1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include <linux/shmem_fs.h> 7 8 #include <drm/drm_buddy.h> 9 #include <drm/drm_print.h> 10 #include <drm/ttm/ttm_placement.h> 11 #include <drm/ttm/ttm_tt.h> 12 13 #include "i915_drv.h" 14 #include "i915_jiffies.h" 15 #include "i915_ttm_buddy_manager.h" 16 #include "intel_memory_region.h" 17 #include "intel_region_ttm.h" 18 19 #include "gem/i915_gem_mman.h" 20 #include "gem/i915_gem_object.h" 21 #include "gem/i915_gem_region.h" 22 #include "gem/i915_gem_ttm.h" 23 #include "gem/i915_gem_ttm_move.h" 24 #include "gem/i915_gem_ttm_pm.h" 25 #include "gt/intel_gpu_commands.h" 26 27 #define I915_TTM_PRIO_PURGE 0 28 #define I915_TTM_PRIO_NO_PAGES 1 29 #define I915_TTM_PRIO_HAS_PAGES 2 30 #define I915_TTM_PRIO_NEEDS_CPU_ACCESS 3 31 32 /* 33 * Size of struct ttm_place vector in on-stack struct ttm_placement allocs 34 */ 35 #define I915_TTM_MAX_PLACEMENTS INTEL_REGION_UNKNOWN 36 37 /** 38 * struct i915_ttm_tt - TTM page vector with additional private information 39 * @ttm: The base TTM page vector. 40 * @dev: The struct device used for dma mapping and unmapping. 41 * @cached_rsgt: The cached scatter-gather table. 42 * @is_shmem: Set if using shmem. 43 * @filp: The shmem file, if using shmem backend. 44 * 45 * Note that DMA may be going on right up to the point where the page- 46 * vector is unpopulated in delayed destroy. Hence keep the 47 * scatter-gather table mapped and cached up to that point. This is 48 * different from the cached gem object io scatter-gather table which 49 * doesn't have an associated dma mapping. 50 */ 51 struct i915_ttm_tt { 52 struct ttm_tt ttm; 53 struct device *dev; 54 struct i915_refct_sgt cached_rsgt; 55 56 bool is_shmem; 57 struct file *filp; 58 }; 59 60 static const struct ttm_place sys_placement_flags = { 61 .fpfn = 0, 62 .lpfn = 0, 63 .mem_type = I915_PL_SYSTEM, 64 .flags = 0, 65 }; 66 67 static struct ttm_placement i915_sys_placement = { 68 .num_placement = 1, 69 .placement = &sys_placement_flags, 70 }; 71 72 /** 73 * i915_ttm_sys_placement - Return the struct ttm_placement to be 74 * used for an object in system memory. 75 * 76 * Rather than making the struct extern, use this 77 * function. 78 * 79 * Return: A pointer to a static variable for sys placement. 80 */ 81 struct ttm_placement *i915_ttm_sys_placement(void) 82 { 83 return &i915_sys_placement; 84 } 85 86 static int i915_ttm_err_to_gem(int err) 87 { 88 /* Fastpath */ 89 if (likely(!err)) 90 return 0; 91 92 switch (err) { 93 case -EBUSY: 94 /* 95 * TTM likes to convert -EDEADLK to -EBUSY, and wants us to 96 * restart the operation, since we don't record the contending 97 * lock. We use -EAGAIN to restart. 98 */ 99 return -EAGAIN; 100 case -ENOSPC: 101 /* 102 * Memory type / region is full, and we can't evict. 103 * Except possibly system, that returns -ENOMEM; 104 */ 105 return -ENXIO; 106 default: 107 break; 108 } 109 110 return err; 111 } 112 113 static enum ttm_caching 114 i915_ttm_select_tt_caching(const struct drm_i915_gem_object *obj) 115 { 116 /* 117 * Objects only allowed in system get cached cpu-mappings, or when 118 * evicting lmem-only buffers to system for swapping. Other objects get 119 * WC mapping for now. Even if in system. 120 */ 121 if (obj->mm.n_placements <= 1) 122 return ttm_cached; 123 124 return ttm_write_combined; 125 } 126 127 static void 128 i915_ttm_place_from_region(const struct intel_memory_region *mr, 129 struct ttm_place *place, 130 resource_size_t offset, 131 resource_size_t size, 132 unsigned int flags) 133 { 134 memset(place, 0, sizeof(*place)); 135 place->mem_type = intel_region_to_ttm_type(mr); 136 137 if (mr->type == INTEL_MEMORY_SYSTEM) 138 return; 139 140 if (flags & I915_BO_ALLOC_CONTIGUOUS) 141 place->flags |= TTM_PL_FLAG_CONTIGUOUS; 142 if (offset != I915_BO_INVALID_OFFSET) { 143 WARN_ON(overflows_type(offset >> PAGE_SHIFT, place->fpfn)); 144 place->fpfn = offset >> PAGE_SHIFT; 145 WARN_ON(overflows_type(place->fpfn + (size >> PAGE_SHIFT), place->lpfn)); 146 place->lpfn = place->fpfn + (size >> PAGE_SHIFT); 147 } else if (resource_size(&mr->io) && resource_size(&mr->io) < mr->total) { 148 if (flags & I915_BO_ALLOC_GPU_ONLY) { 149 place->flags |= TTM_PL_FLAG_TOPDOWN; 150 } else { 151 place->fpfn = 0; 152 WARN_ON(overflows_type(resource_size(&mr->io) >> PAGE_SHIFT, place->lpfn)); 153 place->lpfn = resource_size(&mr->io) >> PAGE_SHIFT; 154 } 155 } 156 } 157 158 static void 159 i915_ttm_placement_from_obj(const struct drm_i915_gem_object *obj, 160 struct ttm_place *places, 161 struct ttm_placement *placement) 162 { 163 unsigned int num_allowed = obj->mm.n_placements; 164 unsigned int flags = obj->flags; 165 unsigned int i; 166 167 i915_ttm_place_from_region(num_allowed ? obj->mm.placements[0] : 168 obj->mm.region, &places[0], obj->bo_offset, 169 obj->base.size, flags); 170 171 /* Cache this on object? */ 172 for (i = 0; i < num_allowed; ++i) { 173 i915_ttm_place_from_region(obj->mm.placements[i], 174 &places[i + 1], obj->bo_offset, 175 obj->base.size, flags); 176 places[i + 1].flags |= TTM_PL_FLAG_FALLBACK; 177 } 178 179 placement->num_placement = num_allowed + 1; 180 placement->placement = places; 181 } 182 183 static int i915_ttm_tt_shmem_populate(struct ttm_device *bdev, 184 struct ttm_tt *ttm, 185 struct ttm_operation_ctx *ctx) 186 { 187 struct drm_i915_private *i915 = container_of(bdev, typeof(*i915), bdev); 188 struct intel_memory_region *mr = i915->mm.regions[INTEL_MEMORY_SYSTEM]; 189 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 190 const unsigned int max_segment = i915_sg_segment_size(i915->drm.dev); 191 const size_t size = (size_t)ttm->num_pages << PAGE_SHIFT; 192 struct file *filp = i915_tt->filp; 193 struct sgt_iter sgt_iter; 194 struct sg_table *st; 195 struct page *page; 196 unsigned long i; 197 int err; 198 199 if (!filp) { 200 struct address_space *mapping; 201 gfp_t mask; 202 203 filp = shmem_file_setup("i915-shmem-tt", size, VM_NORESERVE); 204 if (IS_ERR(filp)) 205 return PTR_ERR(filp); 206 207 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 208 209 mapping = filp->f_mapping; 210 mapping_set_gfp_mask(mapping, mask); 211 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM)); 212 213 i915_tt->filp = filp; 214 } 215 216 st = &i915_tt->cached_rsgt.table; 217 err = shmem_sg_alloc_table(i915, st, size, mr, filp->f_mapping, 218 max_segment); 219 if (err) 220 return err; 221 222 err = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 223 DMA_ATTR_SKIP_CPU_SYNC); 224 if (err) 225 goto err_free_st; 226 227 i = 0; 228 for_each_sgt_page(page, sgt_iter, st) 229 ttm->pages[i++] = page; 230 231 if (ttm->page_flags & TTM_TT_FLAG_SWAPPED) 232 ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED; 233 234 return 0; 235 236 err_free_st: 237 shmem_sg_free_table(st, filp->f_mapping, false, false); 238 239 return err; 240 } 241 242 static void i915_ttm_tt_shmem_unpopulate(struct ttm_tt *ttm) 243 { 244 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 245 bool backup = ttm->page_flags & TTM_TT_FLAG_SWAPPED; 246 struct sg_table *st = &i915_tt->cached_rsgt.table; 247 248 shmem_sg_free_table(st, file_inode(i915_tt->filp)->i_mapping, 249 backup, backup); 250 } 251 252 static void i915_ttm_tt_release(struct kref *ref) 253 { 254 struct i915_ttm_tt *i915_tt = 255 container_of(ref, typeof(*i915_tt), cached_rsgt.kref); 256 struct sg_table *st = &i915_tt->cached_rsgt.table; 257 258 GEM_WARN_ON(st->sgl); 259 260 kfree(i915_tt); 261 } 262 263 static const struct i915_refct_sgt_ops tt_rsgt_ops = { 264 .release = i915_ttm_tt_release 265 }; 266 267 static struct ttm_tt *i915_ttm_tt_create(struct ttm_buffer_object *bo, 268 uint32_t page_flags) 269 { 270 struct drm_i915_private *i915 = container_of(bo->bdev, typeof(*i915), 271 bdev); 272 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 273 unsigned long ccs_pages = 0; 274 enum ttm_caching caching; 275 struct i915_ttm_tt *i915_tt; 276 int ret; 277 278 if (i915_ttm_is_ghost_object(bo)) 279 return NULL; 280 281 i915_tt = kzalloc(sizeof(*i915_tt), GFP_KERNEL); 282 if (!i915_tt) 283 return NULL; 284 285 if (obj->flags & I915_BO_ALLOC_CPU_CLEAR && (!bo->resource || 286 ttm_manager_type(bo->bdev, bo->resource->mem_type)->use_tt)) 287 page_flags |= TTM_TT_FLAG_ZERO_ALLOC; 288 289 caching = i915_ttm_select_tt_caching(obj); 290 if (i915_gem_object_is_shrinkable(obj) && caching == ttm_cached) { 291 page_flags |= TTM_TT_FLAG_EXTERNAL | 292 TTM_TT_FLAG_EXTERNAL_MAPPABLE; 293 i915_tt->is_shmem = true; 294 } 295 296 if (i915_gem_object_needs_ccs_pages(obj)) 297 ccs_pages = DIV_ROUND_UP(DIV_ROUND_UP(bo->base.size, 298 NUM_BYTES_PER_CCS_BYTE), 299 PAGE_SIZE); 300 301 ret = ttm_tt_init(&i915_tt->ttm, bo, page_flags, caching, ccs_pages); 302 if (ret) 303 goto err_free; 304 305 __i915_refct_sgt_init(&i915_tt->cached_rsgt, bo->base.size, 306 &tt_rsgt_ops); 307 308 i915_tt->dev = obj->base.dev->dev; 309 310 return &i915_tt->ttm; 311 312 err_free: 313 kfree(i915_tt); 314 return NULL; 315 } 316 317 static int i915_ttm_tt_populate(struct ttm_device *bdev, 318 struct ttm_tt *ttm, 319 struct ttm_operation_ctx *ctx) 320 { 321 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 322 323 if (i915_tt->is_shmem) 324 return i915_ttm_tt_shmem_populate(bdev, ttm, ctx); 325 326 return ttm_pool_alloc(&bdev->pool, ttm, ctx); 327 } 328 329 static void i915_ttm_tt_unpopulate(struct ttm_device *bdev, struct ttm_tt *ttm) 330 { 331 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 332 struct sg_table *st = &i915_tt->cached_rsgt.table; 333 334 if (st->sgl) 335 dma_unmap_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0); 336 337 if (i915_tt->is_shmem) { 338 i915_ttm_tt_shmem_unpopulate(ttm); 339 } else { 340 sg_free_table(st); 341 ttm_pool_free(&bdev->pool, ttm); 342 } 343 } 344 345 static void i915_ttm_tt_destroy(struct ttm_device *bdev, struct ttm_tt *ttm) 346 { 347 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 348 349 if (i915_tt->filp) 350 fput(i915_tt->filp); 351 352 ttm_tt_fini(ttm); 353 i915_refct_sgt_put(&i915_tt->cached_rsgt); 354 } 355 356 static bool i915_ttm_eviction_valuable(struct ttm_buffer_object *bo, 357 const struct ttm_place *place) 358 { 359 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 360 361 if (i915_ttm_is_ghost_object(bo)) 362 return false; 363 364 /* 365 * EXTERNAL objects should never be swapped out by TTM, instead we need 366 * to handle that ourselves. TTM will already skip such objects for us, 367 * but we would like to avoid grabbing locks for no good reason. 