1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include <asm/set_memory.h> 7 #include <asm/smp.h> 8 #include <linux/types.h> 9 #include <linux/stop_machine.h> 10 11 #include <drm/drm_managed.h> 12 #include <drm/i915_drm.h> 13 #include <drm/intel-gtt.h> 14 15 #include "display/intel_display.h" 16 #include "gem/i915_gem_lmem.h" 17 18 #include "intel_context.h" 19 #include "intel_ggtt_gmch.h" 20 #include "intel_gpu_commands.h" 21 #include "intel_gt.h" 22 #include "intel_gt_regs.h" 23 #include "intel_pci_config.h" 24 #include "intel_ring.h" 25 #include "i915_drv.h" 26 #include "i915_pci.h" 27 #include "i915_reg.h" 28 #include "i915_request.h" 29 #include "i915_scatterlist.h" 30 #include "i915_utils.h" 31 #include "i915_vgpu.h" 32 33 #include "intel_gtt.h" 34 #include "gen8_ppgtt.h" 35 #include "intel_engine_pm.h" 36 37 static void i915_ggtt_color_adjust(const struct drm_mm_node *node, 38 unsigned long color, 39 u64 *start, 40 u64 *end) 41 { 42 if (i915_node_color_differs(node, color)) 43 *start += I915_GTT_PAGE_SIZE; 44 45 /* 46 * Also leave a space between the unallocated reserved node after the 47 * GTT and any objects within the GTT, i.e. we use the color adjustment 48 * to insert a guard page to prevent prefetches crossing over the 49 * GTT boundary. 50 */ 51 node = list_next_entry(node, node_list); 52 if (node->color != color) 53 *end -= I915_GTT_PAGE_SIZE; 54 } 55 56 static int ggtt_init_hw(struct i915_ggtt *ggtt) 57 { 58 struct drm_i915_private *i915 = ggtt->vm.i915; 59 60 i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT); 61 62 ggtt->vm.is_ggtt = true; 63 64 /* Only VLV supports read-only GGTT mappings */ 65 ggtt->vm.has_read_only = IS_VALLEYVIEW(i915); 66 67 if (!HAS_LLC(i915) && !HAS_PPGTT(i915)) 68 ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust; 69 70 if (ggtt->mappable_end) { 71 if (!io_mapping_init_wc(&ggtt->iomap, 72 ggtt->gmadr.start, 73 ggtt->mappable_end)) { 74 ggtt->vm.cleanup(&ggtt->vm); 75 return -EIO; 76 } 77 78 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, 79 ggtt->mappable_end); 80 } 81 82 intel_ggtt_init_fences(ggtt); 83 84 return 0; 85 } 86 87 /** 88 * i915_ggtt_init_hw - Initialize GGTT hardware 89 * @i915: i915 device 90 */ 91 int i915_ggtt_init_hw(struct drm_i915_private *i915) 92 { 93 int ret; 94 95 /* 96 * Note that we use page colouring to enforce a guard page at the 97 * end of the address space. This is required as the CS may prefetch 98 * beyond the end of the batch buffer, across the page boundary, 99 * and beyond the end of the GTT if we do not provide a guard. 100 */ 101 ret = ggtt_init_hw(to_gt(i915)->ggtt); 102 if (ret) 103 return ret; 104 105 return 0; 106 } 107 108 /** 109 * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM 110 * @vm: The VM to suspend the mappings for 111 * 112 * Suspend the memory mappings for all objects mapped to HW via the GGTT or a 113 * DPT page table. 114 */ 115 void i915_ggtt_suspend_vm(struct i915_address_space *vm) 116 { 117 struct i915_vma *vma, *vn; 118 int save_skip_rewrite; 119 120 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); 121 122 retry: 123 i915_gem_drain_freed_objects(vm->i915); 124 125 mutex_lock(&vm->mutex); 126 127 /* 128 * Skip rewriting PTE on VMA unbind. 129 * FIXME: Use an argument to i915_vma_unbind() instead? 130 */ 131 save_skip_rewrite = vm->skip_pte_rewrite; 132 vm->skip_pte_rewrite = true; 133 134 list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) { 135 struct drm_i915_gem_object *obj = vma->obj; 136 137 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 138 139 if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) 140 continue; 141 142 /* unlikely to race when GPU is idle, so no worry about slowpath.. */ 143 if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) { 144 /* 145 * No dead objects should appear here, GPU should be 146 * completely idle, and userspace suspended 147 */ 148 i915_gem_object_get(obj); 149 150 mutex_unlock(&vm->mutex); 151 152 i915_gem_object_lock(obj, NULL); 153 GEM_WARN_ON(i915_vma_unbind(vma)); 154 i915_gem_object_unlock(obj); 155 i915_gem_object_put(obj); 156 157 vm->skip_pte_rewrite = save_skip_rewrite; 158 goto retry; 159 } 160 161 if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) { 162 i915_vma_wait_for_bind(vma); 163 164 __i915_vma_evict(vma, false); 165 drm_mm_remove_node(&vma->node); 166 } 167 168 i915_gem_object_unlock(obj); 169 } 170 171 vm->clear_range(vm, 0, vm->total); 172 173 vm->skip_pte_rewrite = save_skip_rewrite; 174 175 mutex_unlock(&vm->mutex); 176 } 177 178 void i915_ggtt_suspend(struct i915_ggtt *ggtt) 179 { 180 struct intel_gt *gt; 181 182 i915_ggtt_suspend_vm(&ggtt->vm); 183 ggtt->invalidate(ggtt); 184 185 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) 186 intel_gt_check_and_clear_faults(gt); 187 } 188 189 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt) 190 { 191 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 192 193 spin_lock_irq(&uncore->lock); 194 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 195 intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6); 196 spin_unlock_irq(&uncore->lock); 197 } 198 199 static bool needs_wc_ggtt_mapping(struct drm_i915_private *i915) 200 { 201 /* 202 * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range 203 * will be dropped. For WC mappings in general we have 64 byte burst 204 * writes when the WC buffer is flushed, so we can't use it, but have to 205 * resort to an uncached mapping. The WC issue is easily caught by the 206 * readback check when writing GTT PTE entries. 207 */ 208 if (!IS_GEN9_LP(i915) && GRAPHICS_VER(i915) < 11) 209 return true; 210 211 return false; 212 } 213 214 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt) 215 { 216 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 217 218 /* 219 * Note that as an uncached mmio write, this will flush the 220 * WCB of the writes into the GGTT before it triggers the invalidate. 