xref: /linux/drivers/gpu/drm/i915/gt/intel_ggtt.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <asm/set_memory.h>
7 #include <asm/smp.h>
8 #include <linux/types.h>
9 #include <linux/stop_machine.h>
10 
11 #include <drm/drm_managed.h>
12 #include <drm/i915_drm.h>
13 #include <drm/intel-gtt.h>
14 
15 #include "display/intel_display.h"
16 #include "gem/i915_gem_lmem.h"
17 
18 #include "intel_context.h"
19 #include "intel_ggtt_gmch.h"
20 #include "intel_gpu_commands.h"
21 #include "intel_gt.h"
22 #include "intel_gt_regs.h"
23 #include "intel_pci_config.h"
24 #include "intel_ring.h"
25 #include "i915_drv.h"
26 #include "i915_pci.h"
27 #include "i915_reg.h"
28 #include "i915_request.h"
29 #include "i915_scatterlist.h"
30 #include "i915_utils.h"
31 #include "i915_vgpu.h"
32 
33 #include "intel_gtt.h"
34 #include "gen8_ppgtt.h"
35 #include "intel_engine_pm.h"
36 
37 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
38 				   unsigned long color,
39 				   u64 *start,
40 				   u64 *end)
41 {
42 	if (i915_node_color_differs(node, color))
43 		*start += I915_GTT_PAGE_SIZE;
44 
45 	/*
46 	 * Also leave a space between the unallocated reserved node after the
47 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
48 	 * to insert a guard page to prevent prefetches crossing over the
49 	 * GTT boundary.
50 	 */
51 	node = list_next_entry(node, node_list);
52 	if (node->color != color)
53 		*end -= I915_GTT_PAGE_SIZE;
54 }
55 
56 static int ggtt_init_hw(struct i915_ggtt *ggtt)
57 {
58 	struct drm_i915_private *i915 = ggtt->vm.i915;
59 
60 	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
61 
62 	ggtt->vm.is_ggtt = true;
63 
64 	/* Only VLV supports read-only GGTT mappings */
65 	ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
66 
67 	if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
68 		ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
69 
70 	if (ggtt->mappable_end) {
71 		if (!io_mapping_init_wc(&ggtt->iomap,
72 					ggtt->gmadr.start,
73 					ggtt->mappable_end)) {
74 			ggtt->vm.cleanup(&ggtt->vm);
75 			return -EIO;
76 		}
77 
78 		ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
79 					      ggtt->mappable_end);
80 	}
81 
82 	intel_ggtt_init_fences(ggtt);
83 
84 	return 0;
85 }
86 
87 /**
88  * i915_ggtt_init_hw - Initialize GGTT hardware
89  * @i915: i915 device
90  */
91 int i915_ggtt_init_hw(struct drm_i915_private *i915)
92 {
93 	int ret;
94 
95 	/*
96 	 * Note that we use page colouring to enforce a guard page at the
97 	 * end of the address space. This is required as the CS may prefetch
98 	 * beyond the end of the batch buffer, across the page boundary,
99 	 * and beyond the end of the GTT if we do not provide a guard.
100 	 */
101 	ret = ggtt_init_hw(to_gt(i915)->ggtt);
102 	if (ret)
103 		return ret;
104 
105 	return 0;
106 }
107 
108 /**
109  * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM
110  * @vm: The VM to suspend the mappings for
111  *
112  * Suspend the memory mappings for all objects mapped to HW via the GGTT or a
113  * DPT page table.
114  */
115 void i915_ggtt_suspend_vm(struct i915_address_space *vm)
116 {
117 	struct i915_vma *vma, *vn;
118 	int save_skip_rewrite;
119 
120 	drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
121 
122 retry:
123 	i915_gem_drain_freed_objects(vm->i915);
124 
125 	mutex_lock(&vm->mutex);
126 
127 	/*
128 	 * Skip rewriting PTE on VMA unbind.
129 	 * FIXME: Use an argument to i915_vma_unbind() instead?
130 	 */
131 	save_skip_rewrite = vm->skip_pte_rewrite;
132 	vm->skip_pte_rewrite = true;
133 
134 	list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
135 		struct drm_i915_gem_object *obj = vma->obj;
136 
137 		GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
138 
139 		if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
140 			continue;
141 
142 		/* unlikely to race when GPU is idle, so no worry about slowpath.. */
143 		if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) {
144 			/*
145 			 * No dead objects should appear here, GPU should be
146 			 * completely idle, and userspace suspended
147 			 */
148 			i915_gem_object_get(obj);
149 
150 			mutex_unlock(&vm->mutex);
151 
152 			i915_gem_object_lock(obj, NULL);
153 			GEM_WARN_ON(i915_vma_unbind(vma));
154 			i915_gem_object_unlock(obj);
155 			i915_gem_object_put(obj);
156 
157 			vm->skip_pte_rewrite = save_skip_rewrite;
158 			goto retry;
159 		}
160 
161 		if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
162 			i915_vma_wait_for_bind(vma);
163 
164 			__i915_vma_evict(vma, false);
165 			drm_mm_remove_node(&vma->node);
166 		}
167 
168 		i915_gem_object_unlock(obj);
169 	}
170 
171 	vm->clear_range(vm, 0, vm->total);
172 
173 	vm->skip_pte_rewrite = save_skip_rewrite;
174 
175 	mutex_unlock(&vm->mutex);
176 }
177 
178 void i915_ggtt_suspend(struct i915_ggtt *ggtt)
179 {
180 	struct intel_gt *gt;
181 
182 	i915_ggtt_suspend_vm(&ggtt->vm);
183 	ggtt->invalidate(ggtt);
184 
185 	list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
186 		intel_gt_check_and_clear_faults(gt);
187 }
188 
189 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
190 {
191 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
192 
193 	spin_lock_irq(&uncore->lock);
194 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
195 	intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
196 	spin_unlock_irq(&uncore->lock);
197 }
198 
199 static bool needs_wc_ggtt_mapping(struct drm_i915_private *i915)
200 {
201 	/*
202 	 * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range
203 	 * will be dropped. For WC mappings in general we have 64 byte burst
204 	 * writes when the WC buffer is flushed, so we can't use it, but have to
205 	 * resort to an uncached mapping. The WC issue is easily caught by the
206 	 * readback check when writing GTT PTE entries.
207 	 */
208 	if (!IS_GEN9_LP(i915) && GRAPHICS_VER(i915) < 11)
209 		return true;
210 
211 	return false;
212 }
213 
214 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
215 {
216 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
217 
218 	/*
219 	 * Note that as an uncached mmio write, this will flush the
220 	 * WCB of the writes into the GGTT before it triggers the invalidate.
221 	 *
222 	 * Only perform this when GGTT is mapped as WC, see ggtt_probe_common().
