1 /* 2 * Copyright © 2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/kthread.h> 26 #include <trace/events/dma_fence.h> 27 #include <uapi/linux/sched/types.h> 28 29 #include "i915_drv.h" 30 #include "i915_trace.h" 31 #include "intel_breadcrumbs.h" 32 #include "intel_context.h" 33 #include "intel_engine_pm.h" 34 #include "intel_gt_pm.h" 35 #include "intel_gt_requests.h" 36 37 static bool irq_enable(struct intel_engine_cs *engine) 38 { 39 if (!engine->irq_enable) 40 return false; 41 42 /* Caller disables interrupts */ 43 spin_lock(&engine->gt->irq_lock); 44 engine->irq_enable(engine); 45 spin_unlock(&engine->gt->irq_lock); 46 47 return true; 48 } 49 50 static void irq_disable(struct intel_engine_cs *engine) 51 { 52 if (!engine->irq_disable) 53 return; 54 55 /* Caller disables interrupts */ 56 spin_lock(&engine->gt->irq_lock); 57 engine->irq_disable(engine); 58 spin_unlock(&engine->gt->irq_lock); 59 } 60 61 static void __intel_breadcrumbs_arm_irq(struct intel_breadcrumbs *b) 62 { 63 /* 64 * Since we are waiting on a request, the GPU should be busy 65 * and should have its own rpm reference. 66 */ 67 if (GEM_WARN_ON(!intel_gt_pm_get_if_awake(b->irq_engine->gt))) 68 return; 69 70 /* 71 * The breadcrumb irq will be disarmed on the interrupt after the 72 * waiters are signaled. This gives us a single interrupt window in 73 * which we can add a new waiter and avoid the cost of re-enabling 74 * the irq. 75 */ 76 WRITE_ONCE(b->irq_armed, true); 77 78 /* Requests may have completed before we could enable the interrupt. */ 79 if (!b->irq_enabled++ && irq_enable(b->irq_engine)) 80 irq_work_queue(&b->irq_work); 81 } 82 83 static void intel_breadcrumbs_arm_irq(struct intel_breadcrumbs *b) 84 { 85 if (!b->irq_engine) 86 return; 87 88 spin_lock(&b->irq_lock); 89 if (!b->irq_armed) 90 __intel_breadcrumbs_arm_irq(b); 91 spin_unlock(&b->irq_lock); 92 } 93 94 static void __intel_breadcrumbs_disarm_irq(struct intel_breadcrumbs *b) 95 { 96 GEM_BUG_ON(!b->irq_enabled); 97 if (!--b->irq_enabled) 98 irq_disable(b->irq_engine); 99 100 WRITE_ONCE(b->irq_armed, false); 101 intel_gt_pm_put_async(b->irq_engine->gt); 102 } 103 104 static void add_signaling_context(struct intel_breadcrumbs *b, 105 struct intel_context *ce) 106 { 107 intel_context_get(ce); 108 list_add_tail(&ce->signal_link, &b->signalers); 109 } 110 111 static void remove_signaling_context(struct intel_breadcrumbs *b, 112 struct intel_context *ce) 113 { 114 list_del(&ce->signal_link); 115 intel_context_put(ce); 116 } 117 118 static inline bool __request_completed(const struct i915_request *rq) 119 { 120 return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno); 121 } 122 123 __maybe_unused static bool 124 check_signal_order(struct intel_context *ce, struct i915_request *rq) 125 { 126 if (rq->context != ce) 127 return false; 128 129 if (!list_is_last(&rq->signal_link, &ce->signals) && 130 i915_seqno_passed(rq->fence.seqno, 131 list_next_entry(rq, signal_link)->fence.seqno)) 132 return false; 133 134 if (!list_is_first(&rq->signal_link, &ce->signals) && 135 i915_seqno_passed(list_prev_entry(rq, signal_link)->fence.seqno, 136 rq->fence.seqno)) 137 return false; 138 139 return true; 140 } 141 142 static bool 143 __dma_fence_signal(struct dma_fence *fence) 144 { 145 return !test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags); 146 } 147 148 static void 149 __dma_fence_signal__timestamp(struct dma_fence *fence, ktime_t timestamp) 150 { 151 fence->timestamp = timestamp; 152 set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags); 153 trace_dma_fence_signaled(fence); 154 } 155 156 static void 157 __dma_fence_signal__notify(struct dma_fence *fence, 158 const struct list_head *list) 159 { 160 struct dma_fence_cb *cur, *tmp; 161 162 lockdep_assert_held(fence->lock); 163 164 list_for_each_entry_safe(cur, tmp, list, node) { 165 INIT_LIST_HEAD(&cur->node); 166 cur->func(fence, cur); 167 } 168 } 169 170 static void add_retire(struct intel_breadcrumbs *b, struct intel_timeline *tl) 171 { 172 if (b->irq_engine) 173 intel_engine_add_retire(b->irq_engine, tl); 174 } 175 176 static bool __signal_request(struct i915_request *rq) 177 { 178 if (!