xref: /linux/drivers/gpu/drm/i915/gt/intel_breadcrumbs.c (revision f6e8dc9edf963dbc99085e54f6ced6da9daa6100)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2015-2021 Intel Corporation
4  */
5 
6 #include <linux/kthread.h>
7 #include <linux/string_helpers.h>
8 #include <trace/events/dma_fence.h>
9 #include <uapi/linux/sched/types.h>
10 
11 #include <drm/drm_print.h>
12 
13 #include "i915_drv.h"
14 #include "i915_trace.h"
15 #include "intel_breadcrumbs.h"
16 #include "intel_context.h"
17 #include "intel_engine_pm.h"
18 #include "intel_gt_pm.h"
19 #include "intel_gt_requests.h"
20 
21 static bool irq_enable(struct intel_breadcrumbs *b)
22 {
23 	return intel_engine_irq_enable(b->irq_engine);
24 }
25 
26 static void irq_disable(struct intel_breadcrumbs *b)
27 {
28 	intel_engine_irq_disable(b->irq_engine);
29 }
30 
31 static void __intel_breadcrumbs_arm_irq(struct intel_breadcrumbs *b)
32 {
33 	intel_wakeref_t wakeref;
34 
35 	/*
36 	 * Since we are waiting on a request, the GPU should be busy
37 	 * and should have its own rpm reference.
38 	 */
39 	wakeref = intel_gt_pm_get_if_awake(b->irq_engine->gt);
40 	if (GEM_WARN_ON(!wakeref))
41 		return;
42 
43 	/*
44 	 * The breadcrumb irq will be disarmed on the interrupt after the
45 	 * waiters are signaled. This gives us a single interrupt window in
46 	 * which we can add a new waiter and avoid the cost of re-enabling
47 	 * the irq.
48 	 */
49 	WRITE_ONCE(b->irq_armed, wakeref);
50 
51 	/* Requests may have completed before we could enable the interrupt. */
52 	if (!b->irq_enabled++ && b->irq_enable(b))
53 		irq_work_queue(&b->irq_work);
54 }
55 
56 static void intel_breadcrumbs_arm_irq(struct intel_breadcrumbs *b)
57 {
58 	if (!b->irq_engine)
59 		return;
60 
61 	spin_lock(&b->irq_lock);
62 	if (!b->irq_armed)
63 		__intel_breadcrumbs_arm_irq(b);
64 	spin_unlock(&b->irq_lock);
65 }
66 
67 static void __intel_breadcrumbs_disarm_irq(struct intel_breadcrumbs *b)
68 {
69 	intel_wakeref_t wakeref = b->irq_armed;
70 
71 	GEM_BUG_ON(!b->irq_enabled);
72 	if (!--b->irq_enabled)
73 		b->irq_disable(b);
74 
75 	WRITE_ONCE(b->irq_armed, NULL);
76 	intel_gt_pm_put_async(b->irq_engine->gt, wakeref);
77 }
78 
79 static void intel_breadcrumbs_disarm_irq(struct intel_breadcrumbs *b)
80 {
81 	spin_lock(&b->irq_lock);
82 	if (b->irq_armed)
83 		__intel_breadcrumbs_disarm_irq(b);
84 	spin_unlock(&b->irq_lock);
85 }
86 
87 static void add_signaling_context(struct intel_breadcrumbs *b,
88 				  struct intel_context *ce)
89 {
90 	lockdep_assert_held(&ce->signal_lock);
91 
92 	spin_lock(&b->signalers_lock);
93 	list_add_rcu(&ce->signal_link, &b->signalers);
94 	spin_unlock(&b->signalers_lock);
95 }
96 
97 static bool remove_signaling_context(struct intel_breadcrumbs *b,
98 				     struct intel_context *ce)
99 {
100 	lockdep_assert_held(&ce->signal_lock);
101 
102 	if (!list_empty(&ce->signals))
103 		return false;
104 
105 	spin_lock(&b->signalers_lock);
106 	list_del_rcu(&ce->signal_link);
107 	spin_unlock(&b->signalers_lock);
108 
109 	return true;
110 }
111 
112 __maybe_unused static bool
113 check_signal_order(struct intel_context *ce, struct i915_request *rq)
114 {
115 	if (rq->context != ce)
116 		return false;
117 