368 */ 369 if (bo->ttm && bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 370 return false; 371 372 /* Will do for now. Our pinned objects are still on TTM's LRU lists */ 373 if (!i915_gem_object_evictable(obj)) 374 return false; 375 376 return ttm_bo_eviction_valuable(bo, place); 377 } 378 379 static void i915_ttm_evict_flags(struct ttm_buffer_object *bo, 380 struct ttm_placement *placement) 381 { 382 *placement = i915_sys_placement; 383 } 384 385 /** 386 * i915_ttm_free_cached_io_rsgt - Free object cached LMEM information 387 * @obj: The GEM object 388 * This function frees any LMEM-related information that is cached on 389 * the object. For example the radix tree for fast page lookup and the 390 * cached refcounted sg-table 391 */ 392 void i915_ttm_free_cached_io_rsgt(struct drm_i915_gem_object *obj) 393 { 394 struct radix_tree_iter iter; 395 void __rcu **slot; 396 397 if (!obj->ttm.cached_io_rsgt) 398 return; 399 400 rcu_read_lock(); 401 radix_tree_for_each_slot(slot, &obj->ttm.get_io_page.radix, &iter, 0) 402 radix_tree_delete(&obj->ttm.get_io_page.radix, iter.index); 403 rcu_read_unlock(); 404 405 i915_refct_sgt_put(obj->ttm.cached_io_rsgt); 406 obj->ttm.cached_io_rsgt = NULL; 407 } 408 409 /** 410 * i915_ttm_purge - Clear an object of its memory 411 * @obj: The object 412 * 413 * This function is called to clear an object of it's memory when it is 414 * marked as not needed anymore. 415 * 416 * Return: 0 on success, negative error code on failure. 417 */ 418 int i915_ttm_purge(struct drm_i915_gem_object *obj) 419 { 420 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 421 struct i915_ttm_tt *i915_tt = 422 container_of(bo->ttm, typeof(*i915_tt), ttm); 423 struct ttm_operation_ctx ctx = { 424 .interruptible = true, 425 .no_wait_gpu = false, 426 }; 427 struct ttm_placement place = {}; 428 int ret; 429 430 if (obj->mm.madv == __I915_MADV_PURGED) 431 return 0; 432 433 ret = ttm_bo_validate(bo, &place, &ctx); 434 if (ret) 435 return ret; 436 437 if (bo->ttm && i915_tt->filp) { 438 /* 439 * The below fput(which eventually calls shmem_truncate) might 440 * be delayed by worker, so when directly called to purge the 441 * pages(like by the shrinker) we should try to be more 442 * aggressive and release the pages immediately. 443 */ 444 shmem_truncate_range(file_inode(i915_tt->filp), 445 0, (loff_t)-1); 446 fput(fetch_and_zero(&i915_tt->filp)); 447 } 448 449 obj->write_domain = 0; 450 obj->read_domains = 0; 451 i915_ttm_adjust_gem_after_move(obj); 452 i915_ttm_free_cached_io_rsgt(obj); 453 obj->mm.madv = __I915_MADV_PURGED; 454 455 return 0; 456 } 457 458 static int i915_ttm_shrink(struct drm_i915_gem_object *obj, unsigned int flags) 459 { 460 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 461 struct i915_ttm_tt *i915_tt = 462 container_of(bo->ttm, typeof(*i915_tt), ttm); 463 struct ttm_operation_ctx ctx = { 464 .interruptible = true, 465 .no_wait_gpu = flags & I915_GEM_OBJECT_SHRINK_NO_GPU_WAIT, 466 }; 467 struct ttm_placement place = {}; 468 int ret; 469 470 if (!bo->ttm || i915_ttm_cpu_maps_iomem(bo->resource)) 471 return 0; 472 473 GEM_BUG_ON(!i915_tt->is_shmem); 474 475 if (!i915_tt->filp) 476 return 0; 477 478 ret = ttm_bo_wait_ctx(bo, &ctx); 479 if (ret) 480 return ret; 481 482 switch (obj->mm.madv) { 483 case I915_MADV_DONTNEED: 484 return i915_ttm_purge(obj); 485 case __I915_MADV_PURGED: 486 return 0; 487 } 488 489 if (bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED) 490 return 0; 491 492 bo->ttm->page_flags |= TTM_TT_FLAG_SWAPPED; 493 ret = ttm_bo_validate(bo, &place, &ctx); 494 if (ret) { 495 bo->ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED; 496 return ret; 497 } 498 499 if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK) 500 __shmem_writeback(obj->base.size, i915_tt->filp->f_mapping); 501 502 return 0; 503 } 504 505 static void i915_ttm_delete_mem_notify(struct ttm_buffer_object *bo) 506 { 507 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 508 509 /* 510 * This gets called twice by ttm, so long as we have a ttm resource or 511 * ttm_tt then we can still safely call this. Due to pipeline-gutting, 512 * we maybe have NULL bo->resource, but in that case we should always 513 * have a ttm alive (like if the pages are swapped out). 514 */ 515 if ((bo->resource || bo->ttm) && !i915_ttm_is_ghost_object(bo)) { 516 __i915_gem_object_pages_fini(obj); 517 i915_ttm_free_cached_io_rsgt(obj); 518 } 519 } 520 521 static struct i915_refct_sgt *i915_ttm_tt_get_st(struct ttm_tt *ttm) 522 { 523 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 524 struct sg_table *st; 525 int ret; 526 527 if (i915_tt->cached_rsgt.table.sgl) 528 return i915_refct_sgt_get(&i915_tt->cached_rsgt); 529 530 st = &i915_tt->cached_rsgt.table; 531 ret = sg_alloc_table_from_pages_segment(st, 532 ttm->pages, ttm->num_pages, 533 0, (unsigned long)ttm->num_pages << PAGE_SHIFT, 534 i915_sg_segment_size(i915_tt->dev), GFP_KERNEL); 535 if (ret) { 536 st->sgl = NULL; 537 return ERR_PTR(ret); 538 } 539 540 ret = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0); 541 if (ret) { 542 sg_free_table(st); 543 return ERR_PTR(ret); 544 } 545 546 return i915_refct_sgt_get(&i915_tt->cached_rsgt); 547 } 548 549 /** 550 * i915_ttm_resource_get_st - Get a refcounted sg-table pointing to the 551 * resource memory 552 * @obj: The GEM object used for sg-table caching 553 * @res: The struct ttm_resource for which an sg-table is requested. 