__dma_fence_signal(&rq->fence)) { 179 i915_request_put(rq); 180 return false; 181 } 182 183 return true; 184 } 185 186 static struct llist_node * 187 slist_add(struct llist_node *node, struct llist_node *head) 188 { 189 node->next = head; 190 return node; 191 } 192 193 static void signal_irq_work(struct irq_work *work) 194 { 195 struct intel_breadcrumbs *b = container_of(work, typeof(*b), irq_work); 196 const ktime_t timestamp = ktime_get(); 197 struct llist_node *signal, *sn; 198 struct intel_context *ce, *cn; 199 struct list_head *pos, *next; 200 201 signal = NULL; 202 if (unlikely(!llist_empty(&b->signaled_requests))) 203 signal = llist_del_all(&b->signaled_requests); 204 205 spin_lock(&b->irq_lock); 206 207 /* 208 * Keep the irq armed until the interrupt after all listeners are gone. 209 * 210 * Enabling/disabling the interrupt is rather costly, roughly a couple 211 * of hundred microseconds. If we are proactive and enable/disable 212 * the interrupt around every request that wants a breadcrumb, we 213 * quickly drown in the extra orders of magnitude of latency imposed 214 * on request submission. 215 * 216 * So we try to be lazy, and keep the interrupts enabled until no 217 * more listeners appear within a breadcrumb interrupt interval (that 218 * is until a request completes that no one cares about). The 219 * observation is that listeners come in batches, and will often 220 * listen to a bunch of requests in succession. Though note on icl+, 221 * interrupts are always enabled due to concerns with rc6 being 222 * dysfunctional with per-engine interrupt masking. 223 * 224 * We also try to avoid raising too many interrupts, as they may 225 * be generated by userspace batches and it is unfortunately rather 226 * too easy to drown the CPU under a flood of GPU interrupts. Thus 227 * whenever no one appears to be listening, we turn off the interrupts. 228 * Fewer interrupts should conserve power -- at the very least, fewer 229 * interrupt draw less ire from other users of the system and tools 230 * like powertop. 231 */ 232 if (!signal && b->irq_armed && list_empty(&b->signalers)) 233 __intel_breadcrumbs_disarm_irq(b); 234 235 list_for_each_entry_safe(ce, cn, &b->signalers, signal_link) { 236 GEM_BUG_ON(list_empty(&ce->signals)); 237 238 list_for_each_safe(pos, next, &ce->signals) { 239 struct i915_request *rq = 240 list_entry(pos, typeof(*rq), signal_link); 241 242 GEM_BUG_ON(!check_signal_order(ce, rq)); 243 if (!__request_completed(rq)) 244 break; 245 246 /* 247 * Queue for execution after dropping the signaling 248 * spinlock as the callback chain may end up adding 249 * more signalers to the same context or engine. 250 */ 251 clear_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags); 252 if (__signal_request(rq)) 253 /* We own signal_node now, xfer to local list */ 254 signal = slist_add(&rq->signal_node, signal); 255 } 256 257 /* 258 * We process the list deletion in bulk, only using a list_add 259 * (not list_move) above but keeping the status of 260 * rq->signal_link known with the I915_FENCE_FLAG_SIGNAL bit. 261 */ 262 if (!list_is_first(pos, &ce->signals)) { 263 /* Advance the list to the first incomplete request */ 264 __list_del_many(&ce->signals, pos); 265 if (&ce->signals == pos) { /* now empty */ 266 add_retire(b, ce->timeline); 267 remove_signaling_context(b, ce); 268 } 269 } 270 } 271 272 spin_unlock(&b->irq_lock); 273 274 llist_for_each_safe(signal, sn, signal) { 