221 * 222 * Only perform this when GGTT is mapped as WC, see ggtt_probe_common(). 223 */ 224 if (needs_wc_ggtt_mapping(ggtt->vm.i915)) 225 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, 226 GFX_FLSH_CNTL_EN); 227 } 228 229 static void guc_ggtt_ct_invalidate(struct intel_gt *gt) 230 { 231 struct intel_uncore *uncore = gt->uncore; 232 intel_wakeref_t wakeref; 233 234 with_intel_runtime_pm_if_active(uncore->rpm, wakeref) 235 intel_guc_invalidate_tlb_guc(gt_to_guc(gt)); 236 } 237 238 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt) 239 { 240 struct drm_i915_private *i915 = ggtt->vm.i915; 241 struct intel_gt *gt; 242 243 gen8_ggtt_invalidate(ggtt); 244 245 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) { 246 if (intel_guc_tlb_invalidation_is_available(gt_to_guc(gt))) 247 guc_ggtt_ct_invalidate(gt); 248 else if (GRAPHICS_VER(i915) >= 12) 249 intel_uncore_write_fw(gt->uncore, 250 GEN12_GUC_TLB_INV_CR, 251 GEN12_GUC_TLB_INV_CR_INVALIDATE); 252 else 253 intel_uncore_write_fw(gt->uncore, 254 GEN8_GTCR, GEN8_GTCR_INVALIDATE); 255 } 256 } 257 258 static u64 mtl_ggtt_pte_encode(dma_addr_t addr, 259 unsigned int pat_index, 260 u32 flags) 261 { 262 gen8_pte_t pte = addr | GEN8_PAGE_PRESENT; 263 264 WARN_ON_ONCE(addr & ~GEN12_GGTT_PTE_ADDR_MASK); 265 266 if (flags & PTE_LM) 267 pte |= GEN12_GGTT_PTE_LM; 268 269 if (pat_index & BIT(0)) 270 pte |= MTL_GGTT_PTE_PAT0; 271 272 if (pat_index & BIT(1)) 273 pte |= MTL_GGTT_PTE_PAT1; 274 275 return pte; 276 } 277 278 u64 gen8_ggtt_pte_encode(dma_addr_t addr, 279 unsigned int pat_index, 280 u32 flags) 281 { 282 gen8_pte_t pte = addr | GEN8_PAGE_PRESENT; 283 284 if (flags & PTE_LM) 285 pte |= GEN12_GGTT_PTE_LM; 286 287 return pte; 288 } 289 290 static bool should_update_ggtt_with_bind(struct i915_ggtt *ggtt) 291 { 292 struct intel_gt *gt = ggtt->vm.gt; 293 294 return intel_gt_is_bind_context_ready(gt); 295 } 296 297 static struct intel_context *gen8_ggtt_bind_get_ce(struct i915_ggtt *ggtt, intel_wakeref_t *wakeref) 298 { 299 struct intel_context *ce; 300 struct intel_gt *gt = ggtt->vm.gt; 301 302 if (intel_gt_is_wedged(gt)) 303 return NULL; 304 305 ce = gt->engine[BCS0]->bind_context; 306 GEM_BUG_ON(!ce); 307 308 /* 309 * If the GT is not awake already at this stage then fallback 310 * to pci based GGTT update otherwise __intel_wakeref_get_first() 311 * would conflict with fs_reclaim trying to allocate memory while 312 * doing rpm_resume(). 313 */ 314 *wakeref = intel_gt_pm_get_if_awake(gt); 315 if (!*wakeref) 316 return NULL; 317 318 intel_engine_pm_get(ce->engine); 319 320 return ce; 321 } 322 323 static void gen8_ggtt_bind_put_ce(struct intel_context *ce, intel_wakeref_t wakeref) 324 { 325 intel_engine_pm_put(ce->engine); 326 intel_gt_pm_put(ce->engine->gt, wakeref); 327 } 328 329 static bool gen8_ggtt_bind_ptes(struct i915_ggtt *ggtt, u32 offset, 330 struct sg_table *pages, u32 num_entries, 331 const gen8_pte_t pte) 332 { 333 struct i915_sched_attr attr = {}; 334 struct intel_gt *gt = ggtt->vm.gt; 335 const gen8_pte_t scratch_pte = ggtt->vm.scratch[0]->encode; 336 struct sgt_iter iter; 337 struct i915_request *rq; 338 struct intel_context *ce; 339 intel_wakeref_t wakeref; 340 u32 *cs; 341 342 if (!num_entries) 343 return true; 344 345 ce = gen8_ggtt_bind_get_ce(ggtt, &wakeref); 346 if (!ce) 347 return false; 348 349 if (pages) 350 iter = __sgt_iter(pages->sgl, true); 351 352 while (num_entries) { 353 int count = 0; 354 dma_addr_t addr; 355 /* 356 * MI_UPDATE_GTT can update 512 entries in a single command but 357 * that end up with engine reset, 511 works. 358 */ 359 u32 n_ptes = min_t(u32, 511, num_entries); 360 361 if (mutex_lock_interruptible(&ce->timeline->mutex)) 362 goto put_ce; 363 364 intel_context_enter(ce); 365 rq = __i915_request_create(ce, GFP_NOWAIT | GFP_ATOMIC); 366 intel_context_exit(ce); 367 if (IS_ERR(rq)) { 368 GT_TRACE(gt, "Failed to get bind request\n"); 369 mutex_unlock(&ce->timeline->mutex); 370 goto put_ce; 371 } 372 373 cs = intel_ring_begin(rq, 2 * n_ptes + 2); 374 if (IS_ERR(cs)) { 375 GT_TRACE(gt, "Failed to ring space for GGTT bind\n"); 376 i915_request_set_error_once(rq, PTR_ERR(cs)); 377 /* once a request is created, it must be queued */ 378 goto queue_err_rq; 379 } 380 381 *cs++ = MI_UPDATE_GTT | (2 * n_ptes); 382 *cs++ = offset << 12; 383 384 if (pages) { 385 for_each_sgt_daddr_next(addr, iter) { 386 if (count == n_ptes) 387 break; 388 *cs++ = lower_32_bits(pte | addr); 389 *cs++ = upper_32_bits(pte | addr); 390 count++; 391 } 392 /* fill remaining with scratch pte, if any */ 393 if (count < n_ptes) { 394 memset64((u64 *)cs, scratch_pte, 395 n_ptes - count); 396 cs += (n_ptes - count) * 2; 397 } 398 } else { 399 memset64((u64 *)cs, pte, n_ptes); 400 cs += n_ptes * 2; 401 } 402 403 intel_ring_advance(rq, cs); 404 queue_err_rq: 405 i915_request_get(rq); 406 __i915_request_commit(rq); 407 __i915_request_queue(rq, &attr); 408 409 mutex_unlock(&ce->timeline->mutex); 410 /* This will break if the request is complete or after engine reset */ 411 i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT); 412 if (rq->fence.error) 413 goto err_rq; 414 415 i915_request_put(rq); 416 417 num_entries -= n_ptes; 418 offset += n_ptes; 419 } 420 421 gen8_ggtt_bind_put_ce(ce, wakeref); 422 return true; 423 424 err_rq: 425 i915_request_put(rq); 426 put_ce: 427 gen8_ggtt_bind_put_ce(ce, wakeref); 428 return false; 429 } 430 431 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) 432 { 433 writeq(pte, addr); 434 } 435 436 static void gen8_ggtt_insert_page(struct i915_address_space *vm, 437 dma_addr_t addr, 438 u64 offset, 439 unsigned int pat_index, 440 u32 flags) 441 { 442 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 443 gen8_pte_t __iomem *pte = 444 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 445 446 gen8_set_pte(pte, ggtt->vm.pte_encode(addr, pat_index, flags)); 