223 	 */
224 	if (needs_wc_ggtt_mapping(ggtt->vm.i915))
225 		intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6,
226 				      GFX_FLSH_CNTL_EN);
227 }
228 
229 static void guc_ggtt_ct_invalidate(struct intel_gt *gt)
230 {
231 	struct intel_uncore *uncore = gt->uncore;
232 	intel_wakeref_t wakeref;
233 
234 	with_intel_runtime_pm_if_active(uncore->rpm, wakeref)
235 		intel_guc_invalidate_tlb_guc(gt_to_guc(gt));
236 }
237 
238 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
239 {
240 	struct drm_i915_private *i915 = ggtt->vm.i915;
241 	struct intel_gt *gt;
242 
243 	gen8_ggtt_invalidate(ggtt);
244 
245 	list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) {
246 		if (intel_guc_tlb_invalidation_is_available(gt_to_guc(gt)))
247 			guc_ggtt_ct_invalidate(gt);
248 		else if (GRAPHICS_VER(i915) >= 12)
249 			intel_uncore_write_fw(gt->uncore,
250 					      GEN12_GUC_TLB_INV_CR,
251 					      GEN12_GUC_TLB_INV_CR_INVALIDATE);
252 		else
253 			intel_uncore_write_fw(gt->uncore,
254 					      GEN8_GTCR, GEN8_GTCR_INVALIDATE);
255 	}
256 }
257 
258 static u64 mtl_ggtt_pte_encode(dma_addr_t addr,
259 			       unsigned int pat_index,
260 			       u32 flags)
261 {
262 	gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
263 
264 	WARN_ON_ONCE(addr & ~GEN12_GGTT_PTE_ADDR_MASK);
265 
266 	if (flags & PTE_LM)
267 		pte |= GEN12_GGTT_PTE_LM;
268 
269 	if (pat_index & BIT(0))
270 		pte |= MTL_GGTT_PTE_PAT0;
271 
272 	if (pat_index & BIT(1))
273 		pte |= MTL_GGTT_PTE_PAT1;
274 
275 	return pte;
276 }
277 
278 u64 gen8_ggtt_pte_encode(dma_addr_t addr,
279 			 unsigned int pat_index,
280 			 u32 flags)
281 {
282 	gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
283 
284 	if (flags & PTE_LM)
285 		pte |= GEN12_GGTT_PTE_LM;
286 
287 	return pte;
288 }
289 
290 static bool should_update_ggtt_with_bind(struct i915_ggtt *ggtt)
291 {
292 	struct intel_gt *gt = ggtt->vm.gt;
293 
294 	return intel_gt_is_bind_context_ready(gt);
295 }
296 
297 static struct intel_context *gen8_ggtt_bind_get_ce(struct i915_ggtt *ggtt, intel_wakeref_t *wakeref)
298 {
299 	struct intel_context *ce;
300 	struct intel_gt *gt = ggtt->vm.gt;
301 
302 	if (intel_gt_is_wedged(gt))
303 		return NULL;
304 
305 	ce = gt->engine[BCS0]->bind_context;
306 	GEM_BUG_ON(!ce);
307 
308 	/*
309 	 * If the GT is not awake already at this stage then fallback
310 	 * to pci based GGTT update otherwise __intel_wakeref_get_first()
311 	 * would conflict with fs_reclaim trying to allocate memory while
312 	 * doing rpm_resume().
313 	 */
314 	*wakeref = intel_gt_pm_get_if_awake(gt);
315 	if (!*wakeref)
316 		return NULL;
317 
318 	intel_engine_pm_get(ce->engine);
319 
320 	return ce;
321 }
322 
323 static void gen8_ggtt_bind_put_ce(struct intel_context *ce, intel_wakeref_t wakeref)
324 {
325 	intel_engine_pm_put(ce->engine);
326 	intel_gt_pm_put(ce->engine->gt, wakeref);
327 }
328 
329 static bool gen8_ggtt_bind_ptes(struct i915_ggtt *ggtt, u32 offset,
330 				struct sg_table *pages, u32 num_entries,
331 				const gen8_pte_t pte)
332 {
333 	struct i915_sched_attr attr = {};
334 	struct intel_gt *gt = ggtt->vm.gt;
335 	const gen8_pte_t scratch_pte = ggtt->vm.scratch[0]->encode;
336 	struct sgt_iter iter;
337 	struct i915_request *rq;
338 	struct intel_context *ce;
339 	intel_wakeref_t wakeref;
340 	u32 *cs;
341 
342 	if (!num_entries)
343 		return true;
344 
345 	ce = gen8_ggtt_bind_get_ce(ggtt, &wakeref);
346 	if (!ce)
347 		return false;
348 
349 	if (pages)
350 		iter = __sgt_iter(pages->sgl, true);
351 
352 	while (num_entries) {
353 		int count = 0;
354 		dma_addr_t addr;
355 		/*
356 		 * MI_UPDATE_GTT can update 512 entries in a single command but
357 		 * that end up with engine reset, 511 works.
