xref: /linux/drivers/gpu/drm/i915/gt/intel_breadcrumbs.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2015-2021 Intel Corporation
4  */
5 
6 #include <linux/kthread.h>
7 #include <linux/string_helpers.h>
8 #include <trace/events/dma_fence.h>
9 #include <uapi/linux/sched/types.h>
10 
11 #include "i915_drv.h"
12 #include "i915_trace.h"
13 #include "intel_breadcrumbs.h"
14 #include "intel_context.h"
15 #include "intel_engine_pm.h"
16 #include "intel_gt_pm.h"
17 #include "intel_gt_requests.h"
18 
19 static bool irq_enable(struct intel_breadcrumbs *b)
20 {
21 	return intel_engine_irq_enable(b->irq_engine);
22 }
23 
24 static void irq_disable(struct intel_breadcrumbs *b)
25 {
26 	intel_engine_irq_disable(b->irq_engine);
27 }
28 
29 static void __intel_breadcrumbs_arm_irq(struct intel_breadcrumbs *b)
30 {
31 	intel_wakeref_t wakeref;
32 
33 	/*
34 	 * Since we are waiting on a request, the GPU should be busy
35 	 * and should have its own rpm reference.
36 	 */
37 	wakeref = intel_gt_pm_get_if_awake(b->irq_engine->gt);
38 	if (GEM_WARN_ON(!wakeref))
39 		return;
40 
41 	/*
42 	 * The breadcrumb irq will be disarmed on the interrupt after the
43 	 * waiters are signaled. This gives us a single interrupt window in
44 	 * which we can add a new waiter and avoid the cost of re-enabling
45 	 * the irq.
46 	 */
47 	WRITE_ONCE(b->irq_armed, wakeref);
48 
49 	/* Requests may have completed before we could enable the interrupt. */
50 	if (!b->irq_enabled++ && b->irq_enable(b))
51 		irq_work_queue(&b->irq_work);
52 }
53 
54 static void intel_breadcrumbs_arm_irq(struct intel_breadcrumbs *b)
55 {
56 	if (!b->irq_engine)
57 		return;
58 
59 	spin_lock(&b->irq_lock);
60 	if (!b->irq_armed)
61 		__intel_breadcrumbs_arm_irq(b);
62 	spin_unlock(&b->irq_lock);
63 }
64 
65 static void __intel_breadcrumbs_disarm_irq(struct intel_breadcrumbs *b)
66 {
67 	intel_wakeref_t wakeref = b->irq_armed;
68 
69 	GEM_BUG_ON(!b->irq_enabled);
70 	if (!--b->irq_enabled)
71 		b->irq_disable(b);
72 
73 	WRITE_ONCE(b->irq_armed, 0);
74 	intel_gt_pm_put_async(b->irq_engine->gt, wakeref);
75 }
76 
77 static void intel_breadcrumbs_disarm_irq(struct intel_breadcrumbs *b)
78 {
79 	spin_lock(&b->irq_lock);
80 	if (b->irq_armed)
81 		__intel_breadcrumbs_disarm_irq(b);
82 	spin_unlock(&b->irq_lock);
83 }
84 
85 static void add_signaling_context(struct intel_breadcrumbs *b,
86 				  struct intel_context *ce)
87 {
88 	lockdep_assert_held(&ce->signal_lock);
89 
90 	spin_lock(&b->signalers_lock);
91 	list_add_rcu(&ce->signal_link, &b->signalers);
92 	spin_unlock(&b->signalers_lock);
93 }
94 
95 static bool remove_signaling_context(struct intel_breadcrumbs *b,
96 				     struct intel_context *ce)
97 {
98 	lockdep_assert_held(&ce->signal_lock);
99 
100 	if (!list_empty(&ce->signals))
101 		return false;
102 
103 	spin_lock(&b->signalers_lock);
104 	list_del_rcu(&ce->signal_link);
105 	spin_unlock(&b->signalers_lock);
106 
107 	return true;
108 }
109 
110 __maybe_unused static bool
111 check_signal_order(struct intel_context *ce, struct i915_request *rq)
112 {
113 	if (rq->context != ce)
114 		return false;
115 
116 	if (!list_is_last(&rq->signal_link, &ce->signals) &&
117 	    i915_seqno_passed(rq->fence.seqno,
118 			      list_next_entry(rq, signal_link)->fence.seqno))
119 		return false;
120 
121 	if (!list_is_first(&rq->signal_link, &ce->signals) &&
122 	    i915_seqno_passed(list_prev_entry(rq, signal_link)->fence.seqno,
123 			      rq->fence.seqno))
124 		return false;
125 
126 	return true;
127 }
128 
129 static bool