447 448 ggtt->invalidate(ggtt); 449 } 450 451 static void gen8_ggtt_insert_page_bind(struct i915_address_space *vm, 452 dma_addr_t addr, u64 offset, 453 unsigned int pat_index, u32 flags) 454 { 455 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 456 gen8_pte_t pte; 457 458 pte = ggtt->vm.pte_encode(addr, pat_index, flags); 459 if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) && 460 gen8_ggtt_bind_ptes(ggtt, offset, NULL, 1, pte)) 461 return ggtt->invalidate(ggtt); 462 463 gen8_ggtt_insert_page(vm, addr, offset, pat_index, flags); 464 } 465 466 static void gen8_ggtt_insert_entries(struct i915_address_space *vm, 467 struct i915_vma_resource *vma_res, 468 unsigned int pat_index, 469 u32 flags) 470 { 471 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 472 const gen8_pte_t pte_encode = ggtt->vm.pte_encode(0, pat_index, flags); 473 gen8_pte_t __iomem *gte; 474 gen8_pte_t __iomem *end; 475 struct sgt_iter iter; 476 dma_addr_t addr; 477 478 /* 479 * Note that we ignore PTE_READ_ONLY here. The caller must be careful 480 * not to allow the user to override access to a read only page. 481 */ 482 483 gte = (gen8_pte_t __iomem *)ggtt->gsm; 484 gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE; 485 end = gte + vma_res->guard / I915_GTT_PAGE_SIZE; 486 while (gte < end) 487 gen8_set_pte(gte++, vm->scratch[0]->encode); 488 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE; 489 490 for_each_sgt_daddr(addr, iter, vma_res->bi.pages) 491 gen8_set_pte(gte++, pte_encode | addr); 492 GEM_BUG_ON(gte > end); 493 494 /* Fill the allocated but "unused" space beyond the end of the buffer */ 495 while (gte < end) 496 gen8_set_pte(gte++, vm->scratch[0]->encode); 497 498 /* 499 * We want to flush the TLBs only after we're certain all the PTE 500 * updates have finished. 501 */ 502 ggtt->invalidate(ggtt); 503 } 504 505 static bool __gen8_ggtt_insert_entries_bind(struct i915_address_space *vm, 506 struct i915_vma_resource *vma_res, 507 unsigned int pat_index, u32 flags) 508 { 509 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 510 gen8_pte_t scratch_pte = vm->scratch[0]->encode; 511 gen8_pte_t pte_encode; 512 u64 start, end; 513 514 pte_encode = ggtt->vm.pte_encode(0, pat_index, flags); 515 start = (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE; 516 end = start + vma_res->guard / I915_GTT_PAGE_SIZE; 517 if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte)) 518 goto err; 519 520 start = end; 521 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE; 522 if (!gen8_ggtt_bind_ptes(ggtt, start, vma_res->bi.pages, 523 vma_res->node_size / I915_GTT_PAGE_SIZE, pte_encode)) 524 goto err; 525 526 start += vma_res->node_size / I915_GTT_PAGE_SIZE; 527 if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte)) 528 goto err; 529 530 return true; 531 532 err: 533 return false; 534 } 535 536 static void gen8_ggtt_insert_entries_bind(struct i915_address_space *vm, 537 struct i915_vma_resource *vma_res, 538 unsigned int pat_index, u32 flags) 539 { 540 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 541 542 if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) && 543 __gen8_ggtt_insert_entries_bind(vm, vma_res, pat_index, flags)) 544 return ggtt->invalidate(ggtt); 545 546 gen8_ggtt_insert_entries(vm, vma_res, pat_index, flags); 547 } 548 549 static void gen8_ggtt_clear_range(struct i915_address_space *vm, 550 u64 start, u64 length) 551 { 552 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 553 unsigned int first_entry = start / I915_GTT_PAGE_SIZE; 554 unsigned int num_entries = length / I915_GTT_PAGE_SIZE; 555 const gen8_pte_t scratch_pte = vm->scratch[0]->encode; 556 gen8_pte_t __iomem *gtt_base = 557 (gen8_pte_t __iomem *)ggtt->gsm + first_entry; 558 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 559 int i; 560 561 if (WARN(num_entries > max_entries, 562 "First entry = %d; Num entries = %d (max=%d)\n", 563 first_entry, num_entries, max_entries)) 564 num_entries = max_entries; 565 566 for (i = 0; i < num_entries; i++) 567 gen8_set_pte(>t_base[i], scratch_pte); 568 } 569 570 static void gen8_ggtt_scratch_range_bind(struct i915_address_space *vm, 571 u64 start, u64 length) 572 { 573 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 574 unsigned int first_entry = start / I915_GTT_PAGE_SIZE; 575 unsigned int num_entries = length / I915_GTT_PAGE_SIZE; 576 const gen8_pte_t scratch_pte = vm->scratch[0]->encode; 577 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 578 579 if (WARN(num_entries > max_entries, 580 "First entry = %d; Num entries = %d (max=%d)\n", 581 first_entry, num_entries, max_entries)) 582 num_entries = max_entries; 583 584 if (should_update_ggtt_with_bind(ggtt) && gen8_ggtt_bind_ptes(ggtt, first_entry, 585 NULL, num_entries, scratch_pte)) 586 return ggtt->invalidate(ggtt); 587 588 gen8_ggtt_clear_range(vm, start, length); 589 } 590 591 static void gen6_ggtt_insert_page(struct i915_address_space *vm, 592 dma_addr_t addr, 593 u64 offset, 594 unsigned int pat_index, 595 u32 flags) 596 { 597 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 598 gen6_pte_t __iomem *pte = 599 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 600 601 iowrite32(vm->pte_encode(addr, pat_index, flags), pte); 602 603 ggtt->invalidate(ggtt); 604 } 605 606 /* 607 * Binds an object into the global gtt with the specified cache level. 608 * The object will be accessible to the GPU via commands whose operands 609 * reference offsets within the global GTT as well as accessible by the GPU 610 * through the GMADR mapped BAR (i915->mm.gtt->gtt). 