1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014 Intel Corporation 4 */ 5 6 #include "gen8_engine_cs.h" 7 #include "intel_engine_regs.h" 8 #include "intel_gpu_commands.h" 9 #include "intel_gt.h" 10 #include "intel_lrc.h" 11 #include "intel_ring.h" 12 13 int gen8_emit_flush_rcs(struct i915_request *rq, u32 mode) 14 { 15 bool vf_flush_wa = false, dc_flush_wa = false; 16 u32 *cs, flags = 0; 17 int len; 18 19 flags |= PIPE_CONTROL_CS_STALL; 20 21 if (mode & EMIT_FLUSH) { 22 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; 23 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; 24 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; 25 flags |= PIPE_CONTROL_FLUSH_ENABLE; 26 } 27 28 if (mode & EMIT_INVALIDATE) { 29 flags |= PIPE_CONTROL_TLB_INVALIDATE; 30 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; 31 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; 32 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; 33 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; 34 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; 35 flags |= PIPE_CONTROL_QW_WRITE; 36 flags |= PIPE_CONTROL_STORE_DATA_INDEX; 37 38 /* 39 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL 40 * pipe control. 41 */ 42 if (GRAPHICS_VER(rq->i915) == 9) 43 vf_flush_wa = true; 44 45 /* WaForGAMHang:kbl */ 46 if (IS_KABYLAKE(rq->i915) && IS_GRAPHICS_STEP(rq->i915, 0, STEP_C0)) 47 dc_flush_wa = true; 48 } 49 50 len = 6; 51 52 if (vf_flush_wa) 53 len += 6; 54 55 if (dc_flush_wa) 56 len += 12; 57 58 cs = intel_ring_begin(rq, len); 59 if (IS_ERR(cs)) 60 return PTR_ERR(cs); 61 62 if (vf_flush_wa) 63 cs = gen8_emit_pipe_control(cs, 0, 0); 64 65 if (dc_flush_wa) 66 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE, 67 0); 68 69 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); 70 71 if (dc_flush_wa) 72 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0); 73 74 intel_ring_advance(rq, cs); 75 76 return 0; 77 } 78 79 int gen8_emit_flush_xcs(struct i915_request *rq, u32 mode) 80 { 81 u32 cmd, *cs; 82 83 cs = intel_ring_begin(rq, 4); 84 if (IS_ERR(cs)) 85 return PTR_ERR(cs); 86 87 cmd = MI_FLUSH_DW + 1; 88 89 /* 90 * We always require a command barrier so that subsequent 91 * commands, such as breadcrumb interrupts, are strictly ordered 92 * wrt the contents of the write cache being flushed to memory 93 * (and thus being coherent from the CPU). 94 */ 95 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW; 96 97 if (mode & EMIT_INVALIDATE) { 98 cmd |= MI_INVALIDATE_TLB; 99 if (rq->engine->class == VIDEO_DECODE_CLASS) 100 cmd |= MI_INVALIDATE_BSD; 101 } 102 103 *cs++ = cmd; 104 *cs++ = LRC_PPHWSP_SCRATCH_ADDR; 105 *cs++ = 0; /* upper addr */ 106 *cs++ = 0; /* value */ 107 intel_ring_advance(rq, cs); 108 109 return 0; 110 } 111 112 int gen11_emit_flush_rcs(struct i915_request *rq, u32 mode) 113 { 114 if (mode & EMIT_FLUSH) { 115 u32 *cs; 116 u32 flags = 0; 117 118 flags |= PIPE_CONTROL_CS_STALL; 119 120 flags |= PIPE_CONTROL_TILE_CACHE_FLUSH; 121 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; 122 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; 