554 * 555 * This function returns a refcounted sg-table representing the memory 556 * pointed to by @res. If @res is the object's current resource it may also 557 * cache the sg_table on the object or attempt to access an already cached 558 * sg-table. The refcounted sg-table needs to be put when no-longer in use. 559 * 560 * Return: A valid pointer to a struct i915_refct_sgt or error pointer on 561 * failure. 562 */ 563 struct i915_refct_sgt * 564 i915_ttm_resource_get_st(struct drm_i915_gem_object *obj, 565 struct ttm_resource *res) 566 { 567 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 568 u32 page_alignment; 569 570 if (!i915_ttm_gtt_binds_lmem(res)) 571 return i915_ttm_tt_get_st(bo->ttm); 572 573 page_alignment = bo->page_alignment << PAGE_SHIFT; 574 if (!page_alignment) 575 page_alignment = obj->mm.region->min_page_size; 576 577 /* 578 * If CPU mapping differs, we need to add the ttm_tt pages to 579 * the resulting st. Might make sense for GGTT. 580 */ 581 GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(res)); 582 if (bo->resource == res) { 583 if (!obj->ttm.cached_io_rsgt) { 584 struct i915_refct_sgt *rsgt; 585 586 rsgt = intel_region_ttm_resource_to_rsgt(obj->mm.region, 587 res, 588 page_alignment); 589 if (IS_ERR(rsgt)) 590 return rsgt; 591 592 obj->ttm.cached_io_rsgt = rsgt; 593 } 594 return i915_refct_sgt_get(obj->ttm.cached_io_rsgt); 595 } 596 597 return intel_region_ttm_resource_to_rsgt(obj->mm.region, res, 598 page_alignment); 599 } 600 601 static int i915_ttm_truncate(struct drm_i915_gem_object *obj) 602 { 603 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 604 long err; 605 606 WARN_ON_ONCE(obj->mm.madv == I915_MADV_WILLNEED); 607 608 err = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, 609 true, 15 * HZ); 610 if (err < 0) 611 return err; 612 if (err == 0) 613 return -EBUSY; 614 615 err = i915_ttm_move_notify(bo); 616 if (err) 617 return err; 618 619 return i915_ttm_purge(obj); 620 } 621 622 static void i915_ttm_swap_notify(struct ttm_buffer_object *bo) 623 { 624 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 625 int ret; 626 627 if (i915_ttm_is_ghost_object(bo)) 628 return; 629 630 ret = i915_ttm_move_notify(bo); 631 GEM_WARN_ON(ret); 632 GEM_WARN_ON(obj->ttm.cached_io_rsgt); 633 if (!ret && obj->mm.madv != I915_MADV_WILLNEED) 634 i915_ttm_purge(obj); 635 } 636 637 /** 638 * i915_ttm_resource_mappable - Return true if the ttm resource is CPU 639 * accessible. 640 * @res: The TTM resource to check. 641 * 642 * This is interesting on small-BAR systems where we may encounter lmem objects 643 * that can't be accessed via the CPU. 644 */ 645 bool i915_ttm_resource_mappable(struct ttm_resource *res) 646 { 647 struct i915_ttm_buddy_resource *bman_res = to_ttm_buddy_resource(res); 648 649 if (!i915_ttm_cpu_maps_iomem(res)) 650 return true; 651 652 return bman_res->used_visible_size == PFN_UP(bman_res->base.size); 653 } 654 655 static int i915_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem) 656 { 657 struct drm_i915_gem_object *obj = i915_ttm_to_gem(mem->bo); 658 bool unknown_state; 659 660 if (i915_ttm_is_ghost_object(mem->bo)) 661 return -EINVAL; 662 663 if (!kref_get_unless_zero(&obj->base.refcount)) 664 return -EINVAL; 665 666 assert_object_held(obj); 667 668 unknown_state = i915_gem_object_has_unknown_state(obj); 669 i915_gem_object_put(obj); 670 if (unknown_state) 671 return -EINVAL; 672 673 if (!i915_ttm_cpu_maps_iomem(mem)) 674 return 0; 675 676 if (!i915_ttm_resource_mappable(mem)) 677 return -EINVAL; 678 679 mem->bus.caching = ttm_write_combined; 680 mem->bus.is_iomem = true; 681 682 return 0; 683 } 684 685 static unsigned long i915_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 686 unsigned long page_offset) 687 { 688 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 689 struct scatterlist *sg; 690 unsigned long base; 691 unsigned int ofs; 692 693 GEM_BUG_ON(i915_ttm_is_ghost_object(bo)); 694 GEM_WARN_ON(bo->ttm); 695 696 base = obj->mm.region->iomap.base - obj->mm.region->region.start; 697 sg = i915_gem_object_page_iter_get_sg(obj, &obj->ttm.get_io_page, page_offset, &ofs); 698 699 return ((base + sg_dma_address(sg)) >> PAGE_SHIFT) + ofs; 700 } 701 702 static int i915_ttm_access_memory(struct ttm_buffer_object *bo, 703 unsigned long offset, void *buf, 704 int len, int write) 705 { 706 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 707 resource_size_t iomap = obj->mm.region->iomap.base - 708 obj->mm.region->region.start; 709 unsigned long page = offset >> PAGE_SHIFT; 710 unsigned long bytes_left = len; 711 712 /* 713 * TODO: For now just let it fail if the resource is non-mappable, 714 * otherwise we need to perform the memcpy from the gpu here, without 715 * interfering with the object (like moving the entire thing). 716 */ 717 if (!i915_ttm_resource_mappable(bo->resource)) 718 return -EIO; 719 720 offset -= page << PAGE_SHIFT; 721 do { 722 unsigned long bytes = min(bytes_left, PAGE_SIZE - offset); 723 void __iomem *ptr; 724 dma_addr_t daddr; 725 726 daddr = i915_gem_object_get_dma_address(obj, page); 727 ptr = ioremap_wc(iomap + daddr + offset, bytes); 728 if (!ptr) 729 return -EIO; 730 731 if (write) 732 memcpy_toio(ptr, buf, bytes); 733 else 734 memcpy_fromio(buf, ptr, bytes); 735 iounmap(ptr); 736 737 page++; 738 buf += bytes; 739 bytes_left -= bytes; 740 offset = 0; 741 } while (bytes_left); 742 743 return len; 744 } 745 746 /* 747 * All callbacks need to take care not to downcast a struct ttm_buffer_object 748 * without checking its subclass, since it might be a TTM ghost object. 