611 */ 612 static void gen6_ggtt_insert_entries(struct i915_address_space *vm, 613 struct i915_vma_resource *vma_res, 614 unsigned int pat_index, 615 u32 flags) 616 { 617 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 618 gen6_pte_t __iomem *gte; 619 gen6_pte_t __iomem *end; 620 struct sgt_iter iter; 621 dma_addr_t addr; 622 623 gte = (gen6_pte_t __iomem *)ggtt->gsm; 624 gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE; 625 626 end = gte + vma_res->guard / I915_GTT_PAGE_SIZE; 627 while (gte < end) 628 iowrite32(vm->scratch[0]->encode, gte++); 629 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE; 630 for_each_sgt_daddr(addr, iter, vma_res->bi.pages) 631 iowrite32(vm->pte_encode(addr, pat_index, flags), gte++); 632 GEM_BUG_ON(gte > end); 633 634 /* Fill the allocated but "unused" space beyond the end of the buffer */ 635 while (gte < end) 636 iowrite32(vm->scratch[0]->encode, gte++); 637 638 /* 639 * We want to flush the TLBs only after we're certain all the PTE 640 * updates have finished. 641 */ 642 ggtt->invalidate(ggtt); 643 } 644 645 static void nop_clear_range(struct i915_address_space *vm, 646 u64 start, u64 length) 647 { 648 } 649 650 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm) 651 { 652 /* 653 * Make sure the internal GAM fifo has been cleared of all GTT 654 * writes before exiting stop_machine(). This guarantees that 655 * any aperture accesses waiting to start in another process 656 * cannot back up behind the GTT writes causing a hang. 657 * The register can be any arbitrary GAM register. 658 */ 659 intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6); 660 } 661 662 struct insert_page { 663 struct i915_address_space *vm; 664 dma_addr_t addr; 665 u64 offset; 666 unsigned int pat_index; 667 }; 668 669 static int bxt_vtd_ggtt_insert_page__cb(void *_arg) 670 { 671 struct insert_page *arg = _arg; 672 673 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, 674 arg->pat_index, 0); 675 bxt_vtd_ggtt_wa(arg->vm); 676 677 return 0; 678 } 679 680 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm, 681 dma_addr_t addr, 682 u64 offset, 683 unsigned int pat_index, 684 u32 unused) 685 { 686 struct insert_page arg = { vm, addr, offset, pat_index }; 687 688 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL); 689 } 690 691 struct insert_entries { 692 struct i915_address_space *vm; 693 struct i915_vma_resource *vma_res; 694 unsigned int pat_index; 695 u32 flags; 696 }; 697 698 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg) 699 { 700 struct insert_entries *arg = _arg; 701 702 gen8_ggtt_insert_entries(arg->vm, arg->vma_res, 703 arg->pat_index, arg->flags); 704 bxt_vtd_ggtt_wa(arg->vm); 705 706 return 0; 707 } 708 709 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm, 710 struct i915_vma_resource *vma_res, 711 unsigned int pat_index, 712 u32 flags) 713 { 714 struct insert_entries arg = { vm, vma_res, pat_index, flags }; 715 716 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL); 717 } 718 719 static void gen6_ggtt_clear_range(struct i915_address_space *vm, 720 u64 start, u64 length) 721 { 722 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 723 unsigned int first_entry = start / I915_GTT_PAGE_SIZE; 724 unsigned int num_entries = length / I915_GTT_PAGE_SIZE; 725 gen6_pte_t scratch_pte, __iomem *gtt_base = 726 (gen6_pte_t __iomem *)ggtt->gsm + first_entry; 727 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 728 int i; 729 730 if (WARN(num_entries > max_entries, 731 "First entry = %d; Num entries = %d (max=%d)\n", 732 first_entry, num_entries, max_entries)) 733 num_entries = max_entries; 734 735 scratch_pte = vm->scratch[0]->encode; 736 for (i = 0; i < num_entries; i++) 737 iowrite32(scratch_pte, >t_base[i]); 738 } 739 740 void intel_ggtt_bind_vma(struct i915_address_space *vm, 741 struct i915_vm_pt_stash *stash, 742 struct i915_vma_resource *vma_res, 743 unsigned int pat_index, 744 u32 flags) 745 { 746 u32 pte_flags; 747 748 if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK)) 749 return; 750 751 vma_res->bound_flags |= flags; 752 753 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */ 754 pte_flags = 0; 755 if (vma_res->bi.readonly) 756 pte_flags |= PTE_READ_ONLY; 757 if (vma_res->bi.lmem) 758 pte_flags |= PTE_LM; 759 760 vm->insert_entries(vm, vma_res, pat_index, pte_flags); 761 vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE; 762 } 763 764 void intel_ggtt_unbind_vma(struct i915_address_space *vm, 765 struct i915_vma_resource *vma_res) 766 { 767 vm->clear_range(vm, vma_res->start, vma_res->vma_size); 768 } 769 770 /* 771 * Reserve the top of the GuC address space for firmware images. Addresses 772 * beyond GUC_GGTT_TOP in the GuC address space are inaccessible by GuC, 773 * which makes for a suitable range to hold GuC/HuC firmware images if the 774 * size of the GGTT is 4G. However, on a 32-bit platform the size of the GGTT 775 * is limited to 2G, which is less than GUC_GGTT_TOP, but we reserve a chunk 776 * of the same size anyway, which is far more than needed, to keep the logic 777 * in uc_fw_ggtt_offset() simple. 778 */ 779 #define GUC_TOP_RESERVE_SIZE (SZ_4G - GUC_GGTT_TOP) 780 781 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt) 782 { 783 u64 offset; 784 int ret; 785 786 if (!intel_uc_uses_guc(&ggtt->vm.gt->uc)) 787 return 0; 788 789 GEM_BUG_ON(ggtt->vm.total <= GUC_TOP_RESERVE_SIZE); 790 offset = ggtt->vm.total - GUC_TOP_RESERVE_SIZE; 791 792 ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw, 793 GUC_TOP_RESERVE_SIZE, offset, 794 I915_COLOR_UNEVICTABLE, PIN_NOEVICT); 795 if (ret) 796 drm_dbg(&ggtt->vm.i915->drm, 797 "Failed to reserve top of GGTT for GuC\n"); 798 799 return ret; 800 } 801 802 static void ggtt_release_guc_top(struct i915_ggtt *ggtt) 803 { 804 if (drm_mm_node_allocated(&ggtt->uc_fw)) 805 drm_mm_remove_node(&ggtt->uc_fw); 806 } 807 808 static void cleanup_init_ggtt(struct i915_ggtt *ggtt) 809 { 810 ggtt_release_guc_top(ggtt); 811 if (drm_mm_node_allocated(&ggtt->error_capture)) 812 drm_mm_remove_node(&ggtt->error_capture); 813 mutex_destroy(&ggtt->error_mutex); 814 } 815 816 static int init_ggtt(struct i915_ggtt *ggtt) 817 { 818 /* 819 * Let GEM Manage all of the aperture. 