xref: /linux/drivers/gpu/drm/i915/gem/i915_gem_ttm.c (revision 815e260a18a3af4dab59025ee99a7156c0e8b5e0)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include <linux/shmem_fs.h>
7 
8 #include <drm/drm_buddy.h>
9 #include <drm/drm_print.h>
10 #include <drm/ttm/ttm_placement.h>
11 #include <drm/ttm/ttm_tt.h>
12 
13 #include "i915_drv.h"
14 #include "i915_jiffies.h"
15 #include "i915_ttm_buddy_manager.h"
16 #include "intel_memory_region.h"
17 #include "intel_region_ttm.h"
18 
19 #include "gem/i915_gem_mman.h"
20 #include "gem/i915_gem_object.h"
21 #include "gem/i915_gem_region.h"
22 #include "gem/i915_gem_ttm.h"
23 #include "gem/i915_gem_ttm_move.h"
24 #include "gem/i915_gem_ttm_pm.h"
25 #include "gt/intel_gpu_commands.h"
26 
27 #define I915_TTM_PRIO_PURGE     0
28 #define I915_TTM_PRIO_NO_PAGES  1
29 #define I915_TTM_PRIO_HAS_PAGES 2
30 #define I915_TTM_PRIO_NEEDS_CPU_ACCESS 3
31 
32 /*
33  * Size of struct ttm_place vector in on-stack struct ttm_placement allocs
34  */
35 #define I915_TTM_MAX_PLACEMENTS INTEL_REGION_UNKNOWN
36 
37 /**
38  * struct i915_ttm_tt - TTM page vector with additional private information
39  * @ttm: The base TTM page vector.
40  * @dev: The struct device used for dma mapping and unmapping.
41  * @cached_rsgt: The cached scatter-gather table.
42  * @is_shmem: Set if using shmem.
43  * @filp: The shmem file, if using shmem backend.
44  *
45  * Note that DMA may be going on right up to the point where the page-
46  * vector is unpopulated in delayed destroy. Hence keep the
47  * scatter-gather table mapped and cached up to that point. This is
48  * different from the cached gem object io scatter-gather table which
49  * doesn't have an associated dma mapping.
50  */
51 struct i915_ttm_tt {
52 	struct ttm_tt ttm;
53 	struct device *dev;
54 	struct i915_refct_sgt cached_rsgt;
55 
56 	bool is_shmem;
57 	struct file *filp;
58 };
59 
60 static const struct ttm_place sys_placement_flags = {
61 	.fpfn = 0,
62 	.lpfn = 0,
63 	.mem_type = I915_PL_SYSTEM,
64 	.flags = 0,
65 };
66 
67 static struct ttm_placement i915_sys_placement = {
68 	.num_placement = 1,
69 	.placement = &sys_placement_flags,
70 };
71 
72 /**
73  * i915_ttm_sys_placement - Return the struct ttm_placement to be
74  * used for an object in system memory.
75  *
76  * Rather than making the struct extern, use this
77  * function.
78  *
79  * Return: A pointer to a static variable for sys placement.
80  */
81 struct ttm_placement *i915_ttm_sys_placement(void)
82 {
83 	return &i915_sys_placement;
84 }
85 
86 static int i915_ttm_err_to_gem(int err)
87 {
88 	/* Fastpath */
89 	if (likely(!err))
90 		return 0;
91 
92 	switch (err) {
93 	case -EBUSY:
94 		/*
95 		 * TTM likes to convert -EDEADLK to -EBUSY, and wants us to
96 		 * restart the operation, since we don't record the contending
97 		 * lock. We use -EAGAIN to restart.
98 		 */
99 		return -EAGAIN;
100 	case -ENOSPC:
101 		/*
102 		 * Memory type / region is full, and we can't evict.
103 		 * Except possibly system, that returns -ENOMEM;
104 		 */
105 		return -ENXIO;
106 	default:
107 		break;
108 	}
109 
110 	return err;
111 }
112 
113 static enum ttm_caching
114 i915_ttm_select_tt_caching(const struct drm_i915_gem_object *obj)
115 {
116 	/*
117 	 * Objects only allowed in system get cached cpu-mappings, or when
118 	 * evicting lmem-only buffers to system for swapping. Other objects get
119 	 * WC mapping for now. Even if in system.