123 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; 124 flags |= PIPE_CONTROL_FLUSH_ENABLE; 125 flags |= PIPE_CONTROL_QW_WRITE; 126 flags |= PIPE_CONTROL_STORE_DATA_INDEX; 127 128 cs = intel_ring_begin(rq, 6); 129 if (IS_ERR(cs)) 130 return PTR_ERR(cs); 131 132 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); 133 intel_ring_advance(rq, cs); 134 } 135 136 if (mode & EMIT_INVALIDATE) { 137 u32 *cs; 138 u32 flags = 0; 139 140 flags |= PIPE_CONTROL_CS_STALL; 141 142 flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE; 143 flags |= PIPE_CONTROL_TLB_INVALIDATE; 144 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; 145 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; 146 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; 147 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; 148 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; 149 flags |= PIPE_CONTROL_QW_WRITE; 150 flags |= PIPE_CONTROL_STORE_DATA_INDEX; 151 152 cs = intel_ring_begin(rq, 6); 153 if (IS_ERR(cs)) 154 return PTR_ERR(cs); 155 156 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); 157 intel_ring_advance(rq, cs); 158 } 159 160 return 0; 161 } 162 163 static u32 preparser_disable(bool state) 164 { 165 return MI_ARB_CHECK | 1 << 8 | state; 166 } 167 168 static i915_reg_t gen12_get_aux_inv_reg(struct intel_engine_cs *engine) 169 { 170 switch (engine->id) { 171 case RCS0: 172 return GEN12_CCS_AUX_INV; 173 case BCS0: 174 return GEN12_BCS0_AUX_INV; 175 case VCS0: 176 return GEN12_VD0_AUX_INV; 177 case VCS2: 178 return GEN12_VD2_AUX_INV; 179 case VECS0: 180 return GEN12_VE0_AUX_INV; 181 case CCS0: 182 return GEN12_CCS0_AUX_INV; 183 default: 184 return INVALID_MMIO_REG; 185 } 186 } 187 188 static bool gen12_needs_ccs_aux_inv(struct intel_engine_cs *engine) 189 { 190 i915_reg_t reg = gen12_get_aux_inv_reg(engine); 191 192 if (IS_PONTEVECCHIO(engine->i915)) 193 return false; 194 195 /* 196 * So far platforms supported by i915 having flat ccs do not require 197 * AUX invalidation. Check also whether the engine requires it. 198 */ 199 return i915_mmio_reg_valid(reg) && !HAS_FLAT_CCS(engine->i915); 200 } 201 202 u32 *gen12_emit_aux_table_inv(struct intel_engine_cs *engine, u32 *cs) 203 { 204 i915_reg_t inv_reg = gen12_get_aux_inv_reg(engine); 205 u32 gsi_offset = engine->gt->uncore->gsi_offset; 206 207 if (!gen12_needs_ccs_aux_inv(engine)) 208 return cs; 209 210 *cs++ = MI_LOAD_REGISTER_IMM(1) | MI_LRI_MMIO_REMAP_EN; 211 *cs++ = i915_mmio_reg_offset(inv_reg) + gsi_offset; 212 *cs++ = AUX_INV; 213 214 *cs++ = MI_SEMAPHORE_WAIT_TOKEN | 215 MI_SEMAPHORE_REGISTER_POLL | 216 MI_SEMAPHORE_POLL | 217 MI_SEMAPHORE_SAD_EQ_SDD; 218 *cs++ = 0; 219 *cs++ = i915_mmio_reg_offset(inv_reg) + gsi_offset; 220 *cs++ = 0; 221 *cs++ = 0; 222 223 return cs; 224 } 225 226 static int mtl_dummy_pipe_control(struct i915_request *rq) 227 { 228 /* Wa_14016712196 */ 229 if (IS_GFX_GT_IP_RANGE(rq->engine->gt, IP_VER(12, 70), IP_VER(12, 74)) || 230 IS_DG2(rq->i915)) { 231 u32 *cs; 232 233 /* dummy PIPE_CONTROL + depth flush */ 234 cs = intel_ring_begin(rq, 6); 235 if (IS_ERR(cs)) 236 return PTR_ERR(cs); 