820 * 821 * However, leave one page at the end still bound to the scratch page. 822 * There are a number of places where the hardware apparently prefetches 823 * past the end of the object, and we've seen multiple hangs with the 824 * GPU head pointer stuck in a batchbuffer bound at the last page of the 825 * aperture. One page should be enough to keep any prefetching inside 826 * of the aperture. 827 */ 828 unsigned long hole_start, hole_end; 829 struct drm_mm_node *entry; 830 int ret; 831 832 /* 833 * GuC requires all resources that we're sharing with it to be placed in 834 * non-WOPCM memory. If GuC is not present or not in use we still need a 835 * small bias as ring wraparound at offset 0 sometimes hangs. No idea 836 * why. 837 */ 838 ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE, 839 intel_wopcm_guc_size(&ggtt->vm.gt->wopcm)); 840 841 ret = intel_vgt_balloon(ggtt); 842 if (ret) 843 return ret; 844 845 mutex_init(&ggtt->error_mutex); 846 if (ggtt->mappable_end) { 847 /* 848 * Reserve a mappable slot for our lockless error capture. 849 * 850 * We strongly prefer taking address 0x0 in order to protect 851 * other critical buffers against accidental overwrites, 852 * as writing to address 0 is a very common mistake. 853 * 854 * Since 0 may already be in use by the system (e.g. the BIOS 855 * framebuffer), we let the reservation fail quietly and hope 856 * 0 remains reserved always. 857 * 858 * If we fail to reserve 0, and then fail to find any space 859 * for an error-capture, remain silent. We can afford not 860 * to reserve an error_capture node as we have fallback 861 * paths, and we trust that 0 will remain reserved. However, 862 * the only likely reason for failure to insert is a driver 863 * bug, which we expect to cause other failures... 864 * 865 * Since CPU can perform speculative reads on error capture 866 * (write-combining allows it) add scratch page after error 867 * capture to avoid DMAR errors. 868 */ 869 ggtt->error_capture.size = 2 * I915_GTT_PAGE_SIZE; 870 ggtt->error_capture.color = I915_COLOR_UNEVICTABLE; 871 if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture)) 872 drm_mm_insert_node_in_range(&ggtt->vm.mm, 873 &ggtt->error_capture, 874 ggtt->error_capture.size, 0, 875 ggtt->error_capture.color, 876 0, ggtt->mappable_end, 877 DRM_MM_INSERT_LOW); 878 } 879 if (drm_mm_node_allocated(&ggtt->error_capture)) { 880 u64 start = ggtt->error_capture.start; 881 u64 size = ggtt->error_capture.size; 882 883 ggtt->vm.scratch_range(&ggtt->vm, start, size); 884 drm_dbg(&ggtt->vm.i915->drm, 885 "Reserved GGTT:[%llx, %llx] for use by error capture\n", 886 start, start + size); 887 } 888 889 /* 890 * The upper portion of the GuC address space has a sizeable hole 891 * (several MB) that is inaccessible by GuC. Reserve this range within 892 * GGTT as it can comfortably hold GuC/HuC firmware images. 893 */ 894 ret = ggtt_reserve_guc_top(ggtt); 895 if (ret) 896 goto err; 897 898 /* Clear any non-preallocated blocks */ 899 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) { 900 drm_dbg(&ggtt->vm.i915->drm, 901 "clearing unused GTT space: [%lx, %lx]\n", 902 hole_start, hole_end); 903 ggtt->vm.clear_range(&ggtt->vm, hole_start, 904 hole_end - hole_start); 905 } 906 907 /* And finally clear the reserved guard page */ 908 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE); 909 910 return 0; 911 912 err: 913 cleanup_init_ggtt(ggtt); 914 return ret; 915 } 916 917 static void aliasing_gtt_bind_vma(struct i915_address_space *vm, 918 struct i915_vm_pt_stash *stash, 919 struct i915_vma_resource *vma_res, 920 unsigned int pat_index, 921 u32 flags) 922 { 923 u32 pte_flags; 924 925 /* Currently applicable only to VLV */ 926 pte_flags = 0; 927 if (vma_res->bi.readonly) 928 pte_flags |= PTE_READ_ONLY; 929 930 if (flags & I915_VMA_LOCAL_BIND) 931 ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm, 932 stash, vma_res, pat_index, flags); 933 934 if (flags & I915_VMA_GLOBAL_BIND) 935 vm->insert_entries(vm, vma_res, pat_index, pte_flags); 936 937 vma_res->bound_flags |= flags; 938 } 939 940 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm, 941 struct i915_vma_resource *vma_res) 942 { 943 if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND) 944 vm->clear_range(vm, vma_res->start, vma_res->vma_size); 945 946 if (vma_res->bound_flags & I915_VMA_LOCAL_BIND) 947 ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res); 948 } 949 950 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt) 951 { 952 struct i915_vm_pt_stash stash = {}; 953 struct i915_ppgtt *ppgtt; 954 int err; 955 956 ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0); 957 if (IS_ERR(ppgtt)) 958 return PTR_ERR(ppgtt); 959 960 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) { 961 err = -ENODEV; 962 goto err_ppgtt; 963 } 964 965 err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total); 966 if (err) 967 goto err_ppgtt; 968 969 i915_gem_object_lock(ppgtt->vm.scratch[0], NULL); 970 err = i915_vm_map_pt_stash(&ppgtt->vm, &stash); 971 i915_gem_object_unlock(ppgtt->vm.scratch[0]); 972 if (err) 973 goto err_stash; 974 975 /* 976 * Note we only pre-allocate as far as the end of the global 977 * GTT. On 48b / 4-level page-tables, the difference is very, 978 * very significant! We have to preallocate as GVT/vgpu does 979 * not like the page directory disappearing. 980 */ 981 ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total); 982 983 ggtt->alias = ppgtt; 984 ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags; 985 986 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != intel_ggtt_bind_vma); 987 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma; 988 989 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != intel_ggtt_unbind_vma); 990 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma; 991 992 i915_vm_free_pt_stash(&ppgtt->vm, &stash); 993 return 0; 994 995 err_stash: 996 i915_vm_free_pt_stash(&ppgtt->vm, &stash); 997 err_ppgtt: 998 i915_vm_put(&ppgtt->vm); 999 return err; 1000 } 1001 1002 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt) 1003 { 1004 struct i915_ppgtt *ppgtt; 1005 1006 ppgtt = fetch_and_zero(&ggtt->alias); 1007 if (!ppgtt) 1008 return; 1009 1010 i915_vm_put(&ppgtt->vm); 1011 1012 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; 1013 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; 1014 } 1015 1016 int i915_init_ggtt(struct drm_i915_private *i915) 1017 { 1018 int ret; 1019 1020 ret = init_ggtt(to_gt(i915)->ggtt); 1021 if (ret) 1022 return ret; 1023 1024 if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) { 1025 ret = init_aliasing_ppgtt(to_gt(i915)->ggtt); 1026 if (ret) 1027 cleanup_init_ggtt(to_gt(i915)->ggtt); 1028 } 1029 1030 return 0; 1031 } 1032 1033 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt) 1034 { 1035 struct i915_vma *vma, *vn; 1036 1037 flush_workqueue(ggtt->vm.i915->wq); 1038 i915_gem_drain_freed_objects(ggtt->vm.i915); 1039 1040 mutex_lock(&ggtt->vm.mutex); 1041 1042 ggtt->vm.skip_pte_rewrite = true; 1043 1044 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) { 1045 struct drm_i915_gem_object *obj = vma->obj; 1046 bool trylock; 1047 1048 trylock = i915_gem_object_trylock(obj, NULL); 1049 WARN_ON(!trylock); 1050 1051 WARN_ON(__i915_vma_unbind(vma)); 1052 if (trylock) 1053 i915_gem_object_unlock(obj); 1054 } 1055 1056 if (drm_mm_node_allocated(&ggtt->error_capture)) 1057 drm_mm_remove_node(&ggtt->error_capture); 1058 mutex_destroy(&ggtt->error_mutex); 1059 1060 ggtt_release_guc_top(ggtt); 1061 intel_vgt_deballoon(ggtt); 1062 1063 ggtt->vm.cleanup(&ggtt->vm); 1064 1065 mutex_unlock(&ggtt->vm.mutex); 1066 i915_address_space_fini(&ggtt->vm); 1067 1068 arch_phys_wc_del(ggtt->mtrr); 1069 1070 if (ggtt->iomap.size) 1071 io_mapping_fini(&ggtt->iomap); 1072 } 1073 1074 /** 1075 * i915_ggtt_driver_release - Clean up GGTT hardware initialization 1076 * @i915: i915 device 1077 */ 1078 void i915_ggtt_driver_release(struct drm_i915_private *i915) 1079 { 1080 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 1081 1082 fini_aliasing_ppgtt(ggtt); 1083 1084 intel_ggtt_fini_fences(ggtt); 1085 ggtt_cleanup_hw(ggtt); 1086 } 1087 1088 /** 1089 * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after 1090 * all free objects have been drained. 1091 * @i915: i915 device 1092 */ 1093 void i915_ggtt_driver_late_release(struct drm_i915_private *i915) 1094 { 1095 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 1096 1097 GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1); 1098 dma_resv_fini(&ggtt->vm._resv); 1099 } 1100 1101 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) 1102 { 1103 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; 1104 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; 1105 return snb_gmch_ctl << 20; 1106 } 1107 1108 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) 1109 { 1110 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; 1111 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; 1112 if (bdw_gmch_ctl) 1113 bdw_gmch_ctl = 1 << bdw_gmch_ctl; 1114 1115 #ifdef CONFIG_X86_32 1116 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */ 1117 if (bdw_gmch_ctl > 4) 1118 bdw_gmch_ctl = 4; 1119 #endif 1120 1121 return bdw_gmch_ctl << 20; 1122 } 1123 1124 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) 1125 { 1126 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; 1127 gmch_ctrl &= SNB_GMCH_GGMS_MASK; 1128 1129 if (gmch_ctrl) 1130 return 1 << (20 + gmch_ctrl); 1131 1132 return 0; 1133 } 1134 1135 static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915) 1136 { 1137 /* 1138 * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset 1139 * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset 1140 */ 1141 GEM_BUG_ON(GRAPHICS_VER(i915) < 6); 1142 return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M; 1143 } 1144 1145 static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915) 1146 { 1147 return gen6_gttmmadr_size(i915) / 2; 1148 } 1149 1150 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) 1151 { 1152 struct drm_i915_private *i915 = ggtt->vm.i915; 1153 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 1154 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 1155 phys_addr_t phys_addr; 1156 u32 pte_flags; 1157 int ret; 1158 1159 GEM_WARN_ON(pci_resource_len(pdev, GEN4_GTTMMADR_BAR) != gen6_gttmmadr_size(i915)); 1160 1161 if (i915_direct_stolen_access(i915)) { 1162 drm_dbg(&i915->drm, "Using direct GSM access\n"); 1163 phys_addr = intel_uncore_read64(uncore, GEN6_GSMBASE) & GEN11_BDSM_MASK; 1164 } else { 1165 phys_addr = pci_resource_start(pdev, GEN4_GTTMMADR_BAR) + gen6_gttadr_offset(i915); 1166 } 1167 1168 if (needs_wc_ggtt_mapping(i915)) 1169 ggtt->gsm = ioremap_wc(phys_addr, size); 1170 else 1171 ggtt->gsm = ioremap(phys_addr, size); 1172 1173 if (!ggtt->gsm) { 1174 drm_err(&i915->drm, "Failed to map the ggtt page table\n"); 1175 return -ENOMEM; 1176 } 1177 1178 kref_init(&ggtt->vm.resv_ref); 1179 ret = setup_scratch_page(&ggtt->vm); 1180 if (ret) { 1181 drm_err(&i915->drm, "Scratch setup failed\n"); 1182 /* iounmap will also get called at remove, but meh */ 1183 iounmap(ggtt->gsm); 1184 return ret; 1185 } 1186 1187 pte_flags = 0; 1188 if (i915_gem_object_is_lmem(ggtt->vm.scratch[0])) 1189 pte_flags |= PTE_LM; 1190 1191 ggtt->vm.scratch[0]->encode = 1192 ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]), 1193 i915_gem_get_pat_index(i915, 1194 I915_CACHE_NONE), 1195 pte_flags); 1196 1197 return 0; 1198 } 1199 1200 static void gen6_gmch_remove(struct i915_address_space *vm) 1201 { 1202 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 1203 1204 iounmap(ggtt->gsm); 1205 free_scratch(vm); 1206 } 1207 1208 static struct resource pci_resource(struct pci_dev *pdev, int bar) 1209 { 1210 return