ggtt->vm.mutex);
664 
665 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
666 		WARN_ON(__i915_vma_unbind(vma));
667 
668 	if (drm_mm_node_allocated(&ggtt->error_capture))
669 		drm_mm_remove_node(&ggtt->error_capture);
670 	mutex_destroy(&ggtt->error_mutex);
671 
672 	ggtt_release_guc_top(ggtt);
673 	intel_vgt_deballoon(ggtt);
674 
675 	ggtt->vm.cleanup(&ggtt->vm);
676 
677 	mutex_unlock(&ggtt->vm.mutex);
678 	i915_address_space_fini(&ggtt->vm);
679 
680 	arch_phys_wc_del(ggtt->mtrr);
681 
682 	if (ggtt->iomap.size)
683 		io_mapping_fini(&ggtt->iomap);
684 }
685 
686 /**
687  * i915_ggtt_driver_release - Clean up GGTT hardware initialization
688  * @i915: i915 device
689  */
690 void i915_ggtt_driver_release(struct drm_i915_private *i915)
691 {
692 	struct pagevec *pvec;
693 
694 	fini_aliasing_ppgtt(&i915->ggtt);
695 
696 	ggtt_cleanup_hw(&i915->ggtt);
697 
698 	pvec = &i915->mm.wc_stash.pvec;
699 	if (pvec->nr) {
700 		set_pages_array_wb(pvec->pages, pvec->nr);
701 		__pagevec_release(pvec);
702 	}
703 }
704 
705 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
706 {
707 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
708 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
709 	return snb_gmch_ctl << 20;
710 }
711 
712 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
713 {
714 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
715 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
716 	if (bdw_gmch_ctl)
717 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
718 
719 #ifdef CONFIG_X86_32
720 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
721 	if (bdw_gmch_ctl > 4)
722 		bdw_gmch_ctl = 4;
723 #endif
724 
725 	return bdw_gmch_ctl << 20;
726 }
727 
728 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
729 {
730 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
731 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
732 
733 	if (gmch_ctrl)
734 		return 1 << (20 + gmch_ctrl);
735 
736 	return 0;
737 }
738 
739 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
740 {
741 	struct drm_i915_private *i915 = ggtt->vm.i915;
742 	struct pci_dev *pdev = i915->drm.pdev;
743 	phys_addr_t phys_addr;
744 	int ret;
745 
746 	/* For Modern GENs the PTEs and register space are split in the BAR */
747 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
748 
749 	/*
750 	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
751 	 * will be dropped. For WC mappings in general we have 64 byte burst
752 	 * writes when the WC buffer is flushed, so we can't use it, but have to
753 	 * resort to an uncached mapping. The WC issue is easily caught by the
754 	 * readback check when writing GTT PTE entries.
755 	 */
756 	if (IS_GEN9_LP(i915) || INTEL_GEN(i915) >= 10)
757 		ggtt->gsm = ioremap(phys_addr, size);
758 	else
759 		ggtt->gsm = ioremap_wc(phys_addr, size);
760 	if (!ggtt->gsm) {
761 		DRM_ERROR("Failed to map the ggtt page table\n");
762 		return -ENOMEM;
763 	}
764 
765 	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
766 	if (ret) {
767 		DRM_ERROR("Scratch setup failed\n");
768 		/* iounmap will also get called at remove, but meh */
769 		iounmap(ggtt->gsm);
770 		return ret;
771 	}
772 
773 	ggtt->vm.scratch[0].encode =
774 		ggtt->vm.pte_encode(px_dma(&ggtt->vm.scratch[0]),
775 				    I915_CACHE_NONE, 0);
776 
777 	return 0;
778 }
779 
780 int ggtt_set_pages(struct i915_vma *vma)
781 {
782 	int ret;
783 
784 	GEM_BUG_ON(vma->pages);
785 
786 	ret = i915_get_ggtt_vma_pages(vma);
787 	if (ret)
788 		return ret;
789 
790 	vma->page_sizes = vma->obj->mm.page_sizes;
791 
792 	return 0;
793 }
794 
795 static void gen6_gmch_remove(struct i915_address_space *vm)
796 {
797 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
798 
799 	iounmap(ggtt->gsm);
800 	cleanup_scratch_page(vm);
801 }
802 
803 static struct resource pci_resource(struct pci_dev *pdev, int bar)
804 {
805 	return (struct resource)DEFINE_RES_MEM(pci_resource_start(pdev, bar),
806 					       pci_resource_len(pdev, bar));
807 }
808 
809 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
810 {
811 	struct drm_i915_private *i915 = ggtt->vm.i915;
812 	struct pci_dev *pdev = i915->drm.pdev;
813 	unsigned int size;
814 	u16 snb_gmch_ctl;
815 	int err;
816 