749 */ 750 static struct ttm_device_funcs i915_ttm_bo_driver = { 751 .ttm_tt_create = i915_ttm_tt_create, 752 .ttm_tt_populate = i915_ttm_tt_populate, 753 .ttm_tt_unpopulate = i915_ttm_tt_unpopulate, 754 .ttm_tt_destroy = i915_ttm_tt_destroy, 755 .eviction_valuable = i915_ttm_eviction_valuable, 756 .evict_flags = i915_ttm_evict_flags, 757 .move = i915_ttm_move, 758 .swap_notify = i915_ttm_swap_notify, 759 .delete_mem_notify = i915_ttm_delete_mem_notify, 760 .io_mem_reserve = i915_ttm_io_mem_reserve, 761 .io_mem_pfn = i915_ttm_io_mem_pfn, 762 .access_memory = i915_ttm_access_memory, 763 }; 764 765 /** 766 * i915_ttm_driver - Return a pointer to the TTM device funcs 767 * 768 * Return: Pointer to statically allocated TTM device funcs. 769 */ 770 struct ttm_device_funcs *i915_ttm_driver(void) 771 { 772 return &i915_ttm_bo_driver; 773 } 774 775 static int __i915_ttm_get_pages(struct drm_i915_gem_object *obj, 776 struct ttm_placement *placement) 777 { 778 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 779 struct ttm_operation_ctx ctx = { 780 .interruptible = true, 781 .no_wait_gpu = false, 782 }; 783 struct ttm_placement initial_placement; 784 struct ttm_place initial_place; 785 int ret; 786 787 /* First try only the requested placement. No eviction. */ 788 initial_placement.num_placement = 1; 789 memcpy(&initial_place, placement->placement, sizeof(struct ttm_place)); 790 initial_place.flags |= TTM_PL_FLAG_DESIRED; 791 initial_placement.placement = &initial_place; 792 ret = ttm_bo_validate(bo, &initial_placement, &ctx); 793 if (ret) { 794 ret = i915_ttm_err_to_gem(ret); 795 /* 796 * Anything that wants to restart the operation gets to 797 * do that. 798 */ 799 if (ret == -EDEADLK || ret == -EINTR || ret == -ERESTARTSYS || 800 ret == -EAGAIN) 801 return ret; 802 803 /* 804 * If the initial attempt fails, allow all accepted placements, 805 * evicting if necessary. 806 */ 807 ret = ttm_bo_validate(bo, placement, &ctx); 808 if (ret) 809 return i915_ttm_err_to_gem(ret); 810 } 811 812 if (bo->ttm && !ttm_tt_is_populated(bo->ttm)) { 813 ret = ttm_bo_populate(bo, &ctx); 814 if (ret) 815 return ret; 816 817 i915_ttm_adjust_domains_after_move(obj); 818 i915_ttm_adjust_gem_after_move(obj); 819 } 820 821 if (!i915_gem_object_has_pages(obj)) { 822 struct i915_refct_sgt *rsgt = 823 i915_ttm_resource_get_st(obj, bo->resource); 824 825 if (IS_ERR(rsgt)) 826 return PTR_ERR(rsgt); 827 828 GEM_BUG_ON(obj->mm.rsgt); 829 obj->mm.rsgt = rsgt; 830 __i915_gem_object_set_pages(obj, &rsgt->table); 831 } 832 833 GEM_BUG_ON(bo->ttm && ((obj->base.size >> PAGE_SHIFT) < bo->ttm->num_pages)); 834 i915_ttm_adjust_lru(obj); 835 return ret; 836 } 837 838 static int i915_ttm_get_pages(struct drm_i915_gem_object *obj) 839 { 840 struct ttm_place places[I915_TTM_MAX_PLACEMENTS + 1]; 841 struct ttm_placement placement; 842 843 /* restricted by sg_alloc_table */ 844 if (overflows_type(obj->base.size >> PAGE_SHIFT, unsigned int)) 845 return -E2BIG; 846 847 GEM_BUG_ON(obj->mm.n_placements > I915_TTM_MAX_PLACEMENTS); 848 849 /* Move to the requested placement. */ 850 i915_ttm_placement_from_obj(obj, places, &placement); 851 852 return __i915_ttm_get_pages(obj, &placement); 853 } 854 855 /** 856 * DOC: Migration vs eviction 857 * 858 * GEM migration may not be the same as TTM migration / eviction. If 859 * the TTM core decides to evict an object it may be evicted to a 860 * TTM memory type that is not in the object's allowable GEM regions, or 861 * in fact theoretically to a TTM memory type that doesn't correspond to 862 * a GEM memory region. In that case the object's GEM region is not 863 * updated, and the data is migrated back to the GEM region at 864 * get_pages time. TTM may however set up CPU ptes to the object even 865 * when it is evicted. 866 * Gem forced migration using the i915_ttm_migrate() op, is allowed even 867 * to regions that are not in the object's list of allowable placements. 868 */ 869 static int __i915_ttm_migrate(struct drm_i915_gem_object *obj, 870 struct intel_memory_region *mr, 871 unsigned int flags) 872 { 873 struct ttm_place requested; 874 struct ttm_placement placement; 875 int ret; 876 877 i915_ttm_place_from_region(mr, &requested, obj->bo_offset, 878 obj->base.size, flags); 879 placement.num_placement = 1; 880 placement.placement = &requested; 881 882 ret = __i915_ttm_get_pages(obj, &placement); 883 if (ret) 884 return ret; 885 886 /* 887 * Reinitialize the region bindings. This is primarily 888 * required for objects where the new region is not in 889 * its allowable placements. 890 */ 891 if (obj->mm.region != mr) { 892 i915_gem_object_release_memory_region(obj); 893 i915_gem_object_init_memory_region(obj, mr); 894 } 895 896 return 0; 897 } 898 899 static int i915_ttm_migrate(struct drm_i915_gem_object *obj, 900 struct intel_memory_region *mr, 901 unsigned int flags) 902 { 903 return __i915_ttm_migrate(obj, mr, flags); 904 } 905 906 static void i915_ttm_put_pages(struct drm_i915_gem_object *obj, 907 struct sg_table *st) 908 { 909 /* 910 * We're currently not called from a shrinker, so put_pages() 911 * typically means the object is about to destroyed, or called 912 * from move_notify(). So just avoid doing much for now. 913 * If the object is not destroyed next, The TTM eviction logic 914 * and shrinkers will move it out if needed. 