358 		 */
359 		u32 n_ptes = min_t(u32, 511, num_entries);
360 
361 		if (mutex_lock_interruptible(&ce->timeline->mutex))
362 			goto put_ce;
363 
364 		intel_context_enter(ce);
365 		rq = __i915_request_create(ce, GFP_NOWAIT | GFP_ATOMIC);
366 		intel_context_exit(ce);
367 		if (IS_ERR(rq)) {
368 			GT_TRACE(gt, "Failed to get bind request\n");
369 			mutex_unlock(&ce->timeline->mutex);
370 			goto put_ce;
371 		}
372 
373 		cs = intel_ring_begin(rq, 2 * n_ptes + 2);
374 		if (IS_ERR(cs)) {
375 			GT_TRACE(gt, "Failed to ring space for GGTT bind\n");
376 			i915_request_set_error_once(rq, PTR_ERR(cs));
377 			/* once a request is created, it must be queued */
378 			goto queue_err_rq;
379 		}
380 
381 		*cs++ = MI_UPDATE_GTT | (2 * n_ptes);
382 		*cs++ = offset << 12;
383 
384 		if (pages) {
385 			for_each_sgt_daddr_next(addr, iter) {
386 				if (count == n_ptes)
387 					break;
388 				*cs++ = lower_32_bits(pte | addr);
389 				*cs++ = upper_32_bits(pte | addr);
390 				count++;
391 			}
392 			/* fill remaining with scratch pte, if any */
393 			if (count < n_ptes) {
394 				memset64((u64 *)cs, scratch_pte,
395 					 n_ptes - count);
396 				cs += (n_ptes - count) * 2;
397 			}
398 		} else {
399 			memset64((u64 *)cs, pte, n_ptes);
400 			cs += n_ptes * 2;
401 		}
402 
403 		intel_ring_advance(rq, cs);
404 queue_err_rq:
405 		i915_request_get(rq);
406 		__i915_request_commit(rq);
407 		__i915_request_queue(rq, &attr);
408 
409 		mutex_unlock(&ce->timeline->mutex);
410 		/* This will break if the request is complete or after engine reset */
411 		i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT);
412 		if (rq->fence.error)
413 			goto err_rq;
414 
415 		i915_request_put(rq);
416 
417 		num_entries -= n_ptes;
418 		offset += n_ptes;
419 	}
420 
421 	gen8_ggtt_bind_put_ce(ce, wakeref);
422 	return true;
423 
424 err_rq:
425 	i915_request_put(rq);
426 put_ce:
427 	gen8_ggtt_bind_put_ce(ce, wakeref);
428 	return false;
429 }
430 
431 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
432 {
433 	writeq(pte, addr);
434 }
435 
436 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
437 				  dma_addr_t addr,
438 				  u64 offset,
439 				  unsigned int pat_index,
440 				  u32 flags)
441 {
442 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
443 	gen8_pte_t __iomem *pte =
444 		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
445 
446 	gen8_set_pte(pte, ggtt->vm.pte_encode(addr, pat_index, flags));
447 
448 	ggtt->invalidate(ggtt);
449 }
450 
451 static void gen8_ggtt_insert_page_bind(struct i915_address_space *vm,
452 				       dma_addr_t addr, u64 offset,
453 				       unsigned int pat_index, u32 flags)
454 {
455 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
456 	gen8_pte_t pte;
457 
458 	pte = ggtt->vm.pte_encode(addr, pat_index, flags);
459 	if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) &&
460 	    gen8_ggtt_bind_ptes(ggtt, offset, NULL, 1, pte))
461 		return ggtt->invalidate(ggtt);
462 
463 	gen8_ggtt_insert_page(vm, addr, offset, pat_index, flags);
464 }
465 
466 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
467 				     struct i915_vma_resource *vma_res,
468 				     unsigned int pat_index,
469 				     u32 flags)
470 {
471 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
472 	const gen8_pte_t pte_encode = ggtt->vm.pte_encode(0, pat_index, flags);
473 	gen8_pte_t __iomem *gte;
474 	gen8_pte_t __iomem *end;
475 	struct sgt_iter iter;
476 	dma_addr_t addr;
477 
478 	/*
479 	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
480 	 * not to allow the user to override access to a read only page.
481 	 */
482 
483 	gte = (gen8_pte_t __iomem *)ggtt->gsm;
484 	gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
485 	end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
486 	while (gte < end)
487 		gen8_set_pte(gte++, vm->scratch[0]->encode);
488 	end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
489 
490 	for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
491 		gen8_set_pte(gte++, pte_encode | addr);
492 	GEM_BUG_ON(gte > end);
493 
494 	/* Fill the allocated but "unused" space beyond the end of the buffer */
495 	while (gte < end)
496 		gen8_set_pte(gte++, vm->scratch[0]->encode);
497 
498 	/*
499 	 * We want to flush the TLBs only after we're certain all the PTE
500 	 * updates have finished.
501 	 */
502 	ggtt->invalidate(ggtt);
503 }
504 
505 static bool __gen8_ggtt_insert_entries_bind(struct i915_address_space *vm,
506 					    struct i915_vma_resource *vma_res,
507 					    unsigned int pat_index, u32 flags)
508 {
509 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
510 	gen8_pte_t scratch_pte = vm->scratch[0]->encode;
511 	gen8_pte_t pte_encode;
512 	u64 start, end;
513 
514 	pte_encode = ggtt->vm.pte_encode(0, pat_index, flags);
515 	start = (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
516 	end = start + vma_res->guard / I915_GTT_PAGE_SIZE;
517 	if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte))
518 		goto err;
519 
520 	start = end;
521 	end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
522 	if (!gen8_ggtt_bind_ptes(ggtt, start, vma_res->bi.pages,
523 	      vma_res->node_size / I915_GTT_PAGE_SIZE, pte_encode))
524 		goto err;
525 
526 	start += vma_res->node_size / I915_GTT_PAGE_SIZE;
527 	if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte))
528 		goto err;
529 
530 	return true;
531 
532 err:
533 	return false;
534 }
535 
536 static void gen8_ggtt_insert_entries_bind(struct i915_address_space *vm,
537 					  struct i915_vma_resource *vma_res,
538 					  unsigned int pat_index, u32 flags)
539 {
540 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
541 
542 	if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) &&
543 	    __gen8_ggtt_insert_entries_bind(vm, vma_res, pat_index, flags))
544 		return ggtt->invalidate(ggtt);
545 
546 	gen8_ggtt_insert_entries(vm, vma_res, pat_index, flags);
547 }
548 
549 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
550 				  u64 start, u64 length)
551 {
552 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
553 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
554 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
555 	const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
556 	gen8_pte_t __iomem *gtt_base =
557 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
558 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
559 	int i;
560 
561 	if (WARN(num_entries > max_entries,
562 		 "First entry = %d; Num entries = %d (max=%d)\n",
563 		 first_entry, num_entries, max_entries))
564 		num_entries = max_entries;
565 
566 	for (i = 0; i < num_entries; i++)
567 		gen8_set_pte(&gtt_base[i], scratch_pte);
568 }
569 
570 static void gen8_ggtt_scratch_range_bind(struct i915_address_space *vm,
571 					 u64 start, u64 length)
572 {
573 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
574 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
575 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
576 	const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
577 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
578 
579 	if (WARN(num_entries > max_entries,
580 		 "First entry = %d; Num entries = %d (max=%d)\n",
581 		 first_entry, num_entries, max_entries))
582 		num_entries = max_entries;
583 
584 	if (should_update_ggtt_with_bind(ggtt) && gen8_ggtt_bind_ptes(ggtt, first_entry,
585 	     NULL, num_entries, scratch_pte))
586 		return ggtt->invalidate(ggtt);
587 
588 	gen8_ggtt_clear_range(vm, start, length);
589 }
590 
591 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
592 				  dma_addr_t addr,
593 				  u64 offset,
594 				  unsigned int pat_index,
595 				  u32 flags)
596 {
597 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
598 	gen6_pte_t __iomem *pte =
599 		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
600 
601 	iowrite32(vm->pte_encode(addr, pat_index, flags), pte);
602 
603 	ggtt->invalidate(ggtt);
604 }
605 
606 /*
607  * Binds an object into the global gtt with the specified cache level.
608  * The object will be accessible to the GPU via commands whose operands
609  * reference offsets within the global GTT as well as accessible by the GPU
610  * through the GMADR mapped BAR (i915->mm.gtt->gtt).