275 struct i915_request *rq = 276 llist_entry(signal, typeof(*rq), signal_node); 277 struct list_head cb_list; 278 279 spin_lock(&rq->lock); 280 list_replace(&rq->fence.cb_list, &cb_list); 281 __dma_fence_signal__timestamp(&rq->fence, timestamp); 282 __dma_fence_signal__notify(&rq->fence, &cb_list); 283 spin_unlock(&rq->lock); 284 285 i915_request_put(rq); 286 } 287 288 if (!READ_ONCE(b->irq_armed) && !list_empty(&b->signalers)) 289 intel_breadcrumbs_arm_irq(b); 290 } 291 292 struct intel_breadcrumbs * 293 intel_breadcrumbs_create(struct intel_engine_cs *irq_engine) 294 { 295 struct intel_breadcrumbs *b; 296 297 b = kzalloc(sizeof(*b), GFP_KERNEL); 298 if (!b) 299 return NULL; 300 301 spin_lock_init(&b->irq_lock); 302 INIT_LIST_HEAD(&b->signalers); 303 init_llist_head(&b->signaled_requests); 304 305 init_irq_work(&b->irq_work, signal_irq_work); 306 307 b->irq_engine = irq_engine; 308 309 return b; 310 } 311 312 void intel_breadcrumbs_reset(struct intel_breadcrumbs *b) 313 { 314 unsigned long flags; 315 316 if (!b->irq_engine) 317 return; 318 319 spin_lock_irqsave(&b->irq_lock, flags); 320 321 if (b->irq_enabled) 322 irq_enable(b->irq_engine); 323 else 324 irq_disable(b->irq_engine); 325 326 spin_unlock_irqrestore(&b->irq_lock, flags); 327 } 328 329 void intel_breadcrumbs_park(struct intel_breadcrumbs *b) 330 { 331 /* Kick the work once more to drain the signalers */ 332 irq_work_sync(&b->irq_work); 333 while (unlikely(READ_ONCE(b->irq_armed))) { 334 local_irq_disable(); 335 signal_irq_work(&b->irq_work); 336 local_irq_enable(); 337 cond_resched(); 338 } 339 GEM_BUG_ON(!list_empty(&b->signalers)); 340 } 341 342 void intel_breadcrumbs_free(struct intel_breadcrumbs *b) 343 { 344 irq_work_sync(&b->irq_work); 345 GEM_BUG_ON(!list_empty(&b->signalers)); 346 GEM_BUG_ON(b->irq_armed); 347 kfree(b); 348 } 349 350 static void insert_breadcrumb(struct i915_request *rq, 351 struct intel_breadcrumbs *b) 352 { 353 struct intel_context *ce = rq->context; 354 struct list_head *pos; 355 356 if (test_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags)) 357 return; 358 359 i915_request_get(rq); 360 361 /* 362 * If the request is already completed, we can transfer it 363 * straight onto a signaled list, and queue the irq worker for 364 * its signal completion. 365 */ 366 if (__request_completed(rq)) { 367 if (__signal_request(rq) && 368 llist_add(&rq->signal_node, &b->signaled_requests)) 369 irq_work_queue(&b->irq_work); 370 return; 371 } 372 373 if (list_empty(&ce->signals)) { 374 add_signaling_context(b, ce); 375 pos = &ce->signals; 376 } else { 377 /* 378 * We keep the seqno in retirement order, so we can break 379 * inside intel_engine_signal_breadcrumbs as soon as we've 380 * passed the last completed request (or seen a request that 381 * hasn't event started). We could walk the timeline->requests, 382 * but keeping a separate signalers_list has the advantage of 383 * hopefully being much smaller than the full list and so 384 * provides faster iteration and detection when there are no 385 * more interrupts required for this context. 386 * 387 * We typically expect to add new signalers in order, so we 388 * start looking for our insertion point from the tail of 389 * the list. 390 */ 391 list_for_each_prev(pos, &ce->signals) { 392 struct i915_request *it = 393 list_entry(pos, typeof(*it), signal_link); 394 395 if (i915_seqno_passed(rq->fence.seqno, it->fence.seqno)) 396 break; 397 } 398 } 399 list_add(&rq->signal_link, pos); 400 GEM_BUG_ON(!check_signal_order(ce, rq)); 401 set_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags); 402 403 /* 404 * Defer enabling the interrupt to after HW submission and recheck 405 * the request as it may have completed and raised the interrupt as 406 * we were attaching it into the lists. 