130 __dma_fence_signal(struct dma_fence *fence)
131 {
132 	return !test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags);
133 }
134 
135 static void
136 __dma_fence_signal__timestamp(struct dma_fence *fence, ktime_t timestamp)
137 {
138 	fence->timestamp = timestamp;
139 	set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
140 	trace_dma_fence_signaled(fence);
141 }
142 
143 static void
144 __dma_fence_signal__notify(struct dma_fence *fence,
145 			   const struct list_head *list)
146 {
147 	struct dma_fence_cb *cur, *tmp;
148 
149 	lockdep_assert_held(fence->lock);
150 
151 	list_for_each_entry_safe(cur, tmp, list, node) {
152 		INIT_LIST_HEAD(&cur->node);
153 		cur->func(fence, cur);
154 	}
155 }
156 
157 static void add_retire(struct intel_breadcrumbs *b, struct intel_timeline *tl)
158 {
159 	if (b->irq_engine)
160 		intel_engine_add_retire(b->irq_engine, tl);
161 }
162 
163 static struct llist_node *
164 slist_add(struct llist_node *node, struct llist_node *head)
165 {
166 	node->next = head;
167 	return node;
168 }
169 
170 static void signal_irq_work(struct irq_work *work)
171 {
172 	struct intel_breadcrumbs *b = container_of(work, typeof(*b), irq_work);
173 	const ktime_t timestamp = ktime_get();
174 	struct llist_node *signal, *sn;
175 	struct intel_context *ce;
176 
177 	signal = NULL;
178 	if (unlikely(!llist_empty(&b->signaled_requests)))
179 		signal = llist_del_all(&b->signaled_requests);
180 
181 	/*
182 	 * Keep the irq armed until the interrupt after all listeners are gone.
183 	 *
184 	 * Enabling/disabling the interrupt is rather costly, roughly a couple
185 	 * of hundred microseconds. If we are proactive and enable/disable
186 	 * the interrupt around every request that wants a breadcrumb, we
187 	 * quickly drown in the extra orders of magnitude of latency imposed
188 	 * on request submission.
189 	 *
190 	 * So we try to be lazy, and keep the interrupts enabled until no
191 	 * more listeners appear within a breadcrumb interrupt interval (that
192 	 * is until a request completes that no one cares about). The
193 	 * observation is that listeners come in batches, and will often
194 	 * listen to a bunch of requests in succession. Though note on icl+,
195 	 * interrupts are always enabled due to concerns with rc6 being
196 	 * dysfunctional with per-engine interrupt masking.
197 	 *
198 	 * We also try to avoid raising too many interrupts, as they may
199 	 * be generated by userspace batches and it is unfortunately rather
200 	 * too easy to drown the CPU under a flood of GPU interrupts. Thus
201 	 * whenever no one appears to be listening, we turn off the interrupts.
202 	 * Fewer interrupts should conserve power -- at the very least, fewer
203 	 * interrupt draw less ire from other users of the system and tools
204 	 * like powertop.
205 	 */
206 	if (!signal && READ_ONCE(b->irq_armed) && list_empty(&b->signalers))
207 		intel_breadcrumbs_disarm_irq(b);
208 
209 	rcu_read_lock();
210 	atomic_inc(&b->signaler_active);
211 	list_for_each_entry_rcu(ce, &b->signalers, signal_link) {
212 		struct i915_request *rq;
213 
214 		list_for_each_entry_rcu(rq, &ce->signals, signal_link) {
215 			bool release;
216 
217 			if (!__i915_request_is_complete(rq))
218 				break;
219 
220 			if (!test_and_clear_bit(I915_FENCE_FLAG_SIGNAL,
221 						&rq->fence.flags))
222 				break;
223 
224 			/*
225 			 * Queue for execution after dropping the signaling
226 			 * spinlock as the callback chain may end up adding
227 			 * more signalers to the same context or engine.