817 	/* TODO: We're not aware of mappable constraints on gen8 yet */
818 	if (!IS_DGFX(i915)) {
819 		ggtt->gmadr = pci_resource(pdev, 2);
820 		ggtt->mappable_end = resource_size(&ggtt->gmadr);
821 	}
822 
823 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
824 	if (!err)
825 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
826 	if (err)
827 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
828 
829 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
830 	if (IS_CHERRYVIEW(i915))
831 		size = chv_get_total_gtt_size(snb_gmch_ctl);
832 	else
833 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
834 
835 	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
836 	ggtt->vm.cleanup = gen6_gmch_remove;
837 	ggtt->vm.insert_page = gen8_ggtt_insert_page;
838 	ggtt->vm.clear_range = nop_clear_range;
839 	if (intel_scanout_needs_vtd_wa(i915))
840 		ggtt->vm.clear_range = gen8_ggtt_clear_range;
841 
842 	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
843 
844 	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
845 	if (intel_ggtt_update_needs_vtd_wa(i915) ||
846 	    IS_CHERRYVIEW(i915) /* fails with concurrent use/update */) {
847 		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
848 		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
849 		ggtt->vm.bind_async_flags =
850 			I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
851 	}
852 
853 	ggtt->invalidate = gen8_ggtt_invalidate;
854 
855 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
856 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
857 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
858 	ggtt->vm.vma_ops.clear_pages = clear_pages;
859 
860 	ggtt->vm.pte_encode = gen8_pte_encode;
861 
862 	setup_private_pat(ggtt->vm.gt->uncore);
863 
864 	return ggtt_probe_common(ggtt, size);
865 }
866 
867 static u64 snb_pte_encode(dma_addr_t addr,
868 			  enum i915_cache_level level,
869 			  u32 flags)
870 {
871 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
872 
873 	switch (level) {
874 	case I915_CACHE_L3_LLC:
875 	case I915_CACHE_LLC:
876 		pte |= GEN6_PTE_CACHE_LLC;
877 		break;
878 	case I915_CACHE_NONE:
879 		pte |= GEN6_PTE_UNCACHED;
880 		break;
881 	default:
882 		MISSING_CASE(level);
883 	}
884 
885 	return pte;
886 }
887 
888 static u64 ivb_pte_encode(dma_addr_t addr,
889 			  enum i915_cache_level level,
890 			  u32 flags)
891 {
892 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
893 
894 	switch (level) {
895 	case I915_CACHE_L3_LLC:
896 		pte |= GEN7_PTE_CACHE_L3_LLC;
897 		break;
898 	case I915_CACHE_LLC:
899 		pte |= GEN6_PTE_CACHE_LLC;
900 		break;
901 	case I915_CACHE_NONE:
902 		pte |= GEN6_PTE_UNCACHED;
903 		break;
904 	default:
905 		MISSING_CASE(level);
906 	}
907 
908 	return pte;
909 }
910 
911 static u64 byt_pte_encode(dma_addr_t addr,
912 			  enum i915_cache_level level,
913 			  u32 flags)
914 {
915 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
916 
917 	if (!(flags & PTE_READ_ONLY))
918 		pte |= BYT_PTE_WRITEABLE;
919 
920 	if (level != I915_CACHE_NONE)
921 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
922 
923 	return pte;
924 }
925 
926 static u64 hsw_pte_encode(dma_addr_t addr,
927 			  enum i915_cache_level level,
928 			  u32 flags)
929 {
930 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
931 
932 	if (level != I915_CACHE_NONE)
933 		pte |= HSW_WB_LLC_AGE3;
934 
935 	return pte;
936 }
937 
938 static u64 iris_pte_encode(dma_addr_t addr,
939 			   enum i915_cache_level level,
940 			   u32 flags)
941 {
942 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
943 
944 	switch (level) {
945 	case I915_CACHE_NONE:
946 		break;
947 	case I915_CACHE_WT:
948 		pte |= HSW_WT_ELLC_LLC_AGE3;
949 		break;
950 	default:
951 		pte |= HSW_WB_ELLC_LLC_AGE3;
952 		break;
953 	}
954 
955 	return pte;
956 }
957 
958 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
959 {
960 	struct drm_i915_private *i915 = ggtt->vm.i915;
961 	struct pci_dev *pdev = i915->drm.pdev;
962 	unsigned int size;
963 	u16 snb_gmch_ctl;
964 	int err;
965 
966 	ggtt->gmadr = pci_resource(pdev, 2);
967 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
968 
969 	/*
970 	 * 64/512MB is the current min/max we actually know of, but this is
971 	 * just a coarse sanity check.