611  */
612 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
613 				     struct i915_vma_resource *vma_res,
614 				     unsigned int pat_index,
615 				     u32 flags)
616 {
617 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
618 	gen6_pte_t __iomem *gte;
619 	gen6_pte_t __iomem *end;
620 	struct sgt_iter iter;
621 	dma_addr_t addr;
622 
623 	gte = (gen6_pte_t __iomem *)ggtt->gsm;
624 	gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
625 
626 	end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
627 	while (gte < end)
628 		iowrite32(vm->scratch[0]->encode, gte++);
629 	end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
630 	for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
631 		iowrite32(vm->pte_encode(addr, pat_index, flags), gte++);
632 	GEM_BUG_ON(gte > end);
633 
634 	/* Fill the allocated but "unused" space beyond the end of the buffer */
635 	while (gte < end)
636 		iowrite32(vm->scratch[0]->encode, gte++);
637 
638 	/*
639 	 * We want to flush the TLBs only after we're certain all the PTE
640 	 * updates have finished.
641 	 */
642 	ggtt->invalidate(ggtt);
643 }
644 
645 static void nop_clear_range(struct i915_address_space *vm,
646 			    u64 start, u64 length)
647 {
648 }
649 
650 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
651 {
652 	/*
653 	 * Make sure the internal GAM fifo has been cleared of all GTT
654 	 * writes before exiting stop_machine(). This guarantees that
655 	 * any aperture accesses waiting to start in another process
656 	 * cannot back up behind the GTT writes causing a hang.
657 	 * The register can be any arbitrary GAM register.
658 	 */
659 	intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
660 }
661 
662 struct insert_page {
663 	struct i915_address_space *vm;
664 	dma_addr_t addr;
665 	u64 offset;
666 	unsigned int pat_index;
667 };
668 
669 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
670 {
671 	struct insert_page *arg = _arg;
672 
673 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset,
674 			      arg->pat_index, 0);
675 	bxt_vtd_ggtt_wa(arg->vm);
676 
677 	return 0;
678 }
679 
680 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
681 					  dma_addr_t addr,
682 					  u64 offset,
683 					  unsigned int pat_index,
684 					  u32 unused)
685 {
686 	struct insert_page arg = { vm, addr, offset, pat_index };
687 
688 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
689 }
690 
691 struct insert_entries {
692 	struct i915_address_space *vm;
693 	struct i915_vma_resource *vma_res;
694 	unsigned int pat_index;
695 	u32 flags;
696 };
697 
698 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
699 {
700 	struct insert_entries *arg = _arg;
701 
702 	gen8_ggtt_insert_entries(arg->vm, arg->vma_res,
703 				 arg->pat_index, arg->flags);
704 	bxt_vtd_ggtt_wa(arg->vm);
705 
706 	return 0;
707 }
708 
709 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
710 					     struct i915_vma_resource *vma_res,
711 					     unsigned int pat_index,
712 					     u32 flags)
713 {
714 	struct insert_entries arg = { vm, vma_res, pat_index, flags };
715 
716 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
717 }
718 
719 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
720 				  u64 start, u64 length)
721 {
722 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
723 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
724 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
725 	gen6_pte_t scratch_pte, __iomem *gtt_base =
726 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
727 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
728 	int i;
729 
730 	if (WARN(num_entries > max_entries,
731 		 "First entry = %d; Num entries = %d (max=%d)\n",
732 		 first_entry, num_entries, max_entries))
733 		num_entries = max_entries;
734 
735 	scratch_pte = vm->scratch[0]->encode;
736 	for (i = 0; i < num_entries; i++)
737 		iowrite32(scratch_pte, &gtt_base[i]);
738 }
739 
740 void intel_ggtt_bind_vma(struct i915_address_space *vm,
741 			 struct i915_vm_pt_stash *stash,
742 			 struct i915_vma_resource *vma_res,
743 			 unsigned int pat_index,
744 			 u32 flags)
745 {
746 	u32 pte_flags;
747 
748 	if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK))
749 		return;
750 
751 	vma_res->bound_flags |= flags;
752 
753 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
754 	pte_flags = 0;
755 	if (vma_res->bi.readonly)
756 		pte_flags |= PTE_READ_ONLY;
757 	if (vma_res->bi.lmem)
758 		pte_flags |= PTE_LM;
759 
760 	vm->insert_entries(vm, vma_res, pat_index, pte_flags);
761 	vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE;
762 }
763 
764 void intel_ggtt_unbind_vma(struct i915_address_space *vm,
765 			   struct i915_vma_resource *vma_res)
766 {
767 	vm->clear_range(vm, vma_res->start, vma_res->vma_size);
768 }
769 
770 /*
771  * Reserve the top of the GuC address space for firmware images. Addresses
772  * beyond GUC_GGTT_TOP in the GuC address space are inaccessible by GuC,
773  * which makes for a suitable range to hold GuC/HuC firmware images if the
774  * size of the GGTT is 4G. However, on a 32-bit platform the size of the GGTT
775  * is limited to 2G, which is less than GUC_GGTT_TOP, but we reserve a chunk
776  * of the same size anyway, which is far more than needed, to keep the logic
777  * in uc_fw_ggtt_offset() simple.
778  */
779 #define GUC_TOP_RESERVE_SIZE (SZ_4G - GUC_GGTT_TOP)
780 
781 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
782 {
783 	u64 offset;
784 	int ret;
785 
786 	if (!intel_uc_uses_guc(&ggtt->vm.gt->uc))
787 		return 0;
788 
789 	GEM_BUG_ON(ggtt->vm.total <= GUC_TOP_RESERVE_SIZE);
790 	offset = ggtt->vm.total - GUC_TOP_RESERVE_SIZE;
791 
792 	ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw,
793 				   GUC_TOP_RESERVE_SIZE, offset,
794 				   I915_COLOR_UNEVICTABLE, PIN_NOEVICT);
795 	if (ret)
796 		drm_dbg(&ggtt->vm.i915->drm,
797 			"Failed to reserve top of GGTT for GuC\n");
798 
799 	return ret;
800 }
801 
802 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
803 {
804 	if (drm_mm_node_allocated(&ggtt->uc_fw))
805 		drm_mm_remove_node(&ggtt->uc_fw);
806 }
807 
808 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
809 {
810 	ggtt_release_guc_top(ggtt);
811 	if (drm_mm_node_allocated(&ggtt->error_capture))
812 		drm_mm_remove_node(&ggtt->error_capture);
813 	mutex_destroy(&ggtt->error_mutex);
814 }
815 
816 static int init_ggtt(struct i915_ggtt *ggtt)
817 {
818 	/*
819 	 * Let GEM Manage all of the aperture.
820 	 *
821 	 * However, leave one page at the end still bound to the scratch page.
822 	 * There are a number of places where the hardware apparently prefetches
823 	 * past the end of the object, and we've seen multiple hangs with the
824 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
825 	 * aperture.  One page should be enough to keep any prefetching inside
826 	 * of the aperture.
827 	 */
828 	unsigned long hole_start, hole_end;
829 	struct drm_mm_node *entry;
830 	int ret;
831 
832 	/*
833 	 * GuC requires all resources that we're sharing with it to be placed in
834 	 * non-WOPCM memory. If GuC is not present or not in use we still need a
835 	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
836 	 * why.