118 	if (!list_is_last(&rq->signal_link, &ce->signals) &&
119 	    i915_seqno_passed(rq->fence.seqno,
120 			      list_next_entry(rq, signal_link)->fence.seqno))
121 		return false;
122 
123 	if (!list_is_first(&rq->signal_link, &ce->signals) &&
124 	    i915_seqno_passed(list_prev_entry(rq, signal_link)->fence.seqno,
125 			      rq->fence.seqno))
126 		return false;
127 
128 	return true;
129 }
130 
131 static bool
132 __dma_fence_signal(struct dma_fence *fence)
133 {
134 	return !test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags);
135 }
136 
137 static void
138 __dma_fence_signal__timestamp(struct dma_fence *fence, ktime_t timestamp)
139 {
140 	fence->timestamp = timestamp;
141 	set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
142 	trace_dma_fence_signaled(fence);
143 }
144 
145 static void
146 __dma_fence_signal__notify(struct dma_fence *fence,
147 			   const struct list_head *list)
148 {
149 	struct dma_fence_cb *cur, *tmp;
150 
151 	lockdep_assert_held(fence->lock);
152 
153 	list_for_each_entry_safe(cur, tmp, list, node) {
154 		INIT_LIST_HEAD(&cur->node);
155 		cur->func(fence, cur);
156 	}
157 }
158 
159 static void add_retire(struct intel_breadcrumbs *b, struct intel_timeline *tl)
160 {
161 	if (b->irq_engine)
162 		intel_engine_add_retire(b->irq_engine, tl);
163 }
164 
165 static struct llist_node *
166 slist_add(struct llist_node *node, struct llist_node *head)
167 {
168 	node->next = head;
169 	return node;
170 }
171 
172 static void signal_irq_work(struct irq_work *work)
173 {
174 	struct intel_breadcrumbs *b = container_of(work, typeof(*b), irq_work);
175 	const ktime_t timestamp = ktime_get();
176 	struct llist_node *signal, *sn;
177 	struct intel_context *ce;
178 
179 	signal = NULL;
180 	if (unlikely(!llist_empty(&b->signaled_requests)))
181 		signal = llist_del_all(&b->signaled_requests);
182 
183 	/*
184 	 * Keep the irq armed until the interrupt after all listeners are gone.
185 	 *
186 	 * Enabling/disabling the interrupt is rather costly, roughly a couple
187 	 * of hundred microseconds. If we are proactive and enable/disable
188 	 * the interrupt around every request that wants a breadcrumb, we
189 	 * quickly drown in the extra orders of magnitude of latency imposed
190 	 * on request submission.
191 	 *
192 	 * So we try to be lazy, and keep the interrupts enabled until no
193 	 * more listeners appear within a breadcrumb interrupt interval (that
194 	 * is until a request completes that no one cares about). The
195 	 * observation is that listeners come in batches, and will often
196 	 * listen to a bunch of requests in succession. Though note on icl+,
197 	 * interrupts are always enabled due to concerns with rc6 being
198 	 * dysfunctional with per-engine interrupt masking.
199 	 *
200 	 * We also try to avoid raising too many interrupts, as they may
201 	 * be generated by userspace batches and it is unfortunately rather
202 	 * too easy to drown the CPU under a flood of GPU interrupts. Thus
203 	 * whenever no one appears to be listening, we turn off the interrupts.
204 	 * Fewer interrupts should conserve power -- at the very least, fewer
205 	 * interrupt draw less ire from other users of the system and tools
206 	 * like powertop.