228 			 */
229 			spin_lock(&ce->signal_lock);
230 			list_del_rcu(&rq->signal_link);
231 			release = remove_signaling_context(b, ce);
232 			spin_unlock(&ce->signal_lock);
233 			if (release) {
234 				if (intel_timeline_is_last(ce->timeline, rq))
235 					add_retire(b, ce->timeline);
236 				intel_context_put(ce);
237 			}
238 
239 			if (__dma_fence_signal(&rq->fence))
240 				/* We own signal_node now, xfer to local list */
241 				signal = slist_add(&rq->signal_node, signal);
242 			else
243 				i915_request_put(rq);
244 		}
245 	}
246 	atomic_dec(&b->signaler_active);
247 	rcu_read_unlock();
248 
249 	llist_for_each_safe(signal, sn, signal) {
250 		struct i915_request *rq =
251 			llist_entry(signal, typeof(*rq), signal_node);
252 		struct list_head cb_list;
253 
254 		if (rq->engine->sched_engine->retire_inflight_request_prio)
255 			rq->engine->sched_engine->retire_inflight_request_prio(rq);
256 
257 		spin_lock(&rq->lock);
258 		list_replace(&rq->fence.cb_list, &cb_list);
259 		__dma_fence_signal__timestamp(&rq->fence, timestamp);
260 		__dma_fence_signal__notify(&rq->fence, &cb_list);
261 		spin_unlock(&rq->lock);
262 
263 		i915_request_put(rq);
264 	}
265 
266 	/* Lazy irq enabling after HW submission */
267 	if (!READ_ONCE(b->irq_armed) && !list_empty(&b->signalers))
268 		intel_breadcrumbs_arm_irq(b);
269 
270 	/* And confirm that we still want irqs enabled before we yield */
271 	if (READ_ONCE(b->irq_armed) && !atomic_read(&b->active))
272 		intel_breadcrumbs_disarm_irq(b);
273 }
274 
275 struct intel_breadcrumbs *
276 intel_breadcrumbs_create(struct intel_engine_cs *irq_engine)
277 {
278 	struct intel_breadcrumbs *b;
279 
280 	b = kzalloc(sizeof(*b), GFP_KERNEL);
281 	if (!b)
282 		return NULL;
283 
284 	kref_init(&b->ref);
285 
286 	spin_lock_init(&b->signalers_lock);
287 	INIT_LIST_HEAD(&b->signalers);
288 	init_llist_head(&b->signaled_requests);
289 
290 	spin_lock_init(&b->irq_lock);
291 	init_irq_work(&b->irq_work, signal_irq_work);
292 
293 	b->irq_engine = irq_engine;
294 	b->irq_enable = irq_enable;
295 	b->irq_disable = irq_disable;
296 
297 	return b;
298 }
299 
300 void intel_breadcrumbs_reset(struct intel_breadcrumbs *b)
301 {
302 	unsigned long flags;
303 
304 	if (!b->irq_engine)
305 		return;
306 
307 	spin_lock_irqsave(&b->irq_lock, flags);
308 
309 	if (b->irq_enabled)
310 		b->irq_enable(b);
311 	else
312 		b->irq_disable(b);
313 
314 	spin_unlock_irqrestore(&b->irq_lock, flags);
315 }
316 
317 void __intel_breadcrumbs_park(struct intel_breadcrumbs *b)
318 {
319 	if (!READ_ONCE(b->irq_armed))
320 		return;
321 
322 	/* Kick the work once more to drain the signalers, and disarm the irq */
323 	irq_work_queue(&b->irq_work);
324 }
325 
326 void intel_breadcrumbs_free(struct kref *kref)
327 {
328 	struct intel_breadcrumbs *b = container_of(kref, typeof(*b), ref);
329 
330 	irq_work_sync(&b->irq_work);
331 	GEM_BUG_ON(!list_empty(&b->signalers));
332 	GEM_BUG_ON(b->irq_armed);
333 
334 	kfree(b);
335 }
336 
337 static void irq_signal_request(struct i915_request *rq,
338 			       struct intel_breadcrumbs *b)
339 {
340 	if (!__dma_fence_signal(&rq->fence))
341 		return;
342 
343 	i915_request_get(rq);
344 	if (llist_add(&rq->signal_node, &b->signaled_requests))
345 		irq_work_queue(&b->irq_work);
346 }
347 
348 static void insert_breadcrumb(struct i915_request *rq)
349 {
350 	struct intel_breadcrumbs *b = READ_ONCE(rq->engine)->breadcrumbs;
351 	struct intel_context *ce = rq->context;
352 	struct list_head *pos;
353 
354 	if (test_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags))
355 		return;
356 
357 	/*
358 	 * If the request is already completed, we can transfer it
359 	 * straight onto a signaled list, and queue the irq worker for
360 	 * its signal completion.
361 	 */
362 	if (__i915_request_is_complete(rq)) {
363 		irq_signal_request(rq, b);
364 		return;
365 	}
366 
367 	if (list_empty(&ce->signals)) {
368 		intel_context_get(ce);
369 		add_signaling_context(b, ce);
370 		pos = &ce->signals;
371 	} else {
372 		/*
373 		 * We keep the seqno in retirement order, so we can break
374 		 * inside intel_engine_signal_breadcrumbs as soon as we've
375 		 * passed the last completed request (or seen a request that
376 		 * hasn't event started). We could walk the timeline->requests,
377 		 * but keeping a separate signalers_list has the advantage of
378 		 * hopefully being much smaller than the full list and so
379 		 * provides faster iteration and detection when there are no
380 		 * more interrupts required for this context.
381 		 *
382 		 * We typically expect to add new signalers in order, so we
383 		 * start looking for our insertion point from the tail of
384 		 * the list.