837 	 */
838 	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
839 			       intel_wopcm_guc_size(&ggtt->vm.gt->wopcm));
840 
841 	ret = intel_vgt_balloon(ggtt);
842 	if (ret)
843 		return ret;
844 
845 	mutex_init(&ggtt->error_mutex);
846 	if (ggtt->mappable_end) {
847 		/*
848 		 * Reserve a mappable slot for our lockless error capture.
849 		 *
850 		 * We strongly prefer taking address 0x0 in order to protect
851 		 * other critical buffers against accidental overwrites,
852 		 * as writing to address 0 is a very common mistake.
853 		 *
854 		 * Since 0 may already be in use by the system (e.g. the BIOS
855 		 * framebuffer), we let the reservation fail quietly and hope
856 		 * 0 remains reserved always.
857 		 *
858 		 * If we fail to reserve 0, and then fail to find any space
859 		 * for an error-capture, remain silent. We can afford not
860 		 * to reserve an error_capture node as we have fallback
861 		 * paths, and we trust that 0 will remain reserved. However,
862 		 * the only likely reason for failure to insert is a driver
863 		 * bug, which we expect to cause other failures...
864 		 *
865 		 * Since CPU can perform speculative reads on error capture
866 		 * (write-combining allows it) add scratch page after error
867 		 * capture to avoid DMAR errors.
868 		 */
869 		ggtt->error_capture.size = 2 * I915_GTT_PAGE_SIZE;
870 		ggtt->error_capture.color = I915_COLOR_UNEVICTABLE;
871 		if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture))
872 			drm_mm_insert_node_in_range(&ggtt->vm.mm,
873 						    &ggtt->error_capture,
874 						    ggtt->error_capture.size, 0,
875 						    ggtt->error_capture.color,
876 						    0, ggtt->mappable_end,
877 						    DRM_MM_INSERT_LOW);
878 	}
879 	if (drm_mm_node_allocated(&ggtt->error_capture)) {
880 		u64 start = ggtt->error_capture.start;
881 		u64 size = ggtt->error_capture.size;
882 
883 		ggtt->vm.scratch_range(&ggtt->vm, start, size);
884 		drm_dbg(&ggtt->vm.i915->drm,
885 			"Reserved GGTT:[%llx, %llx] for use by error capture\n",
886 			start, start + size);
887 	}
888 
889 	/*
890 	 * The upper portion of the GuC address space has a sizeable hole
891 	 * (several MB) that is inaccessible by GuC. Reserve this range within
892 	 * GGTT as it can comfortably hold GuC/HuC firmware images.
893 	 */
894 	ret = ggtt_reserve_guc_top(ggtt);
895 	if (ret)
896 		goto err;
897 
898 	/* Clear any non-preallocated blocks */
899 	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
900 		drm_dbg(&ggtt->vm.i915->drm,
901 			"clearing unused GTT space: [%lx, %lx]\n",
902 			hole_start, hole_end);
903 		ggtt->vm.clear_range(&ggtt->vm, hole_start,
904 				     hole_end - hole_start);
905 	}
906 
907 	/* And finally clear the reserved guard page */
908 	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
909 
910 	return 0;
911 
912 err:
913 	cleanup_init_ggtt(ggtt);
914 	return ret;
915 }
916 
917 static void aliasing_gtt_bind_vma(struct i915_address_space *vm,
918 				  struct i915_vm_pt_stash *stash,
919 				  struct i915_vma_resource *vma_res,
920 				  unsigned int pat_index,
921 				  u32 flags)
922 {
923 	u32 pte_flags;
924 
925 	/* Currently applicable only to VLV */
926 	pte_flags = 0;
927 	if (vma_res->bi.readonly)
928 		pte_flags |= PTE_READ_ONLY;
929 
930 	if (flags & I915_VMA_LOCAL_BIND)
931 		ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm,
932 			       stash, vma_res, pat_index, flags);
933 
934 	if (flags & I915_VMA_GLOBAL_BIND)
935 		vm->insert_entries(vm, vma_res, pat_index, pte_flags);
936 
937 	vma_res->bound_flags |= flags;
938 }
939 
940 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm,
941 				    struct i915_vma_resource *vma_res)
942 {
943 	if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND)
944 		vm->clear_range(vm, vma_res->start, vma_res->vma_size);
945 
946 	if (vma_res->bound_flags & I915_VMA_LOCAL_BIND)
947 		ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res);
948 }
949 
950 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
951 {
952 	struct i915_vm_pt_stash stash = {};
953 	struct i915_ppgtt *ppgtt;
954 	int err;
955 
956 	ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0);
957 	if (IS_ERR(ppgtt))
958 		return PTR_ERR(ppgtt);
959 
960 	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
961 		err = -ENODEV;
962 		goto err_ppgtt;
963 	}
964 
965 	err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total);
966 	if (err)
967 		goto err_ppgtt;
968 
969 	i915_gem_object_lock(ppgtt->vm.scratch[0], NULL);
970 	err = i915_vm_map_pt_stash(&ppgtt->vm, &stash);
971 	i915_gem_object_unlock(ppgtt->vm.scratch[0]);
972 	if (err)
973 		goto err_stash;
974 
975 	/*
976 	 * Note we only pre-allocate as far as the end of the global
977 	 * GTT. On 48b / 4-level page-tables, the difference is very,
978 	 * very significant! We have to preallocate as GVT/vgpu does
979 	 * not like the page directory disappearing.