207 	 */
208 	if (!signal && READ_ONCE(b->irq_armed) && list_empty(&b->signalers))
209 		intel_breadcrumbs_disarm_irq(b);
210 
211 	rcu_read_lock();
212 	atomic_inc(&b->signaler_active);
213 	list_for_each_entry_rcu(ce, &b->signalers, signal_link) {
214 		struct i915_request *rq;
215 
216 		list_for_each_entry_rcu(rq, &ce->signals, signal_link) {
217 			bool release;
218 
219 			if (!__i915_request_is_complete(rq))
220 				break;
221 
222 			if (!test_and_clear_bit(I915_FENCE_FLAG_SIGNAL,
223 						&rq->fence.flags))
224 				break;
225 
226 			/*
227 			 * Queue for execution after dropping the signaling
228 			 * spinlock as the callback chain may end up adding
229 			 * more signalers to the same context or engine.
230 			 */
231 			spin_lock(&ce->signal_lock);
232 			list_del_rcu(&rq->signal_link);
233 			release = remove_signaling_context(b, ce);
234 			spin_unlock(&ce->signal_lock);
235 			if (release) {
236 				if (intel_timeline_is_last(ce->timeline, rq))
237 					add_retire(b, ce->timeline);
238 				intel_context_put(ce);
239 			}
240 
241 			if (__dma_fence_signal(&rq->fence))
242 				/* We own signal_node now, xfer to local list */
243 				signal = slist_add(&rq->signal_node, signal);
244 			else
245 				i915_request_put(rq);
246 		}
247 	}
248 	atomic_dec(&b->signaler_active);
249 	rcu_read_unlock();
250 
251 	llist_for_each_safe(signal, sn, signal) {
252 		struct i915_request *rq =
253 			llist_entry(signal, typeof(*rq), signal_node);
254 		struct list_head cb_list;
255 
256 		if (rq->engine->sched_engine->retire_inflight_request_prio)
257 			rq->engine->sched_engine->retire_inflight_request_prio(rq);
258 
259 		spin_lock(&rq->lock);
260 		list_replace(&rq->fence.cb_list, &cb_list);
261 		__dma_fence_signal__timestamp(&rq->fence, timestamp);
262 		__dma_fence_signal__notify(&rq->fence, &cb_list);
263 		spin_unlock(&rq->lock);
264 
265 		i915_request_put(rq);
266 	}
267 
268 	/* Lazy irq enabling after HW submission */
269 	if (!READ_ONCE(b->irq_armed) && !list_empty(&b->signalers))
270 		intel_breadcrumbs_arm_irq(b);
271 
272 	/* And confirm that we still want irqs enabled before we yield */
273 	if (READ_ONCE(b->irq_armed) && !atomic_read(&b->active))
274 		intel_breadcrumbs_disarm_irq(b);
275 }
276 
277 struct intel_breadcrumbs *
278 intel_breadcrumbs_create(struct intel_engine_cs *irq_engine)
279 {
280 	struct intel_breadcrumbs *b;
281 
282 	b = kzalloc(sizeof(*b), GFP_KERNEL);
283 	if (!b)
284 		return NULL;
285 
286 	kref_init(&b->ref);
287 
288 	spin_lock_init(&b->signalers_lock);
289 	INIT_LIST_HEAD(&b->signalers);
290 	init_llist_head(&b->signaled_requests);
291 
292 	spin_lock_init(&b->irq_lock);
293 	init_irq_work(&b->irq_work, signal_irq_work);
294 
295 	b->irq_engine = irq_engine;
296 	b->irq_enable = irq_enable;
297 	b->irq_disable = irq_disable;
298 
299 	return b;
300 }
301 
302 void intel_breadcrumbs_reset(struct intel_breadcrumbs *b)
303 {
304 	unsigned long flags;
305 
306 	if (!b->irq_engine)
307 		return;
308 
309 	spin_lock_irqsave(&b->irq_lock, flags);
310 
311 	if (b->irq_enabled)
312 		b->irq_enable(b);
313 	else
314 		b->irq_disable(b);
315 
316 	spin_unlock_irqrestore(&b->irq_lock, flags);
317 }
318 
319 void __intel_breadcrumbs_park(struct intel_breadcrumbs *b)
320 {
321 	if (!READ_ONCE(b->irq_armed))