972 	 */
973 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
974 		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
975 		return -ENXIO;
976 	}
977 
978 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
979 	if (!err)
980 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
981 	if (err)
982 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
983 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
984 
985 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
986 	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
987 
988 	ggtt->vm.clear_range = nop_clear_range;
989 	if (!HAS_FULL_PPGTT(i915) || intel_scanout_needs_vtd_wa(i915))
990 		ggtt->vm.clear_range = gen6_ggtt_clear_range;
991 	ggtt->vm.insert_page = gen6_ggtt_insert_page;
992 	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
993 	ggtt->vm.cleanup = gen6_gmch_remove;
994 
995 	ggtt->invalidate = gen6_ggtt_invalidate;
996 
997 	if (HAS_EDRAM(i915))
998 		ggtt->vm.pte_encode = iris_pte_encode;
999 	else if (IS_HASWELL(i915))
1000 		ggtt->vm.pte_encode = hsw_pte_encode;
1001 	else if (IS_VALLEYVIEW(i915))
1002 		ggtt->vm.pte_encode = byt_pte_encode;
1003 	else if (INTEL_GEN(i915) >= 7)
1004 		ggtt->vm.pte_encode = ivb_pte_encode;
1005 	else
1006 		ggtt->vm.pte_encode = snb_pte_encode;
1007 
1008 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
1009 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
1010 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
1011 	ggtt->vm.vma_ops.clear_pages = clear_pages;
1012 
1013 	return ggtt_probe_common(ggtt, size);
1014 }
1015 
1016 static void i915_gmch_remove(struct i915_address_space *vm)
1017 {
1018 	intel_gmch_remove();
1019 }
1020 
1021 static int i915_gmch_probe(struct i915_ggtt *ggtt)
1022 {
1023 	struct drm_i915_private *i915 = ggtt->vm.i915;
1024 	phys_addr_t gmadr_base;
1025 	int ret;
1026 
1027 	ret = intel_gmch_probe(i915->bridge_dev, i915->drm.pdev, NULL);
1028 	if (!ret) {
1029 		DRM_ERROR("failed to set up gmch\n");
1030 		return -EIO;
1031 	}
1032 
1033 	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
1034 
1035 	ggtt->gmadr =
1036 		(struct resource)DEFINE_RES_MEM(gmadr_base, ggtt->mappable_end);
1037 
1038 	ggtt->do_idle_maps = needs_idle_maps(i915);
1039 	ggtt->vm.insert_page = i915_ggtt_insert_page;
1040 	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
1041 	ggtt->vm.clear_range = i915_ggtt_clear_range;
1042 	ggtt->vm.cleanup = i915_gmch_remove;
1043 
1044 	ggtt->invalidate = gmch_ggtt_invalidate;
1045 
1046 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
1047 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
1048 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
1049 	ggtt->vm.vma_ops.clear_pages = clear_pages;
1050 
1051 	if (unlikely(ggtt->do_idle_maps))
1052 		dev_notice(i915->drm.dev,
1053 			   "Applying Ironlake quirks for intel_iommu\n");
1054 
1055 	return 0;
1056 }
1057 
1058 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
1059 {
1060 	struct drm_i915_private *i915 = gt->i915;
1061 	int ret;
1062 
1063 	ggtt->vm.gt = gt;
1064 	ggtt->vm.i915 = i915;
1065 	ggtt->vm.dma = &i915->drm.pdev->dev;
1066 
1067 	if (INTEL_GEN(i915) <= 5)
1068 		ret = i915_gmch_probe(ggtt);
1069 	else if (INTEL_GEN(i915) < 8)
1070 		ret = gen6_gmch_probe(ggtt);
1071 	else
1072 		ret = gen8_gmch_probe(ggtt);
1073 	if (ret)
1074 		return ret;
1075 
1076 	if ((ggtt->vm.total - 1) >> 32) {
1077 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
1078 			  " of address space! Found %lldM!\n",
1079 			  ggtt->vm.total >> 20);
1080 		ggtt->vm.total = 1ULL << 32;
1081 		ggtt->mappable_end =
1082 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
1083 	}
1084 
1085 	if (ggtt->mappable_end > ggtt->vm.total) {