915 */ 916 917 if (obj->mm.rsgt) 918 i915_refct_sgt_put(fetch_and_zero(&obj->mm.rsgt)); 919 } 920 921 /** 922 * i915_ttm_adjust_lru - Adjust an object's position on relevant LRU lists. 923 * @obj: The object 924 */ 925 void i915_ttm_adjust_lru(struct drm_i915_gem_object *obj) 926 { 927 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 928 struct i915_ttm_tt *i915_tt = 929 container_of(bo->ttm, typeof(*i915_tt), ttm); 930 bool shrinkable = 931 bo->ttm && i915_tt->filp && ttm_tt_is_populated(bo->ttm); 932 933 /* 934 * Don't manipulate the TTM LRUs while in TTM bo destruction. 935 * We're called through i915_ttm_delete_mem_notify(). 936 */ 937 if (!kref_read(&bo->kref)) 938 return; 939 940 /* 941 * We skip managing the shrinker LRU in set_pages() and just manage 942 * everything here. This does at least solve the issue with having 943 * temporary shmem mappings(like with evicted lmem) not being visible to 944 * the shrinker. Only our shmem objects are shrinkable, everything else 945 * we keep as unshrinkable. 946 * 947 * To make sure everything plays nice we keep an extra shrink pin in TTM 948 * if the underlying pages are not currently shrinkable. Once we release 949 * our pin, like when the pages are moved to shmem, the pages will then 950 * be added to the shrinker LRU, assuming the caller isn't also holding 951 * a pin. 952 * 953 * TODO: consider maybe also bumping the shrinker list here when we have 954 * already unpinned it, which should give us something more like an LRU. 955 * 956 * TODO: There is a small window of opportunity for this function to 957 * get called from eviction after we've dropped the last GEM refcount, 958 * but before the TTM deleted flag is set on the object. Avoid 959 * adjusting the shrinker list in such cases, since the object is 960 * not available to the shrinker anyway due to its zero refcount. 961 * To fix this properly we should move to a TTM shrinker LRU list for 962 * these objects. 963 */ 964 if (kref_get_unless_zero(&obj->base.refcount)) { 965 if (shrinkable != obj->mm.ttm_shrinkable) { 966 if (shrinkable) { 967 if (obj->mm.madv == I915_MADV_WILLNEED) 968 __i915_gem_object_make_shrinkable(obj); 969 else 970 __i915_gem_object_make_purgeable(obj); 971 } else { 972 i915_gem_object_make_unshrinkable(obj); 973 } 974 975 obj->mm.ttm_shrinkable = shrinkable; 976 } 977 i915_gem_object_put(obj); 978 } 979 980 /* 981 * Put on the correct LRU list depending on the MADV status 982 */ 983 spin_lock(&bo->bdev->lru_lock); 984 if (shrinkable) { 985 /* Try to keep shmem_tt from being considered for shrinking. */ 986 bo->priority = TTM_MAX_BO_PRIORITY - 1; 987 } else if (obj->mm.madv != I915_MADV_WILLNEED) { 988 bo->priority = I915_TTM_PRIO_PURGE; 989 } else if (!i915_gem_object_has_pages(obj)) { 990 bo->priority = I915_TTM_PRIO_NO_PAGES; 991 } else { 992 struct ttm_resource_manager *man = 993 ttm_manager_type(bo->bdev, bo->resource->mem_type); 994 995 /* 996 * If we need to place an LMEM resource which doesn't need CPU 997 * access then we should try not to victimize mappable objects 998 * first, since we likely end up stealing more of the mappable 999 * portion. And likewise when we try to find space for a mappable 1000 * object, we know not to ever victimize objects that don't 1001 * occupy any mappable pages. 1002 */ 1003 if (i915_ttm_cpu_maps_iomem(bo->resource) && 1004 i915_ttm_buddy_man_visible_size(man) < man->size && 1005 !(obj->flags & I915_BO_ALLOC_GPU_ONLY)) 1006 bo->priority = I915_TTM_PRIO_NEEDS_CPU_ACCESS; 1007 else 1008 bo->priority = I915_TTM_PRIO_HAS_PAGES; 1009 } 1010 1011 ttm_bo_move_to_lru_tail(bo); 1012 spin_unlock(&bo->bdev->lru_lock); 1013 } 1014 1015 /* 1016 * TTM-backed gem object destruction requires some clarification. 1017 * Basically we have two possibilities here. We can either rely on the 1018 * i915 delayed destruction and put the TTM object when the object 1019 * is idle. This would be detected by TTM which would bypass the 1020 * TTM delayed destroy handling. The other approach is to put the TTM 1021 * object early and rely on the TTM destroyed handling, and then free 1022 * the leftover parts of the GEM object once TTM's destroyed list handling is 1023 * complete. For now, we rely on the latter for two reasons: 1024 * a) TTM can evict an object even when it's on the delayed destroy list, 1025 * which in theory allows for complete eviction. 1026 * b) There is work going on in TTM to allow freeing an object even when 1027 * it's not idle, and using the TTM destroyed list handling could help us 1028 * benefit from that. 1029 */ 1030 static void i915_ttm_delayed_free(struct drm_i915_gem_object *obj) 1031 { 1032 GEM_BUG_ON(!obj->ttm.created); 1033 1034 ttm_bo_fini(i915_gem_to_ttm(obj)); 1035 } 1036 1037 static vm_fault_t vm_fault_ttm(struct vm_fault *vmf) 1038 { 1039 struct vm_area_struct *area = vmf->vma; 1040 struct ttm_buffer_object *bo = area->vm_private_data; 1041 struct drm_device *dev = bo->base.dev; 1042 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 1043 intel_wakeref_t wakeref = NULL; 1044 vm_fault_t ret; 1045 int idx; 1046 1047 /* Sanity check that we allow writing into this object */ 1048 if (unlikely(i915_gem_object_is_readonly(obj) && 1049 area->vm_flags & VM_WRITE)) 1050 return VM_FAULT_SIGBUS; 1051 1052 ret = ttm_bo_vm_reserve(bo, vmf); 1053 if (ret) 1054 return ret; 1055 1056 if (obj->mm.madv != I915_MADV_WILLNEED) { 1057 dma_resv_unlock(bo->base.resv); 1058 return VM_FAULT_SIGBUS; 1059 } 1060 1061 /* 1062 * This must be swapped out with shmem ttm_tt (pipeline-gutting). 