322 		return;
323 
324 	/* Kick the work once more to drain the signalers, and disarm the irq */
325 	irq_work_queue(&b->irq_work);
326 }
327 
328 void intel_breadcrumbs_free(struct kref *kref)
329 {
330 	struct intel_breadcrumbs *b = container_of(kref, typeof(*b), ref);
331 
332 	irq_work_sync(&b->irq_work);
333 	GEM_BUG_ON(!list_empty(&b->signalers));
334 	GEM_BUG_ON(b->irq_armed);
335 
336 	kfree(b);
337 }
338 
339 static void irq_signal_request(struct i915_request *rq,
340 			       struct intel_breadcrumbs *b)
341 {
342 	if (!__dma_fence_signal(&rq->fence))
343 		return;
344 
345 	i915_request_get(rq);
346 	if (llist_add(&rq->signal_node, &b->signaled_requests))
347 		irq_work_queue(&b->irq_work);
348 }
349 
350 static void insert_breadcrumb(struct i915_request *rq)
351 {
352 	struct intel_breadcrumbs *b = READ_ONCE(rq->engine)->breadcrumbs;
353 	struct intel_context *ce = rq->context;
354 	struct list_head *pos;
355 
356 	if (test_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags))
357 		return;
358 
359 	/*
360 	 * If the request is already completed, we can transfer it
361 	 * straight onto a signaled list, and queue the irq worker for
362 	 * its signal completion.
363 	 */
364 	if (__i915_request_is_complete(rq)) {
365 		irq_signal_request(rq, b);
366 		return;
367 	}
368 
369 	if (list_empty(&ce->signals)) {
370 		intel_context_get(ce);
371 		add_signaling_context(b, ce);
372 		pos = &ce->signals;
373 	} else {
374 		/*
375 		 * We keep the seqno in retirement order, so we can break
376 		 * inside intel_engine_signal_breadcrumbs as soon as we've
377 		 * passed the last completed request (or seen a request that
378 		 * hasn't event started). We could walk the timeline->requests,
379 		 * but keeping a separate signalers_list has the advantage of
380 		 * hopefully being much smaller than the full list and so
381 		 * provides faster iteration and detection when there are no
382 		 * more interrupts required for this context.
383 		 *
384 		 * We typically expect to add new signalers in order, so we
385 		 * start looking for our insertion point from the tail of
386 		 * the list.
387 		 */
388 		list_for_each_prev(pos, &ce->signals) {
389 			struct i915_request *it =
390 				list_entry(pos, typeof(*it), signal_link);
391 
392 			if (i915_seqno_passed(rq->fence.seqno, it->fence.seqno))
393 				break;
394 		}
395 	}
396 
397 	i915_request_get(rq);
398 	list_add_rcu(&rq->signal_link, pos);
399 	GEM_BUG_ON(!check_signal_order(ce, rq));
400 	GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags));
401 	set_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags);
402 
403 	/*
404 	 * Defer enabling the interrupt to after HW submission and recheck
405 	 * the request as it may have completed and raised the interrupt as
406 	 * we were attaching it into the lists.
407 	 */
408 	if (!READ_ONCE(b->irq_armed) || __i915_request_is_complete(rq))
409 		irq_work_queue(&b->irq_work);
410 }
411 
412 bool i915_request_enable_breadcrumb(struct i915_request *rq)
413 {
414 	struct intel_context *ce = rq->context;
415 
416 	/* Serialises with i915_request_retire() using rq->lock */
417 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
418 		return true;
419 
420 	/*
421 	 * Peek at i915_request_submit()/i915_request_unsubmit() status.