407 */ 408 irq_work_queue(&b->irq_work); 409 } 410 411 bool i915_request_enable_breadcrumb(struct i915_request *rq) 412 { 413 struct intel_breadcrumbs *b; 414 415 /* Serialises with i915_request_retire() using rq->lock */ 416 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) 417 return true; 418 419 /* 420 * Peek at i915_request_submit()/i915_request_unsubmit() status. 421 * 422 * If the request is not yet active (and not signaled), we will 423 * attach the breadcrumb later. 424 */ 425 if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) 426 return true; 427 428 /* 429 * rq->engine is locked by rq->engine->active.lock. That however 430 * is not known until after rq->engine has been dereferenced and 431 * the lock acquired. Hence we acquire the lock and then validate 432 * that rq->engine still matches the lock we hold for it. 433 * 434 * Here, we are using the breadcrumb lock as a proxy for the 435 * rq->engine->active.lock, and we know that since the breadcrumb 436 * will be serialised within i915_request_submit/i915_request_unsubmit, 437 * the engine cannot change while active as long as we hold the 438 * breadcrumb lock on that engine. 439 * 440 * From the dma_fence_enable_signaling() path, we are outside of the 441 * request submit/unsubmit path, and so we must be more careful to 442 * acquire the right lock. 443 */ 444 b = READ_ONCE(rq->engine)->breadcrumbs; 445 spin_lock(&b->irq_lock); 446 while (unlikely(b != READ_ONCE(rq->engine)->breadcrumbs)) { 447 spin_unlock(&b->irq_lock); 448 b = READ_ONCE(rq->engine)->breadcrumbs; 449 spin_lock(&b->irq_lock); 450 } 451 452 /* 453 * Now that we are finally serialised with request submit/unsubmit, 454 * [with b->irq_lock] and with i915_request_retire() [via checking 455 * SIGNALED with rq->lock] confirm the request is indeed active. If 456 * it is no longer active, the breadcrumb will be attached upon 457 * i915_request_submit(). 458 */ 459 if (test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) 460 insert_breadcrumb(rq, b); 461 462 spin_unlock(&b->irq_lock); 463 464 return true; 465 } 466 467 void i915_request_cancel_breadcrumb(struct i915_request *rq) 468 { 469 struct intel_breadcrumbs *b = rq->engine->breadcrumbs; 470 471 /* 472 * We must wait for b->irq_lock so that we know the interrupt handler 473 * has released its reference to the intel_context and has completed 474 * the DMA_FENCE_FLAG_SIGNALED_BIT/I915_FENCE_FLAG_SIGNAL dance (if 475 * required). 476 */ 477 spin_lock(&b->irq_lock); 478 if (test_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags)) { 479 struct intel_context *ce = rq->context; 480 481 list_del(&rq->signal_link); 482 if (list_empty(&ce->signals)) 483 remove_signaling_context(b, ce); 484 485 clear_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags); 486 i915_request_put(rq); 487 } 488 spin_unlock(&b->irq_lock); 489 } 490 491 static void print_signals(struct intel_breadcrumbs *b, struct drm_printer *p) 492 { 493 struct intel_context *ce; 494 struct i915_request *rq; 495 496 drm_printf(p, "Signals:\n"); 497 498 spin_lock_irq(&b->irq_lock); 499 list_for_each_entry(ce, &b->signalers, signal_link) { 500 list_for_each_entry(rq, &ce->signals, signal_link) { 501 drm_printf(p, "\t[%llx:%llx%s] @ %dms\n", 502 rq->fence.context, rq->fence.seqno, 503 i915_request_completed(rq) ? "!" : 504 i915_request_started(rq) ? "*" : 505 "", 506 jiffies_to_msecs(jiffies - rq->emitted_jiffies)); 507 } 508 } 509 spin_unlock_irq(&b->irq_lock); 510 } 511 512 void intel_engine_print_breadcrumbs(struct intel_engine_cs *engine, 513 struct drm_printer *p) 514 { 515 struct intel_breadcrumbs *b; 516 517 b = engine->breadcrumbs; 518 if (!b) 519 return; 520 521 drm_printf(p, "IRQ: %s\n", enableddisabled(b->irq_armed)); 522 if (!list_empty(&b->signalers)) 523 print_signals(b, p); 524 } 525