385 		 */
386 		list_for_each_prev(pos, &ce->signals) {
387 			struct i915_request *it =
388 				list_entry(pos, typeof(*it), signal_link);
389 
390 			if (i915_seqno_passed(rq->fence.seqno, it->fence.seqno))
391 				break;
392 		}
393 	}
394 
395 	i915_request_get(rq);
396 	list_add_rcu(&rq->signal_link, pos);
397 	GEM_BUG_ON(!check_signal_order(ce, rq));
398 	GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags));
399 	set_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags);
400 
401 	/*
402 	 * Defer enabling the interrupt to after HW submission and recheck
403 	 * the request as it may have completed and raised the interrupt as
404 	 * we were attaching it into the lists.
405 	 */
406 	if (!READ_ONCE(b->irq_armed) || __i915_request_is_complete(rq))
407 		irq_work_queue(&b->irq_work);
408 }
409 
410 bool i915_request_enable_breadcrumb(struct i915_request *rq)
411 {
412 	struct intel_context *ce = rq->context;
413 
414 	/* Serialises with i915_request_retire() using rq->lock */
415 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
416 		return true;
417 
418 	/*
419 	 * Peek at i915_request_submit()/i915_request_unsubmit() status.
420 	 *
421 	 * If the request is not yet active (and not signaled), we will
422 	 * attach the breadcrumb later.
423 	 */
424 	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags))
425 		return true;
426 
427 	spin_lock(&ce->signal_lock);
428 	if (test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags))
429 		insert_breadcrumb(rq);
430 	spin_unlock(&ce->signal_lock);
431 
432 	return true;
433 }
434 
435 void i915_request_cancel_breadcrumb(struct i915_request *rq)
436 {
437 	struct intel_breadcrumbs *b = READ_ONCE(rq->engine)->breadcrumbs;
438 	struct intel_context *ce = rq->context;
439 	bool release;
440 
441 	spin_lock(&ce->signal_lock);
442 	if (!test_and_clear_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags)) {
443 		spin_unlock(&ce->signal_lock);
444 		return;
445 	}
446 
447 	list_del_rcu(&rq->signal_link);
448 	release = remove_signaling_context(b, ce);
449 	spin_unlock(&ce->signal_lock);
450 	if (release)
451 		intel_context_put(ce);
452 
453 	if (__i915_request_is_complete(rq))
454 		irq_signal_request(rq, b);
455 
456 	i915_request_put(rq);
457 }
458 
459 void intel_context_remove_breadcrumbs(struct intel_context *ce,
460 				      struct intel_breadcrumbs *b)
461 {
462 	struct i915_request *rq, *rn;
463 	bool release = false;
464 	unsigned long flags;
465 
466 	spin_lock_irqsave(&ce->signal_lock, flags);
467 
468 	if (list_empty(&ce->signals))
469 		goto unlock;
470 
471 	list_for_each_entry_safe(rq, rn, &ce->signals, signal_link) {
472 		GEM_BUG_ON(!__i915_request_is_complete(rq));
473 		if (!test_and_clear_bit(I915_FENCE_FLAG_SIGNAL,
474 					&rq->fence.flags))
475 			continue;
476 
477 		list_del_rcu(&rq->signal_link);
478 		irq_signal_request(rq, b);
479 		i915_request_put(rq);
480 	}
481 	release = remove_signaling_context(b, ce);
482 
483 unlock:
484 	spin_unlock_irqrestore(&ce->signal_lock, flags);
485 	if (release)
486 		intel_context_put(ce);
487 
488 	while (atomic_read(&b->signaler_active))
489 		cpu_relax();
490 }
491 
492 static void print_signals(struct intel_breadcrumbs *b, struct drm_printer *p)
493 {
494 	struct intel_context *ce;
495 	struct i915_request *rq;
496 
497 	drm_printf(p, "Signals:\n");
498 
499 	rcu_read_lock();
500 	list_for_each_entry_rcu(ce, &b->signalers, signal_link) {
501 		list_for_each_entry_rcu(rq, &ce->signals, signal_link)
502 			drm_printf(p, "\t[%llx:%llx%s] @ %dms\n",
503 				   rq->fence.context, rq->fence.seqno,
504 				   __i915_request_is_complete(rq) ? "!" :
505 				   __i915_request_has_started(rq) ? "*" :
506 				   "",
507 				   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
508 	}
509 	rcu_read_unlock();
510 }
511 
512 void intel_engine_print_breadcrumbs(struct intel_engine_cs *engine,
513 				    struct drm_printer *p)
514 {
515 	struct intel_breadcrumbs *b;
516 
517 	b = engine->breadcrumbs;
518 	if (!b)
519 		return;
520 
521 	drm_printf(p, "IRQ: %s\n", str_enabled_disabled(b->irq_armed));
522 	if (!list_empty(&b->signalers))
523 		print_signals(b, p);
524 }
525