120 	 */
121 	if (obj->mm.n_placements <= 1)
122 		return ttm_cached;
123 
124 	return ttm_write_combined;
125 }
126 
127 static void
128 i915_ttm_place_from_region(const struct intel_memory_region *mr,
129 			   struct ttm_place *place,
130 			   resource_size_t offset,
131 			   resource_size_t size,
132 			   unsigned int flags)
133 {
134 	memset(place, 0, sizeof(*place));
135 	place->mem_type = intel_region_to_ttm_type(mr);
136 
137 	if (mr->type == INTEL_MEMORY_SYSTEM)
138 		return;
139 
140 	if (flags & I915_BO_ALLOC_CONTIGUOUS)
141 		place->flags |= TTM_PL_FLAG_CONTIGUOUS;
142 	if (offset != I915_BO_INVALID_OFFSET) {
143 		WARN_ON(overflows_type(offset >> PAGE_SHIFT, place->fpfn));
144 		place->fpfn = offset >> PAGE_SHIFT;
145 		WARN_ON(overflows_type(place->fpfn + (size >> PAGE_SHIFT), place->lpfn));
146 		place->lpfn = place->fpfn + (size >> PAGE_SHIFT);
147 	} else if (resource_size(&mr->io) && resource_size(&mr->io) < mr->total) {
148 		if (flags & I915_BO_ALLOC_GPU_ONLY) {
149 			place->flags |= TTM_PL_FLAG_TOPDOWN;
150 		} else {
151 			place->fpfn = 0;
152 			WARN_ON(overflows_type(resource_size(&mr->io) >> PAGE_SHIFT, place->lpfn));
153 			place->lpfn = resource_size(&mr->io) >> PAGE_SHIFT;
154 		}
155 	}
156 }
157 
158 static void
159 i915_ttm_placement_from_obj(const struct drm_i915_gem_object *obj,
160 			    struct ttm_place *places,
161 			    struct ttm_placement *placement)
162 {
163 	unsigned int num_allowed = obj->mm.n_placements;
164 	unsigned int flags = obj->flags;
165 	unsigned int i;
166 
167 	i915_ttm_place_from_region(num_allowed ? obj->mm.placements[0] :
168 				   obj->mm.region, &places[0], obj->bo_offset,
169 				   obj->base.size, flags);
170 
171 	/* Cache this on object? */
172 	for (i = 0; i < num_allowed; ++i) {
173 		i915_ttm_place_from_region(obj->mm.placements[i],
174 					   &places[i + 1], obj->bo_offset,
175 					   obj->base.size, flags);
176 		places[i + 1].flags |= TTM_PL_FLAG_FALLBACK;
177 	}
178 
179 	placement->num_placement = num_allowed + 1;
180 	placement->placement = places;
181 }
182 
183 static int i915_ttm_tt_shmem_populate(struct ttm_device *bdev,
184 				      struct ttm_tt *ttm,
185 				      struct ttm_operation_ctx *ctx)
186 {
187 	struct drm_i915_private *i915 = container_of(bdev, typeof(*i915), bdev);
188 	struct intel_memory_region *mr = i915->mm.regions[INTEL_MEMORY_SYSTEM];
189 	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
190 	const unsigned int max_segment = i915_sg_segment_size(i915->drm.dev);
191 	const size_t size = (size_t)ttm->num_pages << PAGE_SHIFT;
192 	struct file *filp = i915_tt->filp;
193 	struct sgt_iter sgt_iter;
194 	struct sg_table *st;
195 	struct page *page;
196 	unsigned long i;
197 	int err;
198 
199 	if (!filp) {
200 		struct address_space *mapping;
201 		gfp_t mask;
202 
203 		filp = shmem_file_setup("i915-shmem-tt", size, VM_NORESERVE);
204 		if (IS_ERR(filp))
205 			return PTR_ERR(filp);
206 
207 		mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
208 
209 		mapping = filp->f_mapping;
210 		mapping_set_gfp_mask(mapping, mask);
211 		GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
212 
213 		i915_tt->filp = filp;
214 	}
215 
216 	st = &i915_tt->cached_rsgt.table;