980 	 */
981 	ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total);
982 
983 	ggtt->alias = ppgtt;
984 	ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
985 
986 	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != intel_ggtt_bind_vma);
987 	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
988 
989 	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != intel_ggtt_unbind_vma);
990 	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
991 
992 	i915_vm_free_pt_stash(&ppgtt->vm, &stash);
993 	return 0;
994 
995 err_stash:
996 	i915_vm_free_pt_stash(&ppgtt->vm, &stash);
997 err_ppgtt:
998 	i915_vm_put(&ppgtt->vm);
999 	return err;
1000 }
1001 
1002 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
1003 {
1004 	struct i915_ppgtt *ppgtt;
1005 
1006 	ppgtt = fetch_and_zero(&ggtt->alias);
1007 	if (!ppgtt)
1008 		return;
1009 
1010 	i915_vm_put(&ppgtt->vm);
1011 
1012 	ggtt->vm.vma_ops.bind_vma   = intel_ggtt_bind_vma;
1013 	ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
1014 }
1015 
1016 int i915_init_ggtt(struct drm_i915_private *i915)
1017 {
1018 	int ret;
1019 
1020 	ret = init_ggtt(to_gt(i915)->ggtt);
1021 	if (ret)
1022 		return ret;
1023 
1024 	if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
1025 		ret = init_aliasing_ppgtt(to_gt(i915)->ggtt);
1026 		if (ret)
1027 			cleanup_init_ggtt(to_gt(i915)->ggtt);
1028 	}
1029 
1030 	return 0;
1031 }
1032 
1033 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
1034 {
1035 	struct i915_vma *vma, *vn;
1036 
1037 	flush_workqueue(ggtt->vm.i915->wq);
1038 	i915_gem_drain_freed_objects(ggtt->vm.i915);
1039 
1040 	mutex_lock(&ggtt->vm.mutex);
1041 
1042 	ggtt->vm.skip_pte_rewrite = true;
1043 
1044 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
1045 		struct drm_i915_gem_object *obj = vma->obj;
1046 		bool trylock;
1047 
1048 		trylock = i915_gem_object_trylock(obj, NULL);
1049 		WARN_ON(!trylock);
1050 
1051 		WARN_ON(__i915_vma_unbind(vma));
1052 		if (trylock)
1053 			i915_gem_object_unlock(obj);
1054 	}
1055 
1056 	if (drm_mm_node_allocated(&ggtt->error_capture))
1057 		drm_mm_remove_node(&ggtt->error_capture);
1058 	mutex_destroy(&ggtt->error_mutex);
1059 
1060 	ggtt_release_guc_top(ggtt);
1061 	intel_vgt_deballoon(ggtt);
1062 
1063 	ggtt->vm.cleanup(&ggtt->vm);
1064 
1065 	mutex_unlock(&ggtt->vm.mutex);
1066 	i915_address_space_fini(&ggtt->vm);
1067 
1068 	arch_phys_wc_del(ggtt->mtrr);
1069 
1070 	if (ggtt->iomap.size)
1071 		io_mapping_fini(&ggtt->iomap);
1072 }
1073 
1074 /**
1075  * i915_ggtt_driver_release - Clean up GGTT hardware initialization
1076  * @i915: i915 device
1077  */
1078 void i915_ggtt_driver_release(struct drm_i915_private *i915)
1079 {
1080 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
1081 
1082 	fini_aliasing_ppgtt(ggtt);
1083 
1084 	intel_ggtt_fini_fences(ggtt);
1085 	ggtt_cleanup_hw(ggtt);
1086 }
1087 
1088 /**
1089  * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after
1090  * all free objects have been drained.
1091  * @i915: i915 device
1092  */
1093 void i915_ggtt_driver_late_release(struct drm_i915_private *i915)
1094 {
1095 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
1096 
1097 	GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1);
1098 	dma_resv_fini(&ggtt->vm._resv);
1099 }
1100 
1101 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1102 {
1103 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1104 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1105 	return snb_gmch_ctl << 20;
1106 }
1107 
1108 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1109 {
1110 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1111 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1112 	if (bdw_gmch_ctl)
1113 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1114 
1115 #ifdef CONFIG_X86_32
1116 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
1117 	if (bdw_gmch_ctl > 4)
1118 		bdw_gmch_ctl = 4;
1119 #endif
1120 
1121 	return bdw_gmch_ctl << 20;
1122 }
1123 
1124 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
1125 {
1126 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
1127 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
1128 
1129 	if (gmch_ctrl)
1130 		return 1 << (20 + gmch_ctrl);
1131 
1132 	return 0;
1133 }
1134 
1135 static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915)
1136 {
1137 	/*
1138 	 * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset
1139 	 * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset
1140 	 */
1141 	GEM_BUG_ON(GRAPHICS_VER(i915) < 6);
1142 	return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M;
1143 }
1144 
1145 static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915)
1146 {
1147 	return gen6_gttmmadr_size(i915) / 2;
1148 }
1149 
1150 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
1151 {
1152 	struct drm_i915_private *i915 = ggtt->vm.i915;
1153 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
1154 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1155 	phys_addr_t phys_addr;
1156 	u32 pte_flags;
1157 	int ret;
1158 
1159 	GEM_WARN_ON(pci_resource_len(pdev, GEN4_GTTMMADR_BAR) != gen6_gttmmadr_size(i915));
1160 
1161 	if (i915_direct_stolen_access(i915)) {
1162 		drm_dbg(&i915->drm, "Using direct GSM access\n");
1163 		phys_addr = intel_uncore_read64(uncore, GEN6_GSMBASE) & GEN11_BDSM_MASK;
1164 	} else {
1165 		phys_addr = pci_resource_start(pdev, GEN4_GTTMMADR_BAR) + gen6_gttadr_offset(i915);
1166 	}
1167 
1168 	if (needs_wc_ggtt_mapping(i915))
1169 		ggtt->gsm = ioremap_wc(phys_addr, size);
1170 	else
1171 		ggtt->gsm = ioremap(phys_addr, size);
1172 
1173 	if (!ggtt->gsm) {
1174 		drm_err(&i915->drm, "Failed to map the ggtt page table\n");
1175 		return -ENOMEM;
1176 	}
1177 
1178 	kref_init(&ggtt->vm.resv_ref);
1179 	ret = setup_scratch_page(&ggtt->vm);
1180 	if (ret) {
1181 		drm_err(&i915->drm, "Scratch setup failed\n");
1182 		/* iounmap will also get called at remove, but meh */
1183 		iounmap(ggtt->gsm);
1184 		return ret;
1185 	}
1186 
1187 	pte_flags = 0;
1188 	if (i915_gem_object_is_lmem(ggtt->vm.scratch[0]))
1189 		pte_flags |= PTE_LM;
1190 
1191 	ggtt->vm.scratch[0]->encode =
1192 		ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]),
1193 				    i915_gem_get_pat_index(i915,
1194 							   I915_CACHE_NONE),
1195 				    pte_flags);
1196 
1197 	return 0;
1198 }
1199 
1200 static void gen6_gmch_remove(struct i915_address_space *vm)
1201 {
1202 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
1203 
1204 	iounmap(ggtt->gsm);
1205 	free_scratch(vm);
1206 }
1207 
1208 static struct resource pci_resource(struct pci_dev *pdev, int bar)
1209 {
1210 	return DEFINE_RES_MEM(pci_resource_start(pdev, bar),
1211 			      pci_resource_len(pdev, bar));
1212 }
1213 
1214 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
1215 {
1216 	struct drm_i915_private *i915 = ggtt->vm.i915;
1217 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1218 	unsigned int size;
1219 	u16 snb_gmch_ctl;
1220 
1221 	if (!HAS_LMEM(i915) && !HAS_LMEMBAR_SMEM_STOLEN(i915)) {
1222 		if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
1223 			return -ENXIO;
1224 
1225 		ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
1226 		ggtt->mappable_end = resource_size(&ggtt->gmadr);
1227 	}
1228 
1229 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1230 	if (IS_CHERRYVIEW(i915))
1231 		size = chv_get_total_gtt_size(snb_gmch_ctl);
1232 	else
1233 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
1234 
1235 	ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1236 	ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1237 	ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY;
1238 
1239 	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
1240 	ggtt->vm.cleanup = gen6_gmch_remove;
1241 	ggtt->vm.insert_page = gen8_ggtt_insert_page;
1242 	ggtt->vm.clear_range = nop_clear_range;
1243 	ggtt->vm.scratch_range = gen8_ggtt_clear_range;
1244 
1245 	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
1246 
1247 	/*
1248 	 * Serialize GTT updates with aperture access on BXT if VT-d is on,
1249 	 * and always on CHV.