237 cs = gen12_emit_pipe_control(cs, 238 0, 239 PIPE_CONTROL_DEPTH_CACHE_FLUSH, 240 LRC_PPHWSP_SCRATCH_ADDR); 241 intel_ring_advance(rq, cs); 242 } 243 244 return 0; 245 } 246 247 int gen12_emit_flush_rcs(struct i915_request *rq, u32 mode) 248 { 249 struct intel_engine_cs *engine = rq->engine; 250 251 /* 252 * On Aux CCS platforms the invalidation of the Aux 253 * table requires quiescing memory traffic beforehand 254 */ 255 if (mode & EMIT_FLUSH || gen12_needs_ccs_aux_inv(engine)) { 256 u32 bit_group_0 = 0; 257 u32 bit_group_1 = 0; 258 int err; 259 u32 *cs; 260 261 err = mtl_dummy_pipe_control(rq); 262 if (err) 263 return err; 264 265 bit_group_0 |= PIPE_CONTROL0_HDC_PIPELINE_FLUSH; 266 267 /* 268 * When required, in MTL and beyond platforms we 269 * need to set the CCS_FLUSH bit in the pipe control 270 */ 271 if (GRAPHICS_VER_FULL(rq->i915) >= IP_VER(12, 70)) 272 bit_group_0 |= PIPE_CONTROL_CCS_FLUSH; 273 274 /* 275 * L3 fabric flush is needed for AUX CCS invalidation 276 * which happens as part of pipe-control so we can 277 * ignore PIPE_CONTROL_FLUSH_L3. Also PIPE_CONTROL_FLUSH_L3 278 * deals with Protected Memory which is not needed for 279 * AUX CCS invalidation and lead to unwanted side effects. 280 */ 281 if ((mode & EMIT_FLUSH) && 282 GRAPHICS_VER_FULL(rq->i915) < IP_VER(12, 70)) 283 bit_group_1 |= PIPE_CONTROL_FLUSH_L3; 284 285 bit_group_1 |= PIPE_CONTROL_TILE_CACHE_FLUSH; 286 bit_group_1 |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; 287 bit_group_1 |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; 288 /* Wa_1409600907:tgl,adl-p */ 289 bit_group_1 |= PIPE_CONTROL_DEPTH_STALL; 290 bit_group_1 |= PIPE_CONTROL_DC_FLUSH_ENABLE; 291 bit_group_1 |= PIPE_CONTROL_FLUSH_ENABLE; 292 293 bit_group_1 |= PIPE_CONTROL_STORE_DATA_INDEX; 294 bit_group_1 |= PIPE_CONTROL_QW_WRITE; 295 296 bit_group_1 |= PIPE_CONTROL_CS_STALL; 297 298 if (!HAS_3D_PIPELINE(engine->i915)) 299 bit_group_1 &= ~PIPE_CONTROL_3D_ARCH_FLAGS; 300 else if (engine->class == COMPUTE_CLASS) 301 bit_group_1 &= ~PIPE_CONTROL_3D_ENGINE_FLAGS; 302 303 cs = intel_ring_begin(rq, 6); 304 if (IS_ERR(cs)) 305 return PTR_ERR(cs); 306 307 cs = gen12_emit_pipe_control(cs, bit_group_0, bit_group_1, 308 LRC_PPHWSP_SCRATCH_ADDR); 309 intel_ring_advance(rq, cs); 310 } 311 312 if (mode & EMIT_INVALIDATE) { 313 u32 flags = 0; 314 u32 *cs, count; 315 int err; 316 317 err = mtl_dummy_pipe_control(rq); 318 if (err) 319 return err; 320 321 flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE; 322 flags |= PIPE_CONTROL_TLB_INVALIDATE; 323 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; 324 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; 325 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; 326 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; 327 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; 328 329 flags |= PIPE_CONTROL_STORE_DATA_INDEX; 330 flags |= PIPE_CONTROL_QW_WRITE; 331 332 flags |= PIPE_CONTROL_CS_STALL; 333 334 if (!HAS_3D_PIPELINE(engine->i915)) 335 flags &= ~PIPE_CONTROL_3D_ARCH_FLAGS; 336 else if (engine->class == COMPUTE_CLASS) 337 flags &= ~PIPE_CONTROL_3D_ENGINE_FLAGS; 338 339 count = 8; 340 if (gen12_needs_ccs_aux_inv(rq->engine)) 341 count += 8; 342 343 cs = intel_ring_begin(rq, count); 344 if (IS_ERR(cs)) 345 return PTR_ERR(cs); 346 347 /* 348 * Prevent the pre-parser from skipping past the TLB 349 * invalidate and loading a stale page for the batch 350 * buffer / request payload. 