217 	err = shmem_sg_alloc_table(i915, st, size, mr, filp->f_mapping,
218 				   max_segment);
219 	if (err)
220 		return err;
221 
222 	err = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL,
223 			      DMA_ATTR_SKIP_CPU_SYNC);
224 	if (err)
225 		goto err_free_st;
226 
227 	i = 0;
228 	for_each_sgt_page(page, sgt_iter, st)
229 		ttm->pages[i++] = page;
230 
231 	if (ttm->page_flags & TTM_TT_FLAG_SWAPPED)
232 		ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED;
233 
234 	return 0;
235 
236 err_free_st:
237 	shmem_sg_free_table(st, filp->f_mapping, false, false);
238 
239 	return err;
240 }
241 
242 static void i915_ttm_tt_shmem_unpopulate(struct ttm_tt *ttm)
243 {
244 	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
245 	bool backup = ttm->page_flags & TTM_TT_FLAG_SWAPPED;
246 	struct sg_table *st = &i915_tt->cached_rsgt.table;
247 
248 	shmem_sg_free_table(st, file_inode(i915_tt->filp)->i_mapping,
249 			    backup, backup);
250 }
251 
252 static void i915_ttm_tt_release(struct kref *ref)
253 {
254 	struct i915_ttm_tt *i915_tt =
255 		container_of(ref, typeof(*i915_tt), cached_rsgt.kref);
256 	struct sg_table *st = &i915_tt->cached_rsgt.table;
257 
258 	GEM_WARN_ON(st->sgl);
259 
260 	kfree(i915_tt);
261 }
262 
263 static const struct i915_refct_sgt_ops tt_rsgt_ops = {
264 	.release = i915_ttm_tt_release
265 };
266 
267 static struct ttm_tt *i915_ttm_tt_create(struct ttm_buffer_object *bo,
268 					 uint32_t page_flags)
269 {
270 	struct drm_i915_private *i915 = container_of(bo->bdev, typeof(*i915),
271 						     bdev);
272 	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
273 	unsigned long ccs_pages = 0;
274 	enum ttm_caching caching;
275 	struct i915_ttm_tt *i915_tt;
276 	int ret;
277 
278 	if (i915_ttm_is_ghost_object(bo))
279 		return NULL;
280 
281 	i915_tt = kzalloc(sizeof(*i915_tt), GFP_KERNEL);
282 	if (!i915_tt)
283 		return NULL;
284 
285 	if (obj->flags & I915_BO_ALLOC_CPU_CLEAR && (!bo->resource ||
286 	    ttm_manager_type(bo->bdev, bo->resource->mem_type)->use_tt))
287 		page_flags |= TTM_TT_FLAG_ZERO_ALLOC;
288 
289 	caching = i915_ttm_select_tt_caching(obj);
290 	if (i915_gem_object_is_shrinkable(obj) && caching == ttm_cached) {
291 		page_flags |= TTM_TT_FLAG_EXTERNAL |
292 			      TTM_TT_FLAG_EXTERNAL_MAPPABLE;
293 		i915_tt->is_shmem = true;
294 	}
295 
296 	if (i915_gem_object_needs_ccs_pages(obj))
297 		ccs_pages = DIV_ROUND_UP(DIV_ROUND_UP(bo->base.size,
298 						      NUM_BYTES_PER_CCS_BYTE),
299 					 PAGE_SIZE);
300 
301 	ret = ttm_tt_init(&i915_tt->ttm, bo, page_flags, caching, ccs_pages);
302 	if (ret)
303 		goto err_free;
304 
305 	__i915_refct_sgt_init(&i915_tt->cached_rsgt, bo->base.size,
306 			      &tt_rsgt_ops);
307 
308 	i915_tt->dev = obj->base.dev->dev;
309 
310 	return &i915_tt->ttm;
311 
312 err_free:
313 	kfree(i915_tt);
314 	return NULL;
315 }
316 
317 static int i915_ttm_tt_populate(struct ttm_device *bdev,
318 				struct ttm_tt *ttm,
319 				struct ttm_operation_ctx *ctx)
320 {
321 	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
322 
323 	if (i915_tt->is_shmem)
324 		return i915_ttm_tt_shmem_populate(bdev, ttm, ctx);
325 
326 	return ttm_pool_alloc(&bdev->pool, ttm, ctx);