1250 	 */
1251 	if (intel_vm_no_concurrent_access_wa(i915)) {
1252 		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
1253 		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
1254 
1255 		/*
1256 		 * Calling stop_machine() version of GGTT update function
1257 		 * at error capture/reset path will raise lockdep warning.
1258 		 * Allow calling gen8_ggtt_insert_* directly at reset path
1259 		 * which is safe from parallel GGTT updates.
1260 		 */
1261 		ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
1262 		ggtt->vm.raw_insert_entries = gen8_ggtt_insert_entries;
1263 
1264 		ggtt->vm.bind_async_flags =
1265 			I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
1266 	}
1267 
1268 	if (i915_ggtt_require_binder(i915)) {
1269 		ggtt->vm.scratch_range = gen8_ggtt_scratch_range_bind;
1270 		ggtt->vm.insert_page = gen8_ggtt_insert_page_bind;
1271 		ggtt->vm.insert_entries = gen8_ggtt_insert_entries_bind;
1272 		/*
1273 		 * On GPU is hung, we might bind VMAs for error capture.
1274 		 * Fallback to CPU GGTT updates in that case.
1275 		 */
1276 		ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
1277 	}
1278 
1279 	if (intel_uc_wants_guc_submission(&ggtt->vm.gt->uc))
1280 		ggtt->invalidate = guc_ggtt_invalidate;
1281 	else
1282 		ggtt->invalidate = gen8_ggtt_invalidate;
1283 
1284 	ggtt->vm.vma_ops.bind_vma    = intel_ggtt_bind_vma;
1285 	ggtt->vm.vma_ops.unbind_vma  = intel_ggtt_unbind_vma;
1286 
1287 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
1288 		ggtt->vm.pte_encode = mtl_ggtt_pte_encode;
1289 	else
1290 		ggtt->vm.pte_encode = gen8_ggtt_pte_encode;
1291 
1292 	return ggtt_probe_common(ggtt, size);
1293 }
1294 
1295 /*
1296  * For pre-gen8 platforms pat_index is the same as enum i915_cache_level,
1297  * so the switch-case statements in these PTE encode functions are still valid.
1298  * See translation table LEGACY_CACHELEVEL.
1299  */
1300 static u64 snb_pte_encode(dma_addr_t addr,
1301 			  unsigned int pat_index,
1302 			  u32 flags)
1303 {
1304 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1305 
1306 	switch (pat_index) {
1307 	case I915_CACHE_L3_LLC:
1308 	case I915_CACHE_LLC:
1309 		pte |= GEN6_PTE_CACHE_LLC;
1310 		break;
1311 	case I915_CACHE_NONE:
1312 		pte |= GEN6_PTE_UNCACHED;
1313 		break;
1314 	default:
1315 		MISSING_CASE(pat_index);
1316 	}
1317 
1318 	return pte;
1319 }
1320 
1321 static u64 ivb_pte_encode(dma_addr_t addr,
1322 			  unsigned int pat_index,
1323 			  u32 flags)
1324 {
1325 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1326 
1327 	switch (pat_index) {
1328 	case I915_CACHE_L3_LLC:
1329 		pte |= GEN7_PTE_CACHE_L3_LLC;
1330 		break;
1331 	case I915_CACHE_LLC:
1332 		pte |= GEN6_PTE_CACHE_LLC;
1333 		break;
1334 	case I915_CACHE_NONE:
1335 		pte |= GEN6_PTE_UNCACHED;
1336 		break;
1337 	default:
1338 		MISSING_CASE(pat_index);
1339 	}
1340 
1341 	return pte;
1342 }
1343 
1344 static u64 byt_pte_encode(dma_addr_t addr,
1345 			  unsigned int pat_index,
1346 			  u32 flags)
1347 {
1348 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1349 
1350 	if (!(flags & PTE_READ_ONLY))
1351 		pte |= BYT_PTE_WRITEABLE;
1352 
1353 	if (pat_index != I915_CACHE_NONE)
1354 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
1355 
1356 	return pte;
1357 }
1358 
1359 static u64 hsw_pte_encode(dma_addr_t addr,
1360 			  unsigned int pat_index,
1361 			  u32 flags)
1362 {
1363 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1364 
1365 	if (pat_index != I915_CACHE_NONE)
1366 		pte |= HSW_WB_LLC_AGE3;
1367 
1368 	return pte;
1369 }
1370 
1371 static u64 iris_pte_encode(dma_addr_t addr,
1372 			   unsigned int pat_index,
1373 			   u32 flags)
1374 {
1375 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1376 
1377 	switch (pat_index) {
1378 	case I915_CACHE_NONE:
1379 		break;
1380 	case I915_CACHE_WT:
1381 		pte |= HSW_WT_ELLC_LLC_AGE3;
1382 		break;
1383 	default:
1384 		pte |= HSW_WB_ELLC_LLC_AGE3;
1385 		break;
1386 	}
1387 
1388 	return pte;
1389 }
1390 
1391 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
1392 {
1393 	struct drm_i915_private *i915 = ggtt->vm.i915;
1394 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1395 	unsigned int size;
1396 	u16 snb_gmch_ctl;
1397 
1398 	if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
1399 		return -ENXIO;
1400 
1401 	ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
1402 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
1403 
1404 	/*
1405 	 * 64/512MB is the current min/max we actually know of, but this is
1406 	 * just a coarse sanity check.