351 */ 352 *cs++ = preparser_disable(true); 353 354 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); 355 356 cs = gen12_emit_aux_table_inv(engine, cs); 357 358 *cs++ = preparser_disable(false); 359 intel_ring_advance(rq, cs); 360 } 361 362 return 0; 363 } 364 365 int gen12_emit_flush_xcs(struct i915_request *rq, u32 mode) 366 { 367 u32 cmd = 4; 368 u32 *cs; 369 370 if (mode & EMIT_INVALIDATE) { 371 cmd += 2; 372 373 if (gen12_needs_ccs_aux_inv(rq->engine)) 374 cmd += 8; 375 } 376 377 cs = intel_ring_begin(rq, cmd); 378 if (IS_ERR(cs)) 379 return PTR_ERR(cs); 380 381 if (mode & EMIT_INVALIDATE) 382 *cs++ = preparser_disable(true); 383 384 cmd = MI_FLUSH_DW + 1; 385 386 /* 387 * We always require a command barrier so that subsequent 388 * commands, such as breadcrumb interrupts, are strictly ordered 389 * wrt the contents of the write cache being flushed to memory 390 * (and thus being coherent from the CPU). 391 */ 392 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW; 393 394 if (mode & EMIT_INVALIDATE) { 395 cmd |= MI_INVALIDATE_TLB; 396 if (rq->engine->class == VIDEO_DECODE_CLASS) 397 cmd |= MI_INVALIDATE_BSD; 398 399 if (gen12_needs_ccs_aux_inv(rq->engine) && 400 rq->engine->class == COPY_ENGINE_CLASS) 401 cmd |= MI_FLUSH_DW_CCS; 402 } 403 404 *cs++ = cmd; 405 *cs++ = LRC_PPHWSP_SCRATCH_ADDR; 406 *cs++ = 0; /* upper addr */ 407 *cs++ = 0; /* value */ 408 409 cs = gen12_emit_aux_table_inv(rq->engine, cs); 410 411 if (mode & EMIT_INVALIDATE) 412 *cs++ = preparser_disable(false); 413 414 intel_ring_advance(rq, cs); 415 416 return 0; 417 } 418 419 static u32 preempt_address(struct intel_engine_cs *engine) 420 { 421 return (i915_ggtt_offset(engine->status_page.vma) + 422 I915_GEM_HWS_PREEMPT_ADDR); 423 } 424 425 static u32 hwsp_offset(const struct i915_request *rq) 426 { 427 const struct intel_timeline *tl; 428 429 /* Before the request is executed, the timeline is fixed */ 430 tl = rcu_dereference_protected(rq->timeline, 431 !i915_request_signaled(rq)); 432 433 /* See the comment in i915_request_active_seqno(). */ 434 return page_mask_bits(tl->hwsp_offset) + offset_in_page(rq->hwsp_seqno); 435 } 436 437 int gen8_emit_init_breadcrumb(struct i915_request *rq) 438 { 439 u32 *cs; 440 441 GEM_BUG_ON(i915_request_has_initial_breadcrumb(rq)); 442 if (!i915_request_timeline(rq)->has_initial_breadcrumb) 443 return 0; 444 445 cs = intel_ring_begin(rq, 6); 446 if (IS_ERR(cs)) 447 return PTR_ERR(cs); 448 449 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 450 *cs++ = hwsp_offset(rq); 451 *cs++ = 0; 452 *cs++ = rq->fence.seqno - 1; 453 454 /* 455 * Check if we have been preempted before we even get started. 456 * 457 * After this point i915_request_started() reports true, even if 458 * we get preempted and so are no longer running. 