1063 * Calling ttm_bo_validate() here with TTM_PL_SYSTEM should only go as 1064 * far as far doing a ttm_bo_move_null(), which should skip all the 1065 * other junk. 1066 */ 1067 if (!bo->resource) { 1068 struct ttm_operation_ctx ctx = { 1069 .interruptible = true, 1070 .no_wait_gpu = true, /* should be idle already */ 1071 }; 1072 int err; 1073 1074 GEM_BUG_ON(!bo->ttm || !(bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED)); 1075 1076 err = ttm_bo_validate(bo, i915_ttm_sys_placement(), &ctx); 1077 if (err) { 1078 dma_resv_unlock(bo->base.resv); 1079 return VM_FAULT_SIGBUS; 1080 } 1081 } else if (!i915_ttm_resource_mappable(bo->resource)) { 1082 int err = -ENODEV; 1083 int i; 1084 1085 for (i = 0; i < obj->mm.n_placements; i++) { 1086 struct intel_memory_region *mr = obj->mm.placements[i]; 1087 unsigned int flags; 1088 1089 if (!resource_size(&mr->io) && mr->type != INTEL_MEMORY_SYSTEM) 1090 continue; 1091 1092 flags = obj->flags; 1093 flags &= ~I915_BO_ALLOC_GPU_ONLY; 1094 err = __i915_ttm_migrate(obj, mr, flags); 1095 if (!err) 1096 break; 1097 } 1098 1099 if (err) { 1100 drm_dbg_ratelimited(dev, 1101 "Unable to make resource CPU accessible(err = %pe)\n", 1102 ERR_PTR(err)); 1103 dma_resv_unlock(bo->base.resv); 1104 ret = VM_FAULT_SIGBUS; 1105 goto out_rpm; 1106 } 1107 } 1108 1109 if (i915_ttm_cpu_maps_iomem(bo->resource)) 1110 wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm); 1111 1112 if (drm_dev_enter(dev, &idx)) { 1113 ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot, 1114 TTM_BO_VM_NUM_PREFAULT); 1115 drm_dev_exit(idx); 1116 } else { 1117 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot); 1118 } 1119 1120 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) 1121 goto out_rpm; 1122 1123 /* 1124 * ttm_bo_vm_reserve() already has dma_resv_lock. 1125 * userfault_count is protected by dma_resv lock and rpm wakeref. 1126 */ 1127 if (ret == VM_FAULT_NOPAGE && wakeref && !obj->userfault_count) { 1128 obj->userfault_count = 1; 1129 spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock); 1130 list_add(&obj->userfault_link, &to_i915(obj->base.dev)->runtime_pm.lmem_userfault_list); 1131 spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock); 1132 1133 GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(bo->resource)); 1134 } 1135 1136 if (wakeref && CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND != 0) 1137 intel_wakeref_auto(&to_i915(obj->base.dev)->runtime_pm.userfault_wakeref, 1138 msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND)); 1139 1140 i915_ttm_adjust_lru(obj); 1141 1142 dma_resv_unlock(bo->base.resv); 1143 1144 out_rpm: 1145 if (wakeref) 1146 intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref); 1147 1148 return ret; 1149 } 1150 1151 static int 1152 vm_access_ttm(struct vm_area_struct *area, unsigned long addr, 1153 void *buf, int len, int write) 1154 { 1155 struct drm_i915_gem_object *obj = 1156 i915_ttm_to_gem(area->vm_private_data); 1157 1158 if (i915_gem_object_is_readonly(obj) && write) 1159 return -EACCES; 1160 1161 return ttm_bo_vm_access(area, addr, buf, len, write); 1162 } 1163 1164 static void ttm_vm_open(struct vm_area_struct *vma) 1165 { 1166 struct drm_i915_gem_object *obj = 1167 i915_ttm_to_gem(vma->vm_private_data); 1168 1169 GEM_BUG_ON(i915_ttm_is_ghost_object(vma->vm_private_data)); 1170 i915_gem_object_get(obj); 1171 } 1172 1173 static void ttm_vm_close(struct vm_area_struct *vma) 1174 { 1175 struct drm_i915_gem_object *obj = 1176 i915_ttm_to_gem(vma->vm_private_data); 1177 1178 GEM_BUG_ON(i915_ttm_is_ghost_object(vma->vm_private_data)); 1179 i915_gem_object_put(obj); 1180 } 1181 1182 static const struct vm_operations_struct vm_ops_ttm = { 1183 .fault = vm_fault_ttm, 1184 .access = vm_access_ttm, 1185 .open = ttm_vm_open, 1186 .close = ttm_vm_close, 1187 }; 1188 1189 static u64 i915_ttm_mmap_offset(struct drm_i915_gem_object *obj) 1190 { 1191 /* The ttm_bo must be allocated with I915_BO_ALLOC_USER */ 1192 GEM_BUG_ON(!drm_mm_node_allocated(&obj->base.vma_node.vm_node)); 1193 1194 return drm_vma_node_offset_addr(&obj->base.vma_node); 1195 } 1196 1197 static void i915_ttm_unmap_virtual(struct drm_i915_gem_object *obj) 1198 { 1199 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 1200 intel_wakeref_t wakeref = NULL; 1201 1202 assert_object_held_shared(obj); 1203 1204 if (i915_ttm_cpu_maps_iomem(bo->resource)) { 1205 wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm); 1206 1207 /* userfault_count is protected by obj lock and rpm wakeref. */ 1208 if (obj->userfault_count) { 1209 spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock); 1210 list_del(&obj->userfault_link); 1211 spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock); 1212 obj->userfault_count = 0; 1213 } 1214 } 1215 1216 GEM_WARN_ON(obj->userfault_count); 1217 1218 ttm_bo_unmap_virtual(i915_gem_to_ttm(obj)); 1219 1220 if (wakeref) 1221 intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref); 1222 } 1223 1224 static const struct drm_i915_gem_object_ops i915_gem_ttm_obj_ops = { 1225 .name = "i915_gem_object_ttm", 1226 .flags = I915_GEM_OBJECT_IS_SHRINKABLE | 1227 I915_GEM_OBJECT_SELF_MANAGED_SHRINK_LIST, 1228 1229 .get_pages = i915_ttm_get_pages, 1230 .put_pages = i915_ttm_put_pages, 1231 .truncate = i915_ttm_truncate, 1232 .shrink = i915_ttm_shrink, 1233 1234 .adjust_lru = i915_ttm_adjust_lru, 1235 .delayed_free = i915_ttm_delayed_free, 1236 .migrate = i915_ttm_migrate, 1237 1238 .mmap_offset = i915_ttm_mmap_offset, 1239 .unmap_virtual = i915_ttm_unmap_virtual, 1240 .mmap_ops = &vm_ops_ttm, 1241 }; 1242 1243 void i915_ttm_bo_destroy(struct ttm_buffer_object *bo) 1244 { 1245 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 1246 1247 i915_gem_object_release_memory_region(obj); 1248 mutex_destroy(&obj->ttm.get_io_page.lock); 1249 1250 if (obj->ttm.created) { 1251 /* 1252 * We freely manage the shrinker LRU outide of the mm.pages life 1253 * cycle. As a result when destroying the object we should be 1254 * extra paranoid and ensure we remove it from the LRU, before 1255 * we free the object. 1256 * 1257 * Touching the ttm_shrinkable outside of the object lock here 1258 * should be safe now that the last GEM object ref was dropped. 1259 */ 1260 if (obj->mm.ttm_shrinkable) 1261 i915_gem_object_make_unshrinkable(obj); 1262 1263 i915_ttm_backup_free(obj); 1264 1265 /* This releases all gem object bindings to the backend. */ 1266 __i915_gem_free_object(obj); 1267 1268 call_rcu(&obj->rcu, __i915_gem_free_object_rcu); 1269 } else { 1270 __i915_gem_object_fini(obj); 1271 } 1272 } 1273 1274 /* 1275 * __i915_gem_ttm_object_init - Initialize a ttm-backed i915 gem object 1276 * @mem: The initial memory region for the object. 1277 * @obj: The gem object. 1278 * @size: Object size in bytes. 1279 * @flags: gem object flags. 1280 * 1281 * Return: 0 on success, negative error code on failure. 1282 */ 1283 int __i915_gem_ttm_object_init(struct intel_memory_region *mem, 1284 struct drm_i915_gem_object *obj, 1285 resource_size_t offset, 1286 resource_size_t size, 1287 resource_size_t page_size, 1288 unsigned int flags) 1289 { 1290 static struct lock_class_key lock_class; 1291 struct drm_i915_private *i915 = mem->i915; 1292 struct ttm_operation_ctx ctx = { 1293 .interruptible = true, 1294 .no_wait_gpu = false, 1295 }; 1296 enum ttm_bo_type bo_type; 1297 int ret; 1298 1299 drm_gem_private_object_init(&i915->drm, &obj->base, size); 1300 i915_gem_object_init(obj, &i915_gem_ttm_obj_ops, &lock_class, flags); 1301 1302 obj->bo_offset = offset; 1303 1304 /* Don't put on a region list until we're either locked or fully initialized. */ 1305 obj->mm.region = mem; 1306 INIT_LIST_HEAD(&obj->mm.region_link); 1307 1308 INIT_RADIX_TREE(&obj->ttm.get_io_page.radix, GFP_KERNEL | __GFP_NOWARN); 1309 mutex_init(&obj->ttm.get_io_page.lock); 1310 bo_type = (obj->flags & I915_BO_ALLOC_USER) ? ttm_bo_type_device : 1311 ttm_bo_type_kernel; 1312 1313 obj->base.vma_node.driver_private = i915_gem_to_ttm(obj); 1314 1315 /* Forcing the page size is kernel internal only */ 1316 GEM_BUG_ON(page_size && obj->mm.n_placements); 1317 1318 /* 1319 * Keep an extra shrink pin to prevent the object from being made 1320 * shrinkable too early. If the ttm_tt is ever allocated in shmem, we 1321 * drop the pin. The TTM backend manages the shrinker LRU itself, 1322 * outside of the normal mm.pages life cycle. 1323 */ 1324 i915_gem_object_make_unshrinkable(obj); 1325 1326 /* 1327 * If this function fails, it will call the destructor, but 1328 * our caller still owns the object. So no freeing in the 1329 * destructor until obj->ttm.created is true. 1330 * Similarly, in delayed_destroy, we can't call ttm_bo_fini() 1331 * until successful initialization. 1332 */ 1333 ret = ttm_bo_init_reserved(&i915->bdev, i915_gem_to_ttm(obj), bo_type, 1334 &i915_sys_placement, page_size >> PAGE_SHIFT, 1335 &ctx, NULL, NULL, i915_ttm_bo_destroy); 1336 1337 /* 1338 * XXX: The ttm_bo_init_reserved() functions returns -ENOSPC if the size 1339 * is too big to add vma. The direct function that returns -ENOSPC is 1340 * drm_mm_insert_node_in_range(). To handle the same error as other code 1341 * that returns -E2BIG when the size is too large, it converts -ENOSPC to 1342 * -E2BIG. 1343 */ 1344 if (size >> PAGE_SHIFT > INT_MAX && ret == -ENOSPC) 1345 ret = -E2BIG; 1346 1347 if (ret) 1348 return i915_ttm_err_to_gem(ret); 1349 1350 obj->ttm.created = true; 1351 i915_gem_object_release_memory_region(obj); 1352 i915_gem_object_init_memory_region(obj, mem); 1353 i915_ttm_adjust_domains_after_move(obj); 1354 i915_ttm_adjust_gem_after_move(obj); 1355 i915_gem_object_unlock(obj); 1356 1357 return 0; 1358 } 1359 1360 static const struct intel_memory_region_ops ttm_system_region_ops = { 1361 .init_object = __i915_gem_ttm_object_init, 1362 .release = intel_region_ttm_fini, 1363 }; 1364 1365 struct intel_memory_region * 1366 i915_gem_ttm_system_setup(struct drm_i915_private *i915, 1367 u16 type, u16 instance) 1368 { 1369 struct intel_memory_region *mr; 1370 1371 mr = intel_memory_region_create(i915, 0, 1372 totalram_pages() << PAGE_SHIFT, 1373 PAGE_SIZE, 0, 0, 1374 type, instance, 1375 &ttm_system_region_ops); 1376 if (IS_ERR(mr)) 1377 return mr; 1378 1379 intel_memory_region_set_name(mr, "system-ttm"); 1380 return mr; 1381 } 1382