DEFINE_RES_MEM(pci_resource_start(pdev, bar), 1211 pci_resource_len(pdev, bar)); 1212 } 1213 1214 static int gen8_gmch_probe(struct i915_ggtt *ggtt) 1215 { 1216 struct drm_i915_private *i915 = ggtt->vm.i915; 1217 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 1218 unsigned int size; 1219 u16 snb_gmch_ctl; 1220 1221 if (!HAS_LMEM(i915) && !HAS_LMEMBAR_SMEM_STOLEN(i915)) { 1222 if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR)) 1223 return -ENXIO; 1224 1225 ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR); 1226 ggtt->mappable_end = resource_size(&ggtt->gmadr); 1227 } 1228 1229 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 1230 if (IS_CHERRYVIEW(i915)) 1231 size = chv_get_total_gtt_size(snb_gmch_ctl); 1232 else 1233 size = gen8_get_total_gtt_size(snb_gmch_ctl); 1234 1235 ggtt->vm.alloc_pt_dma = alloc_pt_dma; 1236 ggtt->vm.alloc_scratch_dma = alloc_pt_dma; 1237 ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY; 1238 1239 ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE; 1240 ggtt->vm.cleanup = gen6_gmch_remove; 1241 ggtt->vm.insert_page = gen8_ggtt_insert_page; 1242 ggtt->vm.clear_range = nop_clear_range; 1243 ggtt->vm.scratch_range = gen8_ggtt_clear_range; 1244 1245 ggtt->vm.insert_entries = gen8_ggtt_insert_entries; 1246 1247 /* 1248 * Serialize GTT updates with aperture access on BXT if VT-d is on, 1249 * and always on CHV. 1250 */ 1251 if (intel_vm_no_concurrent_access_wa(i915)) { 1252 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL; 1253 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL; 1254 1255 /* 1256 * Calling stop_machine() version of GGTT update function 1257 * at error capture/reset path will raise lockdep warning. 1258 * Allow calling gen8_ggtt_insert_* directly at reset path 1259 * which is safe from parallel GGTT updates. 1260 */ 1261 ggtt->vm.raw_insert_page = gen8_ggtt_insert_page; 1262 ggtt->vm.raw_insert_entries = gen8_ggtt_insert_entries; 1263 1264 ggtt->vm.bind_async_flags = 1265 I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 1266 } 1267 1268 if (i915_ggtt_require_binder(i915)) { 1269 ggtt->vm.scratch_range = gen8_ggtt_scratch_range_bind; 1270 ggtt->vm.insert_page = gen8_ggtt_insert_page_bind; 1271 ggtt->vm.insert_entries = gen8_ggtt_insert_entries_bind; 1272 /* 1273 * On GPU is hung, we might bind VMAs for error capture. 1274 * Fallback to CPU GGTT updates in that case. 1275 */ 1276 ggtt->vm.raw_insert_page = gen8_ggtt_insert_page; 1277 } 1278 1279 if (intel_uc_wants_guc_submission(&ggtt->vm.gt->uc)) 1280 ggtt->invalidate = guc_ggtt_invalidate; 1281 else 1282 ggtt->invalidate = gen8_ggtt_invalidate; 1283 1284 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; 1285 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; 1286 1287 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) 1288 ggtt->vm.pte_encode = mtl_ggtt_pte_encode; 1289 else 1290 ggtt->vm.pte_encode = gen8_ggtt_pte_encode; 1291 1292 return ggtt_probe_common(ggtt, size); 1293 } 1294 1295 /* 1296 * For pre-gen8 platforms pat_index is the same as enum i915_cache_level, 1297 * so the switch-case statements in these PTE encode functions are still valid. 1298 * See translation table LEGACY_CACHELEVEL. 1299 */ 1300 static u64 snb_pte_encode(dma_addr_t addr, 1301 unsigned int pat_index, 1302 u32 flags) 1303 { 1304 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1305 1306 switch (pat_index) { 1307 case I915_CACHE_L3_LLC: 1308 case I915_CACHE_LLC: 1309 pte |= GEN6_PTE_CACHE_LLC; 1310 break; 1311 case I915_CACHE_NONE: 1312 pte |= GEN6_PTE_UNCACHED; 1313 break; 1314 default: 1315 MISSING_CASE(pat_index); 1316 } 1317 1318 return pte; 1319 } 1320 1321 static u64 ivb_pte_encode(dma_addr_t addr, 1322 unsigned int pat_index, 1323 u32 flags) 1324 { 1325 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1326 1327 switch (pat_index) { 1328 case I915_CACHE_L3_LLC: 1329 pte |= GEN7_PTE_CACHE_L3_LLC; 1330 break; 1331 case I915_CACHE_LLC: 1332 pte |= GEN6_PTE_CACHE_LLC; 1333 break; 1334 case I915_CACHE_NONE: 1335 pte |= GEN6_PTE_UNCACHED; 1336 break; 1337 default: 1338 MISSING_CASE(pat_index); 1339 } 1340 1341 return pte; 1342 } 1343 1344 static u64 byt_pte_encode(dma_addr_t addr, 1345 unsigned int pat_index, 1346 u32 flags) 1347 { 1348 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1349 1350 if (!(flags & PTE_READ_ONLY)) 1351 pte |= BYT_PTE_WRITEABLE; 1352 1353 if (pat_index != I915_CACHE_NONE) 1354 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; 1355 1356 return pte; 1357 } 1358 1359 static u64 hsw_pte_encode(dma_addr_t addr, 1360 unsigned int pat_index, 1361 u32 flags) 1362 { 1363 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1364 1365 if (pat_index != I915_CACHE_NONE) 1366 pte |= HSW_WB_LLC_AGE3; 1367 1368 return pte; 1369 } 1370 1371 static u64 iris_pte_encode(dma_addr_t addr, 1372 unsigned int pat_index, 1373 u32 flags) 1374 { 1375 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1376 1377 switch (pat_index) { 1378 case I915_CACHE_NONE: 1379 break; 1380 case I915_CACHE_WT: 1381 pte |= HSW_WT_ELLC_LLC_AGE3; 1382 break; 1383 default: 1384 pte |= HSW_WB_ELLC_LLC_AGE3; 1385 break; 1386 } 1387 1388 return pte; 1389 } 1390 1391 static int gen6_gmch_probe(struct i915_ggtt *ggtt) 1392 { 1393 struct drm_i915_private *i915 = ggtt->vm.i915; 1394 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 1395 unsigned int size; 1396 u16 snb_gmch_ctl; 1397 1398 if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR)) 1399 return -ENXIO; 1400 1401 ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR); 1402 ggtt->mappable_end = resource_size(&ggtt->gmadr); 1403 1404 /* 1405 * 64/512MB is the current min/max we actually know of, but this is 1406 * just a coarse sanity check. 