459 * 460 * i915_request_started() is used during preemption processing 461 * to decide if the request is currently inside the user payload 462 * or spinning on a kernel semaphore (or earlier). For no-preemption 463 * requests, we do allow preemption on the semaphore before the user 464 * payload, but do not allow preemption once the request is started. 465 * 466 * i915_request_started() is similarly used during GPU hangs to 467 * determine if the user's payload was guilty, and if so, the 468 * request is banned. Before the request is started, it is assumed 469 * to be unharmed and an innocent victim of another's hang. 470 */ 471 *cs++ = MI_NOOP; 472 *cs++ = MI_ARB_CHECK; 473 474 intel_ring_advance(rq, cs); 475 476 /* Record the updated position of the request's payload */ 477 rq->infix = intel_ring_offset(rq, cs); 478 479 __set_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags); 480 481 return 0; 482 } 483 484 static int __xehp_emit_bb_start(struct i915_request *rq, 485 u64 offset, u32 len, 486 const unsigned int flags, 487 u32 arb) 488 { 489 struct intel_context *ce = rq->context; 490 u32 wa_offset = lrc_indirect_bb(ce); 491 u32 *cs; 492 493 GEM_BUG_ON(!ce->wa_bb_page); 494 495 cs = intel_ring_begin(rq, 12); 496 if (IS_ERR(cs)) 497 return PTR_ERR(cs); 498 499 *cs++ = MI_ARB_ON_OFF | arb; 500 501 *cs++ = MI_LOAD_REGISTER_MEM_GEN8 | 502 MI_SRM_LRM_GLOBAL_GTT | 503 MI_LRI_LRM_CS_MMIO; 504 *cs++ = i915_mmio_reg_offset(RING_PREDICATE_RESULT(0)); 505 *cs++ = wa_offset + DG2_PREDICATE_RESULT_WA; 506 *cs++ = 0; 507 508 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 509 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 510 *cs++ = lower_32_bits(offset); 511 *cs++ = upper_32_bits(offset); 512 513 /* Fixup stray MI_SET_PREDICATE as it prevents us executing the ring */ 514 *cs++ = MI_BATCH_BUFFER_START_GEN8; 515 *cs++ = wa_offset + DG2_PREDICATE_RESULT_BB; 516 *cs++ = 0; 517 518 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 519 520 intel_ring_advance(rq, cs); 521 522 return 0; 523 } 524 525 int xehp_emit_bb_start_noarb(struct i915_request *rq, 526 u64 offset, u32 len, 527 const unsigned int flags) 528 { 529 return __xehp_emit_bb_start(rq, offset, len, flags, MI_ARB_DISABLE); 530 } 531 532 int xehp_emit_bb_start(struct i915_request *rq, 533 u64 offset, u32 len, 534 const unsigned int flags) 535 { 536 return __xehp_emit_bb_start(rq, offset, len, flags, MI_ARB_ENABLE); 537 } 538 539 int gen8_emit_bb_start_noarb(struct i915_request *rq, 540 u64 offset, u32 len, 541 const unsigned int flags) 542 { 543 u32 *cs; 544 545 cs = intel_ring_begin(rq, 4); 546 if (IS_ERR(cs)) 547 return PTR_ERR(cs); 548 549 /* 550 * WaDisableCtxRestoreArbitration:bdw,chv 551 * 552 * We don't need to perform MI_ARB_ENABLE as often as we do (in 553 * particular all the gen that do not need the w/a at all!), if we 554 * took care to make sure that on every switch into this context 555 * (both ordinary and for preemption) that arbitrartion was enabled 556 * we would be fine. However, for gen8 there is another w/a that 557 * requires us to not preempt inside GPGPU execution, so we keep 558 * arbitration disabled for gen8 batches. Arbitration will be 559 * re-enabled before we close the request 560 * (engine->emit_fini_breadcrumb). 