1407 	 */
1408 	if (ggtt->mappable_end < (64 << 20) ||
1409 	    ggtt->mappable_end > (512 << 20)) {
1410 		drm_err(&i915->drm, "Unknown GMADR size (%pa)\n",
1411 			&ggtt->mappable_end);
1412 		return -ENXIO;
1413 	}
1414 
1415 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1416 
1417 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
1418 	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
1419 
1420 	ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1421 	ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1422 
1423 	ggtt->vm.clear_range = nop_clear_range;
1424 	if (!HAS_FULL_PPGTT(i915))
1425 		ggtt->vm.clear_range = gen6_ggtt_clear_range;
1426 	ggtt->vm.scratch_range = gen6_ggtt_clear_range;
1427 	ggtt->vm.insert_page = gen6_ggtt_insert_page;
1428 	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
1429 	ggtt->vm.cleanup = gen6_gmch_remove;
1430 
1431 	ggtt->invalidate = gen6_ggtt_invalidate;
1432 
1433 	if (HAS_EDRAM(i915))
1434 		ggtt->vm.pte_encode = iris_pte_encode;
1435 	else if (IS_HASWELL(i915))
1436 		ggtt->vm.pte_encode = hsw_pte_encode;
1437 	else if (IS_VALLEYVIEW(i915))
1438 		ggtt->vm.pte_encode = byt_pte_encode;
1439 	else if (GRAPHICS_VER(i915) >= 7)
1440 		ggtt->vm.pte_encode = ivb_pte_encode;
1441 	else
1442 		ggtt->vm.pte_encode = snb_pte_encode;
1443 
1444 	ggtt->vm.vma_ops.bind_vma    = intel_ggtt_bind_vma;
1445 	ggtt->vm.vma_ops.unbind_vma  = intel_ggtt_unbind_vma;
1446 
1447 	return ggtt_probe_common(ggtt, size);
1448 }
1449 
1450 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
1451 {
1452 	struct drm_i915_private *i915 = gt->i915;
1453 	int ret;
1454 
1455 	ggtt->vm.gt = gt;
1456 	ggtt->vm.i915 = i915;
1457 	ggtt->vm.dma = i915->drm.dev;
1458 	dma_resv_init(&ggtt->vm._resv);
1459 
1460 	if (GRAPHICS_VER(i915) >= 8)
1461 		ret = gen8_gmch_probe(ggtt);
1462 	else if (GRAPHICS_VER(i915) >= 6)
1463 		ret = gen6_gmch_probe(ggtt);
1464 	else
1465 		ret = intel_ggtt_gmch_probe(ggtt);
1466 
1467 	if (ret) {
1468 		dma_resv_fini(&ggtt->vm._resv);
1469 		return ret;
1470 	}
1471 
1472 	if ((ggtt->vm.total - 1) >> 32) {
1473 		drm_err(&i915->drm,
1474 			"We never expected a Global GTT with more than 32bits"
1475 			" of address space! Found %lldM!\n",
1476 			ggtt->vm.total >> 20);
1477 		ggtt->vm.total = 1ULL << 32;
1478 		ggtt->mappable_end =
1479 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
1480 	}
1481 
1482 	if (ggtt->mappable_end > ggtt->vm.total) {
1483 		drm_err(&i915->drm,
1484 			"mappable aperture extends past end of GGTT,"
1485 			" aperture=%pa, total=%llx\n",
1486 			&ggtt->mappable_end, ggtt->vm.total);
1487 		ggtt->mappable_end = ggtt->vm.total;
1488 	}
1489 
1490 	/* GMADR is the PCI mmio aperture into the global GTT. */
1491 	drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20);
1492 	drm_dbg(&i915->drm, "GMADR size = %lluM\n",
1493 		(u64)ggtt->mappable_end >> 20);
1494 	drm_dbg(&i915->drm, "DSM size = %lluM\n",
1495 		(u64)resource_size(&intel_graphics_stolen_res) >> 20);
1496 
1497 	return 0;
1498 }
1499 
1500 /**
1501  * i915_ggtt_probe_hw - Probe GGTT hardware location
1502  * @i915: i915 device
1503  */
1504 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
1505 {
1506 	struct intel_gt *gt;
1507 	int ret, i;
1508 
1509 	for_each_gt(gt, i915, i) {
1510 		ret = intel_gt_assign_ggtt(gt);
1511 		if (ret)
1512 			return ret;
1513 	}
1514 
1515 	ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915));
1516 	if (ret)
1517 		return ret;
1518 
1519 	if (i915_vtd_active(i915))
1520 		drm_info(&i915->drm, "VT-d active for gfx access\n");
1521 
1522 	return 0;
1523 }
1524 
1525 struct i915_ggtt *i915_ggtt_create(struct drm_i915_private *i915)
1526 {
1527 	struct i915_ggtt *ggtt;
1528 
1529 	ggtt = drmm_kzalloc(&i915->drm, sizeof(*ggtt), GFP_KERNEL);
1530 	if (!ggtt)
1531 		return ERR_PTR(-ENOMEM);
1532 
1533 	INIT_LIST_HEAD(&ggtt->gt_list);
1534 
1535 	return ggtt;
1536 }
1537 
1538 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
1539 {
1540 	if (GRAPHICS_VER(i915) < 6)
1541 		return intel_ggtt_gmch_enable_hw(i915);
1542 
1543 	return 0;
1544 }
1545 
1546 /**
1547  * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM
1548  * @vm: The VM to restore the mappings for
1549  *
1550  * Restore the memory mappings for all objects mapped to HW via the GGTT or a
1551  * DPT page table.
1552  *
1553  * Returns %true if restoring the mapping for any object that was in a write
1554  * domain before suspend.
1555  */
1556 bool i915_ggtt_resume_vm(struct i915_address_space *vm)
1557 {
1558 	struct i915_vma *vma;
1559 	bool write_domain_objs = false;
1560 
1561 	drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
1562 
1563 	/* First fill our portion of the GTT with scratch pages */
1564 	vm->clear_range(vm, 0, vm->total);
1565 
1566 	/* clflush objects bound into the GGTT and rebind them. */
1567 	list_for_each_entry(vma, &vm->bound_list, vm_link) {
1568 		struct drm_i915_gem_object *obj = vma->obj;
1569 		unsigned int was_bound =
1570 			atomic_read(&vma->flags) & I915_VMA_BIND_MASK;
1571 
1572 		GEM_BUG_ON(!was_bound);
1573 
1574 		/*
1575 		 * Clear the bound flags of the vma resource to allow
1576 		 * ptes to be repopulated.
1577 		 */
1578 		vma->resource->bound_flags = 0;
1579 		vma->ops->bind_vma(vm, NULL, vma->resource,
1580 				   obj ? obj->pat_index :
1581 					 i915_gem_get_pat_index(vm->i915,
1582 								I915_CACHE_NONE),
1583 				   was_bound);
1584 
1585 		if (obj) { /* only used during resume => exclusive access */
1586 			write_domain_objs |= fetch_and_zero(&obj->write_domain);
1587 			obj->read_domains |= I915_GEM_DOMAIN_GTT;
1588 		}
1589 	}
1590 
1591 	return write_domain_objs;
1592 }
1593 
1594 void i915_ggtt_resume(struct i915_ggtt *ggtt)
1595 {
1596 	struct intel_gt *gt;
1597 	bool flush;
1598 
1599 	list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1600 		intel_gt_check_and_clear_faults(gt);
1601 
1602 	flush = i915_ggtt_resume_vm(&ggtt->vm);
1603 
1604 	if (drm_mm_node_allocated(&ggtt->error_capture))
1605 		ggtt->vm.scratch_range(&ggtt->vm, ggtt->error_capture.start,
1606 				       ggtt->error_capture.size);
1607 
1608 	list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1609 		intel_uc_resume_mappings(&gt->uc);
1610 
1611 	ggtt->invalidate(ggtt);
1612 
1613 	if (flush)
1614 		wbinvd_on_all_cpus();
1615 
1616 	intel_ggtt_restore_fences(ggtt);
1617 }
1618