1407 */ 1408 if (ggtt->mappable_end < (64 << 20) || 1409 ggtt->mappable_end > (512 << 20)) { 1410 drm_err(&i915->drm, "Unknown GMADR size (%pa)\n", 1411 &ggtt->mappable_end); 1412 return -ENXIO; 1413 } 1414 1415 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 1416 1417 size = gen6_get_total_gtt_size(snb_gmch_ctl); 1418 ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE; 1419 1420 ggtt->vm.alloc_pt_dma = alloc_pt_dma; 1421 ggtt->vm.alloc_scratch_dma = alloc_pt_dma; 1422 1423 ggtt->vm.clear_range = nop_clear_range; 1424 if (!HAS_FULL_PPGTT(i915)) 1425 ggtt->vm.clear_range = gen6_ggtt_clear_range; 1426 ggtt->vm.scratch_range = gen6_ggtt_clear_range; 1427 ggtt->vm.insert_page = gen6_ggtt_insert_page; 1428 ggtt->vm.insert_entries = gen6_ggtt_insert_entries; 1429 ggtt->vm.cleanup = gen6_gmch_remove; 1430 1431 ggtt->invalidate = gen6_ggtt_invalidate; 1432 1433 if (HAS_EDRAM(i915)) 1434 ggtt->vm.pte_encode = iris_pte_encode; 1435 else if (IS_HASWELL(i915)) 1436 ggtt->vm.pte_encode = hsw_pte_encode; 1437 else if (IS_VALLEYVIEW(i915)) 1438 ggtt->vm.pte_encode = byt_pte_encode; 1439 else if (GRAPHICS_VER(i915) >= 7) 1440 ggtt->vm.pte_encode = ivb_pte_encode; 1441 else 1442 ggtt->vm.pte_encode = snb_pte_encode; 1443 1444 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; 1445 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; 1446 1447 return ggtt_probe_common(ggtt, size); 1448 } 1449 1450 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt) 1451 { 1452 struct drm_i915_private *i915 = gt->i915; 1453 int ret; 1454 1455 ggtt->vm.gt = gt; 1456 ggtt->vm.i915 = i915; 1457 ggtt->vm.dma = i915->drm.dev; 1458 dma_resv_init(&ggtt->vm._resv); 1459 1460 if (GRAPHICS_VER(i915) >= 8) 1461 ret = gen8_gmch_probe(ggtt); 1462 else if (GRAPHICS_VER(i915) >= 6) 1463 ret = gen6_gmch_probe(ggtt); 1464 else 1465 ret = intel_ggtt_gmch_probe(ggtt); 1466 1467 if (ret) { 1468 dma_resv_fini(&ggtt->vm._resv); 1469 return ret; 1470 } 1471 1472 if ((ggtt->vm.total - 1) >> 32) { 1473 drm_err(&i915->drm, 1474 "We never expected a Global GTT with more than 32bits" 1475 " of address space! Found %lldM!\n", 1476 ggtt->vm.total >> 20); 1477 ggtt->vm.total = 1ULL << 32; 1478 ggtt->mappable_end = 1479 min_t(u64, ggtt->mappable_end, ggtt->vm.total); 1480 } 1481 1482 if (ggtt->mappable_end > ggtt->vm.total) { 1483 drm_err(&i915->drm, 1484 "mappable aperture extends past end of GGTT," 1485 " aperture=%pa, total=%llx\n", 1486 &ggtt->mappable_end, ggtt->vm.total); 1487 ggtt->mappable_end = ggtt->vm.total; 1488 } 1489 1490 /* GMADR is the PCI mmio aperture into the global GTT. */ 1491 drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20); 1492 drm_dbg(&i915->drm, "GMADR size = %lluM\n", 1493 (u64)ggtt->mappable_end >> 20); 1494 drm_dbg(&i915->drm, "DSM size = %lluM\n", 1495 (u64)resource_size(&intel_graphics_stolen_res) >> 20); 1496 1497 return 0; 1498 } 1499 1500 /** 1501 * i915_ggtt_probe_hw - Probe GGTT hardware location 1502 * @i915: i915 device 1503 */ 1504 int i915_ggtt_probe_hw(struct drm_i915_private *i915) 1505 { 1506 struct intel_gt *gt; 1507 int ret, i; 1508 1509 for_each_gt(gt, i915, i) { 1510 ret = intel_gt_assign_ggtt(gt); 1511 if (ret) 1512 return ret; 1513 } 1514 1515 ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915)); 1516 if (ret) 1517 return ret; 1518 1519 if (i915_vtd_active(i915)) 1520 drm_info(&i915->drm, "VT-d active for gfx access\n"); 1521 1522 return 0; 1523 } 1524 1525 struct i915_ggtt *i915_ggtt_create(struct drm_i915_private *i915) 1526 { 1527 struct i915_ggtt *ggtt; 1528 1529 ggtt = drmm_kzalloc(&i915->drm, sizeof(*ggtt), GFP_KERNEL); 1530 if (!ggtt) 1531 return ERR_PTR(-ENOMEM); 1532 1533 INIT_LIST_HEAD(&ggtt->gt_list); 1534 1535 return ggtt; 1536 } 1537 1538 int i915_ggtt_enable_hw(struct drm_i915_private *i915) 1539 { 1540 if (GRAPHICS_VER(i915) < 6) 1541 return intel_ggtt_gmch_enable_hw(i915); 1542 1543 return 0; 1544 } 1545 1546 /** 1547 * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM 1548 * @vm: The VM to restore the mappings for 1549 * 1550 * Restore the memory mappings for all objects mapped to HW via the GGTT or a 1551 * DPT page table. 1552 * 1553 * Returns %true if restoring the mapping for any object that was in a write 1554 * domain before suspend. 1555 */ 1556 bool i915_ggtt_resume_vm(struct i915_address_space *vm) 1557 { 1558 struct i915_vma *vma; 1559 bool write_domain_objs = false; 1560 1561 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); 1562 1563 /* First fill our portion of the GTT with scratch pages */ 1564 vm->clear_range(vm, 0, vm->total); 1565 1566 /* clflush objects bound into the GGTT and rebind them. */ 1567 list_for_each_entry(vma, &vm->bound_list, vm_link) { 1568 struct drm_i915_gem_object *obj = vma->obj; 1569 unsigned int was_bound = 1570 atomic_read(&vma->flags) & I915_VMA_BIND_MASK; 1571 1572 GEM_BUG_ON(!was_bound); 1573 1574 /* 1575 * Clear the bound flags of the vma resource to allow 1576 * ptes to be repopulated. 1577 */ 1578 vma->resource->bound_flags = 0; 1579 vma->ops->bind_vma(vm, NULL, vma->resource, 1580 obj ? obj->pat_index : 1581 i915_gem_get_pat_index(vm->i915, 1582 I915_CACHE_NONE), 1583 was_bound); 1584 1585 if (obj) { /* only used during resume => exclusive access */ 1586 write_domain_objs |= fetch_and_zero(&obj->write_domain); 1587 obj->read_domains |= I915_GEM_DOMAIN_GTT; 1588 } 1589 } 1590 1591 return write_domain_objs; 1592 } 1593 1594 void i915_ggtt_resume(struct i915_ggtt *ggtt) 1595 { 1596 struct intel_gt *gt; 1597 bool flush; 1598 1599 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) 1600 intel_gt_check_and_clear_faults(gt); 1601 1602 flush = i915_ggtt_resume_vm(&ggtt->vm); 1603 1604 if (drm_mm_node_allocated(&ggtt->error_capture)) 1605 ggtt->vm.scratch_range(&ggtt->vm, ggtt->error_capture.start, 1606 ggtt->error_capture.size); 1607 1608 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) 1609 intel_uc_resume_mappings(>->uc); 1610 1611 ggtt->invalidate(ggtt); 1612 1613 if (flush) 1614 wbinvd_on_all_cpus(); 1615 1616 intel_ggtt_restore_fences(ggtt); 1617 } 1618