561 */ 562 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 563 564 /* FIXME(BDW+): Address space and security selectors. */ 565 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 566 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 567 *cs++ = lower_32_bits(offset); 568 *cs++ = upper_32_bits(offset); 569 570 intel_ring_advance(rq, cs); 571 572 return 0; 573 } 574 575 int gen8_emit_bb_start(struct i915_request *rq, 576 u64 offset, u32 len, 577 const unsigned int flags) 578 { 579 u32 *cs; 580 581 if (unlikely(i915_request_has_nopreempt(rq))) 582 return gen8_emit_bb_start_noarb(rq, offset, len, flags); 583 584 cs = intel_ring_begin(rq, 6); 585 if (IS_ERR(cs)) 586 return PTR_ERR(cs); 587 588 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 589 590 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 591 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 592 *cs++ = lower_32_bits(offset); 593 *cs++ = upper_32_bits(offset); 594 595 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 596 *cs++ = MI_NOOP; 597 598 intel_ring_advance(rq, cs); 599 600 return 0; 601 } 602 603 static void assert_request_valid(struct i915_request *rq) 604 { 605 struct intel_ring *ring __maybe_unused = rq->ring; 606 607 /* Can we unwind this request without appearing to go forwards? */ 608 GEM_BUG_ON(intel_ring_direction(ring, rq->wa_tail, rq->head) <= 0); 609 } 610 611 /* 612 * Reserve space for 2 NOOPs at the end of each request to be 613 * used as a workaround for not being allowed to do lite 614 * restore with HEAD==TAIL (WaIdleLiteRestore). 615 */ 616 static u32 *gen8_emit_wa_tail(struct i915_request *rq, u32 *cs) 617 { 618 /* Ensure there's always at least one preemption point per-request. */ 619 *cs++ = MI_ARB_CHECK; 620 *cs++ = MI_NOOP; 621 rq->wa_tail = intel_ring_offset(rq, cs); 622 623 /* Check that entire request is less than half the ring */ 624 assert_request_valid(rq); 625 626 return cs; 627 } 628 629 static u32 *emit_preempt_busywait(struct i915_request *rq, u32 *cs) 630 { 631 *cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */ 632 *cs++ = MI_SEMAPHORE_WAIT | 633 MI_SEMAPHORE_GLOBAL_GTT | 634 MI_SEMAPHORE_POLL | 635 MI_SEMAPHORE_SAD_EQ_SDD; 636 *cs++ = 0; 637 *cs++ = preempt_address(rq->engine); 638 *cs++ = 0; 639 *cs++ = MI_NOOP; 640 641 return cs; 642 } 643 644 static __always_inline u32* 645 gen8_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs) 646 { 647 *cs++ = MI_USER_INTERRUPT; 648 649 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 650 if (intel_engine_has_semaphores(rq->engine) && 651 !intel_uc_uses_guc_submission(&rq->engine->gt->uc)) 652 cs = emit_preempt_busywait(rq, cs); 653 654 rq->tail = intel_ring_offset(rq, cs); 655 assert_ring_tail_valid(rq->ring, rq->tail); 656 657 return gen8_emit_wa_tail(rq, cs); 658 } 659 660 static u32 *emit_xcs_breadcrumb(struct i915_request *rq, u32 *cs) 661 { 662 return gen8_emit_ggtt_write(cs, rq->fence.seqno, hwsp_offset(rq), 