1086 		DRM_ERROR("mappable aperture extends past end of GGTT,"
1087 			  " aperture=%pa, total=%llx\n",
1088 			  &ggtt->mappable_end, ggtt->vm.total);
1089 		ggtt->mappable_end = ggtt->vm.total;
1090 	}
1091 
1092 	/* GMADR is the PCI mmio aperture into the global GTT. */
1093 	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
1094 	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
1095 	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
1096 			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
1097 
1098 	return 0;
1099 }
1100 
1101 /**
1102  * i915_ggtt_probe_hw - Probe GGTT hardware location
1103  * @i915: i915 device
1104  */
1105 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
1106 {
1107 	int ret;
1108 
1109 	ret = ggtt_probe_hw(&i915->ggtt, &i915->gt);
1110 	if (ret)
1111 		return ret;
1112 
1113 	if (intel_vtd_active())
1114 		dev_info(i915->drm.dev, "VT-d active for gfx access\n");
1115 
1116 	return 0;
1117 }
1118 
1119 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
1120 {
1121 	if (INTEL_GEN(i915) < 6 && !intel_enable_gtt())
1122 		return -EIO;
1123 
1124 	return 0;
1125 }
1126 
1127 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt)
1128 {
1129 	GEM_BUG_ON(ggtt->invalidate != gen8_ggtt_invalidate);
1130 
1131 	ggtt->invalidate = guc_ggtt_invalidate;
1132 
1133 	ggtt->invalidate(ggtt);
1134 }
1135 
1136 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt)
1137 {
1138 	/* XXX Temporary pardon for error unload */
1139 	if (ggtt->invalidate == gen8_ggtt_invalidate)
1140 		return;
1141 
1142 	/* We should only be called after i915_ggtt_enable_guc() */
1143 	GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate);
1144 
1145 	ggtt->invalidate = gen8_ggtt_invalidate;
1146 
1147 	ggtt->invalidate(ggtt);
1148 }
1149 
1150 void i915_ggtt_resume(struct i915_ggtt *ggtt)
1151 {
1152 	struct i915_vma *vma;
1153 	bool flush = false;
1154 	int open;
1155 
1156 	intel_gt_check_and_clear_faults(ggtt->vm.gt);
1157 
1158 	/* First fill our portion of the GTT with scratch pages */
1159 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
1160 
1161 	/* Skip rewriting PTE on VMA unbind. */
1162 	open = atomic_xchg(&ggtt->vm.open, 0);
1163 
1164 	/* clflush objects bound into the GGTT and rebind them. */
1165 	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link) {
1166 		struct drm_i915_gem_object *obj = vma->obj;
1167 
1168 		if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
1169 			continue;
1170 
1171 		clear_bit(I915_VMA_GLOBAL_BIND_BIT, __i915_vma_flags(vma));
1172 		WARN_ON(i915_vma_bind(vma,
1173 				      obj ? obj->cache_level : 0,
1174 				      PIN_GLOBAL, NULL));
1175 		if (obj) { /* only used during resume => exclusive access */
1176 			flush |= fetch_and_zero(&obj->write_domain);
1177 			obj->read_domains |= I915_GEM_DOMAIN_GTT;
1178 		}
1179 	}
1180 
1181 	atomic_set(&ggtt->vm.open, open);
1182 	ggtt->invalidate(ggtt);
1183 
1184 	if (flush)
1185 		wbinvd_on_all_cpus();
1186 
1187 	if (INTEL_GEN(ggtt->vm.i915) >= 8)
1188 		setup_private_pat(ggtt->vm.gt->uncore);
1189 }
1190 
1191 static struct scatterlist *
1192 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
1193 	     unsigned int width, unsigned int height,
1194 	     unsigned int stride,
1195 	     struct sg_table *st, struct scatterlist *sg)
1196 {
1197 	unsigned int column, row;
1198 	unsigned int src_idx;
1199 
1200 	for (column = 0; column < width; column++) {
1201 		src_idx = stride * (height - 1) + column + offset;
1202 		for (row = 0; row < height; row++) {
1203 			st->nents++;
1204 			/*
1205 			 * We don't need the pages, but need to initialize
1206 			 * the entries so the sg list can be happily traversed.