422 	 *
423 	 * If the request is not yet active (and not signaled), we will
424 	 * attach the breadcrumb later.
425 	 */
426 	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags))
427 		return true;
428 
429 	spin_lock(&ce->signal_lock);
430 	if (test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags))
431 		insert_breadcrumb(rq);
432 	spin_unlock(&ce->signal_lock);
433 
434 	return true;
435 }
436 
437 void i915_request_cancel_breadcrumb(struct i915_request *rq)
438 {
439 	struct intel_breadcrumbs *b = READ_ONCE(rq->engine)->breadcrumbs;
440 	struct intel_context *ce = rq->context;
441 	bool release;
442 
443 	spin_lock(&ce->signal_lock);
444 	if (!test_and_clear_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags)) {
445 		spin_unlock(&ce->signal_lock);
446 		return;
447 	}
448 
449 	list_del_rcu(&rq->signal_link);
450 	release = remove_signaling_context(b, ce);
451 	spin_unlock(&ce->signal_lock);
452 	if (release)
453 		intel_context_put(ce);
454 
455 	if (__i915_request_is_complete(rq))
456 		irq_signal_request(rq, b);
457 
458 	i915_request_put(rq);
459 }
460 
461 void intel_context_remove_breadcrumbs(struct intel_context *ce,
462 				      struct intel_breadcrumbs *b)
463 {
464 	struct i915_request *rq, *rn;
465 	bool release = false;
466 	unsigned long flags;
467 
468 	spin_lock_irqsave(&ce->signal_lock, flags);
469 
470 	if (list_empty(&ce->signals))
471 		goto unlock;
472 
473 	list_for_each_entry_safe(rq, rn, &ce->signals, signal_link) {
474 		GEM_BUG_ON(!__i915_request_is_complete(rq));
475 		if (!test_and_clear_bit(I915_FENCE_FLAG_SIGNAL,
476 					&rq->fence.flags))
477 			continue;
478 
479 		list_del_rcu(&rq->signal_link);
480 		irq_signal_request(rq, b);
481 		i915_request_put(rq);
482 	}
483 	release = remove_signaling_context(b, ce);
484 
485 unlock:
486 	spin_unlock_irqrestore(&ce->signal_lock, flags);
487 	if (release)
488 		intel_context_put(ce);
489 
490 	while (atomic_read(&b->signaler_active))
491 		cpu_relax();
492 }
493 
494 static void print_signals(struct intel_breadcrumbs *b, struct drm_printer *p)
495 {
496 	struct intel_context *ce;
497 	struct i915_request *rq;
498 
499 	drm_printf(p, "Signals:\n");
500 
501 	rcu_read_lock();
502 	list_for_each_entry_rcu(ce, &b->signalers, signal_link) {
503 		list_for_each_entry_rcu(rq, &ce->signals, signal_link)
504 			drm_printf(p, "\t[%llx:%llx%s] @ %dms\n",
505 				   rq->fence.context, rq->fence.seqno,
506 				   __i915_request_is_complete(rq) ? "!" :
507 				   __i915_request_has_started(rq) ? "*" :
508 				   "",
509 				   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
510 	}
511 	rcu_read_unlock();
512 }
513 
514 void intel_engine_print_breadcrumbs(struct intel_engine_cs *engine,
515 				    struct drm_printer *p)
516 {
517 	struct intel_breadcrumbs *b;
518 
519 	b = engine->breadcrumbs;
520 	if (!b)
521 		return;
522 
523 	drm_printf(p, "IRQ: %s\n", str_enabled_disabled(b->irq_armed));
524 	if (!list_empty(&b->signalers))
525 		print_signals(b, p);
526 }
527