0); 663 } 664 665 u32 *gen8_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs) 666 { 667 return gen8_emit_fini_breadcrumb_tail(rq, emit_xcs_breadcrumb(rq, cs)); 668 } 669 670 u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs) 671 { 672 cs = gen8_emit_pipe_control(cs, 673 PIPE_CONTROL_CS_STALL | 674 PIPE_CONTROL_TLB_INVALIDATE | 675 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | 676 PIPE_CONTROL_DEPTH_CACHE_FLUSH | 677 PIPE_CONTROL_DC_FLUSH_ENABLE, 678 0); 679 680 /* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */ 681 cs = gen8_emit_ggtt_write_rcs(cs, 682 rq->fence.seqno, 683 hwsp_offset(rq), 684 PIPE_CONTROL_FLUSH_ENABLE | 685 PIPE_CONTROL_CS_STALL); 686 687 return gen8_emit_fini_breadcrumb_tail(rq, cs); 688 } 689 690 u32 *gen11_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs) 691 { 692 cs = gen8_emit_pipe_control(cs, 693 PIPE_CONTROL_CS_STALL | 694 PIPE_CONTROL_TLB_INVALIDATE | 695 PIPE_CONTROL_TILE_CACHE_FLUSH | 696 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | 697 PIPE_CONTROL_DEPTH_CACHE_FLUSH | 698 PIPE_CONTROL_DC_FLUSH_ENABLE, 699 0); 700 701 /*XXX: Look at gen8_emit_fini_breadcrumb_rcs */ 702 cs = gen8_emit_ggtt_write_rcs(cs, 703 rq->fence.seqno, 704 hwsp_offset(rq), 705 PIPE_CONTROL_FLUSH_ENABLE | 706 PIPE_CONTROL_CS_STALL); 707 708 return gen8_emit_fini_breadcrumb_tail(rq, cs); 709 } 710 711 /* 712 * Note that the CS instruction pre-parser will not stall on the breadcrumb 713 * flush and will continue pre-fetching the instructions after it before the 714 * memory sync is completed. On pre-gen12 HW, the pre-parser will stop at 715 * BB_START/END instructions, so, even though we might pre-fetch the pre-amble 716 * of the next request before the memory has been flushed, we're guaranteed that 717 * we won't access the batch itself too early. 718 * However, on gen12+ the parser can pre-fetch across the BB_START/END commands, 719 * so, if the current request is modifying an instruction in the next request on 720 * the same intel_context, we might pre-fetch and then execute the pre-update 721 * instruction. To avoid this, the users of self-modifying code should either 722 * disable the parser around the code emitting the memory writes, via a new flag 723 * added to MI_ARB_CHECK, or emit the writes from a different intel_context. For 724 * the in-kernel use-cases we've opted to use a separate context, see 725 * reloc_gpu() as an example. 726 * All the above applies only to the instructions themselves. Non-inline data 727 * used by the instructions is not pre-fetched. 728 */ 729 730 static u32 *gen12_emit_preempt_busywait(struct i915_request *rq, u32 *cs) 731 { 732 *cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */ 733 *cs++ = MI_SEMAPHORE_WAIT_TOKEN | 734 MI_SEMAPHORE_GLOBAL_GTT | 735 MI_SEMAPHORE_POLL | 736 MI_SEMAPHORE_SAD_EQ_SDD; 737 *cs++ = 0; 738 *cs++ = preempt_address(rq->engine); 739 *cs++ = 0; 740 *cs++ = 0; 741 742 return cs; 743 } 744 745 /* Wa_14014475959:dg2 */ 746 #define CCS_SEMAPHORE_PPHWSP_OFFSET 0x540 747 static u32 ccs_semaphore_offset(struct i915_request *rq) 748 { 749 return