1207 			 * The only thing we need are DMA addresses.
1208 			 */
1209 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
1210 			sg_dma_address(sg) =
1211 				i915_gem_object_get_dma_address(obj, src_idx);
1212 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
1213 			sg = sg_next(sg);
1214 			src_idx -= stride;
1215 		}
1216 	}
1217 
1218 	return sg;
1219 }
1220 
1221 static noinline struct sg_table *
1222 intel_rotate_pages(struct intel_rotation_info *rot_info,
1223 		   struct drm_i915_gem_object *obj)
1224 {
1225 	unsigned int size = intel_rotation_info_size(rot_info);
1226 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1227 	struct sg_table *st;
1228 	struct scatterlist *sg;
1229 	int ret = -ENOMEM;
1230 	int i;
1231 
1232 	/* Allocate target SG list. */
1233 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1234 	if (!st)
1235 		goto err_st_alloc;
1236 
1237 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1238 	if (ret)
1239 		goto err_sg_alloc;
1240 
1241 	st->nents = 0;
1242 	sg = st->sgl;
1243 
1244 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
1245 		sg = rotate_pages(obj, rot_info->plane[i].offset,
1246 				  rot_info->plane[i].width, rot_info->plane[i].height,
1247 				  rot_info->plane[i].stride, st, sg);
1248 	}
1249 
1250 	return st;
1251 
1252 err_sg_alloc:
1253 	kfree(st);
1254 err_st_alloc:
1255 
1256 	drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1257 		obj->base.size, rot_info->plane[0].width,
1258 		rot_info->plane[0].height, size);
1259 
1260 	return ERR_PTR(ret);
1261 }
1262 
1263 static struct scatterlist *
1264 remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
1265 	    unsigned int width, unsigned int height,
1266 	    unsigned int stride,
1267 	    struct sg_table *st, struct scatterlist *sg)
1268 {
1269 	unsigned int row;
1270 
1271 	for (row = 0; row < height; row++) {
1272 		unsigned int left = width * I915_GTT_PAGE_SIZE;
1273 
1274 		while (left) {
1275 			dma_addr_t addr;
1276 			unsigned int length;
1277 
1278 			/*
1279 			 * We don't need the pages, but need to initialize
1280 			 * the entries so the sg list can be happily traversed.
1281 			 * The only thing we need are DMA addresses.