i915_ggtt_offset(rq->context->state) + 750 (LRC_PPHWSP_PN * PAGE_SIZE) + CCS_SEMAPHORE_PPHWSP_OFFSET; 751 } 752 753 /* Wa_14014475959:dg2 */ 754 static u32 *ccs_emit_wa_busywait(struct i915_request *rq, u32 *cs) 755 { 756 int i; 757 758 *cs++ = MI_ATOMIC_INLINE | MI_ATOMIC_GLOBAL_GTT | MI_ATOMIC_CS_STALL | 759 MI_ATOMIC_MOVE; 760 *cs++ = ccs_semaphore_offset(rq); 761 *cs++ = 0; 762 *cs++ = 1; 763 764 /* 765 * When MI_ATOMIC_INLINE_DATA set this command must be 11 DW + (1 NOP) 766 * to align. 4 DWs above + 8 filler DWs here. 767 */ 768 for (i = 0; i < 8; ++i) 769 *cs++ = 0; 770 771 *cs++ = MI_SEMAPHORE_WAIT | 772 MI_SEMAPHORE_GLOBAL_GTT | 773 MI_SEMAPHORE_POLL | 774 MI_SEMAPHORE_SAD_EQ_SDD; 775 *cs++ = 0; 776 *cs++ = ccs_semaphore_offset(rq); 777 *cs++ = 0; 778 779 return cs; 780 } 781 782 static __always_inline u32* 783 gen12_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs) 784 { 785 *cs++ = MI_USER_INTERRUPT; 786 787 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 788 if (intel_engine_has_semaphores(rq->engine) && 789 !intel_uc_uses_guc_submission(&rq->engine->gt->uc)) 790 cs = gen12_emit_preempt_busywait(rq, cs); 791 792 /* Wa_14014475959:dg2 */ 793 if (intel_engine_uses_wa_hold_ccs_switchout(rq->engine)) 794 cs = ccs_emit_wa_busywait(rq, cs); 795 796 rq->tail = intel_ring_offset(rq, cs); 797 assert_ring_tail_valid(rq->ring, rq->tail); 798 799 return gen8_emit_wa_tail(rq, cs); 800 } 801 802 u32 *gen12_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs) 803 { 804 /* XXX Stalling flush before seqno write; post-sync not */ 805 cs = emit_xcs_breadcrumb(rq, __gen8_emit_flush_dw(cs, 0, 0, 0)); 806 return gen12_emit_fini_breadcrumb_tail(rq, cs); 807 } 808 809 u32 *gen12_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs) 810 { 811 struct drm_i915_private *i915 = rq->i915; 812 struct intel_gt *gt = rq->engine->gt; 813 u32 flags = (PIPE_CONTROL_CS_STALL | 814 PIPE_CONTROL_TLB_INVALIDATE | 815 PIPE_CONTROL_TILE_CACHE_FLUSH | 816 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | 817 PIPE_CONTROL_DEPTH_CACHE_FLUSH | 818 PIPE_CONTROL_DC_FLUSH_ENABLE | 819 PIPE_CONTROL_FLUSH_ENABLE); 820 821 if (GRAPHICS_VER_FULL(rq->i915) < IP_VER(12, 70)) 822 flags |= PIPE_CONTROL_FLUSH_L3; 823 824 /* Wa_14016712196 */ 825 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)) || IS_DG2(i915)) 826 /* dummy PIPE_CONTROL + depth flush */ 827 cs = gen12_emit_pipe_control(cs, 0, 828 PIPE_CONTROL_DEPTH_CACHE_FLUSH, 0); 829 830 if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) 831 /* Wa_1409600907 */ 832 flags |= PIPE_CONTROL_DEPTH_STALL; 833 834 if (!HAS_3D_PIPELINE(rq->i915)) 835 flags &= ~PIPE_CONTROL_3D_ARCH_FLAGS; 836 else if (rq->engine->class == COMPUTE_CLASS) 837 flags &= ~PIPE_CONTROL_3D_ENGINE_FLAGS; 838 839 cs = gen12_emit_pipe_control(cs, PIPE_CONTROL0_HDC_PIPELINE_FLUSH, flags, 0); 840 841 /*XXX: Look at gen8_emit_fini_breadcrumb_rcs */ 842 cs = gen12_emit_ggtt_write_rcs(cs, 843 rq->fence.seqno, 844 hwsp_offset(rq), 845 0, 846 PIPE_CONTROL_FLUSH_ENABLE | 847 PIPE_CONTROL_CS_STALL); 848 849 return gen12_emit_fini_breadcrumb_tail(rq, cs); 850 } 851