1282 			 */
1283 
1284 			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1285 
1286 			length = min(left, length);
1287 
1288 			st->nents++;
1289 
1290 			sg_set_page(sg, NULL, length, 0);
1291 			sg_dma_address(sg) = addr;
1292 			sg_dma_len(sg) = length;
1293 			sg = sg_next(sg);
1294 
1295 			offset += length / I915_GTT_PAGE_SIZE;
1296 			left -= length;
1297 		}
1298 
1299 		offset += stride - width;
1300 	}
1301 
1302 	return sg;
1303 }
1304 
1305 static noinline struct sg_table *
1306 intel_remap_pages(struct intel_remapped_info *rem_info,
1307 		  struct drm_i915_gem_object *obj)
1308 {
1309 	unsigned int size = intel_remapped_info_size(rem_info);
1310 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1311 	struct sg_table *st;
1312 	struct scatterlist *sg;
1313 	int ret = -ENOMEM;
1314 	int i;
1315 
1316 	/* Allocate target SG list. */
1317 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1318 	if (!st)
1319 		goto err_st_alloc;
1320 
1321 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1322 	if (ret)
1323 		goto err_sg_alloc;
1324 
1325 	st->nents = 0;
1326 	sg = st->sgl;
1327 
1328 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
1329 		sg = remap_pages(obj, rem_info->plane[i].offset,
1330 				 rem_info->plane[i].width, rem_info->plane[i].height,
1331 				 rem_info->plane[i].stride, st, sg);
1332 	}
1333 
1334 	i915_sg_trim(st);
1335 
1336 	return st;
1337 
1338 err_sg_alloc:
1339 	kfree(st);
1340 err_st_alloc:
1341 
1342 	drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1343 		obj->base.size, rem_info->plane[0].width,
1344 		rem_info->plane[0].height, size);
1345 
1346 	return ERR_PTR(ret);
1347 }
1348 
1349 static noinline struct sg_table *
1350 intel_partial_pages(const struct i915_ggtt_view *view,
1351 		    struct drm_i915_gem_object *obj)
1352 {
1353 	struct sg_table *st;
1354 	struct scatterlist *sg, *iter;
1355 	unsigned int count = view->partial.size;
1356 	unsigned int offset;
1357 	int ret = -ENOMEM;
1358 
1359 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1360 	if (!st)
1361 		goto err_st_alloc;
1362 
1363 	ret = sg_alloc_table(st, count, GFP_KERNEL);
1364 	if (ret)
1365 		goto err_sg_alloc;
1366 
1367 	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
1368 	GEM_BUG_ON(!iter);
1369 
1370 	sg = st->sgl;
1371 	st->nents = 0;
1372 	do {
1373 		unsigned int len;
1374 
1375 		len = min(iter->length - (offset << PAGE_SHIFT),
1376 			  count << PAGE_SHIFT);
1377 		sg_set_page(sg, NULL, len, 0);
1378 		sg_dma_address(sg) =
1379 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
1380 		sg_dma_len(sg) = len;
1381 
1382 		st->nents++;
1383 		count -= len >> PAGE_SHIFT;
1384 		if (count == 0) {
1385 			sg_mark_end(sg);
1386 			i915_sg_trim(st); /* Drop any unused tail entries. */
1387 
1388 			return st;
1389 		}
1390 
1391 		sg = __sg_next(sg);
1392 		iter = __sg_next(iter);
1393 		offset = 0;
1394 	} while (1);
1395 
1396 err_sg_alloc:
1397 	kfree(st);
1398 err_st_alloc:
1399 	return ERR_PTR(ret);
1400 }
1401 
1402 static int
1403 i915_get_ggtt_vma_pages(struct i915_vma *vma)
1404 {
1405 	int ret;
1406 
1407 	/*
1408 	 * The vma->pages are only valid within the lifespan of the borrowed
1409 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1410 	 * must be the vma->pages. A simple rule is that vma->pages must only
1411 	 * be accessed when the obj->mm.pages are pinned.
1412 	 */
1413 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1414 
1415 	switch (vma->ggtt_view.type) {
1416 	default:
1417 		GEM_BUG_ON(vma->ggtt_view.type);
1418 		/* fall through */
1419 	case I915_GGTT_VIEW_NORMAL:
1420 		vma->pages = vma->obj->mm.pages;
1421 		return 0;
1422 
1423 	case I915_GGTT_VIEW_ROTATED:
1424 		vma->pages =
1425 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
1426 		break;
1427 
1428 	case I915_GGTT_VIEW_REMAPPED:
1429 		vma->pages =
1430 			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
1431 		break;
1432 
1433 	case I915_GGTT_VIEW_PARTIAL:
1434 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
1435 		break;
1436 	}
1437 
1438 	ret = 0;
1439 	if (IS_ERR(vma->pages)) {
1440 		ret = PTR_ERR(vma->pages);
1441 		vma->pages = NULL;
1442 		drm_err(&vma->vm->i915->drm,
1443 			"Failed to get pages for VMA view type %u (%d)!\n",
1444 			vma->ggtt_view.type, ret);
1445 	}
1446 	return ret;
1447 }
1448