327 }
328 
329 static void i915_ttm_tt_unpopulate(struct ttm_device *bdev, struct ttm_tt *ttm)
330 {
331 	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
332 	struct sg_table *st = &i915_tt->cached_rsgt.table;
333 
334 	if (st->sgl)
335 		dma_unmap_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
336 
337 	if (i915_tt->is_shmem) {
338 		i915_ttm_tt_shmem_unpopulate(ttm);
339 	} else {
340 		sg_free_table(st);
341 		ttm_pool_free(&bdev->pool, ttm);
342 	}
343 }
344 
345 static void i915_ttm_tt_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
346 {
347 	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
348 
349 	if (i915_tt->filp)
350 		fput(i915_tt->filp);
351 
352 	ttm_tt_fini(ttm);
353 	i915_refct_sgt_put(&i915_tt->cached_rsgt);
354 }
355 
356 static bool i915_ttm_eviction_valuable(struct ttm_buffer_object *bo,
357 				       const struct ttm_place *place)
358 {
359 	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
360 
361 	if (i915_ttm_is_ghost_object(bo))
362 		return false;
363 
364 	/*
365 	 * EXTERNAL objects should never be swapped out by TTM, instead we need
366 	 * to handle that ourselves. TTM will already skip such objects for us,
367 	 * but we would like to avoid grabbing locks for no good reason.
368 	 */
369 	if (bo->ttm && bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
370 		return false;
371 
372 	/* Will do for now. Our pinned objects are still on TTM's LRU lists */
373 	if (!i915_gem_object_evictable(obj))
374 		return false;
375 
376 	return ttm_bo_eviction_valuable(bo, place);
377 }
378 
379 static void i915_ttm_evict_flags(struct ttm_buffer_object *bo,
380 				 struct ttm_placement *placement)
381 {
382 	*placement = i915_sys_placement;
383 }
384 
385 /**
386  * i915_ttm_free_cached_io_rsgt - Free object cached LMEM information
387  * @obj: The GEM object
388  * This function frees any LMEM-related information that is cached on
389  * the object. For example the radix tree for fast page lookup and the
390  * cached refcounted sg-table
391  */
392 void i915_ttm_free_cached_io_rsgt(struct drm_i915_gem_object *obj)
393 {
394 	struct radix_tree_iter iter;
395 	void __rcu **slot;
396 
397 	if (!obj->ttm.cached_io_rsgt)
398 		return;
399 
400 	rcu_read_lock();
401 	radix_tree_for_each_slot(slot, &obj->ttm.get_io_page.radix, &iter, 0)
402 		radix_tree_delete(&obj->ttm.get_io_page.radix, iter.index);
403 	rcu_read_unlock();
404 
405 	i915_refct_sgt_put(obj->ttm.cached_io_rsgt);
406 	obj->ttm.cached_io_rsgt = NULL;
407 }
408 
409 /**
410  * i915_ttm_purge - Clear an object of its memory
411  * @obj: The object
412  *
413  * This function is called to clear an object of it's memory when it is
414  * marked as not needed anymore.
415  *
416  * Return: 0 on success, negative error code on failure.
417  */
418 int i915_ttm_purge(struct drm_i915_gem_object *obj)
419 {
420 	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
421 	struct i915_ttm_tt *i915_tt =
422 		container_of(bo->ttm, typeof(*i915_tt), ttm);
423 	struct ttm_operation_ctx ctx = {
424 		.interruptible = true,
425 		.no_wait_gpu = false,
426 	};
427 	struct ttm_placement place = {};
428 	int ret;
429 
430 	if (obj->mm.madv == __I915_MADV_PURGED)
431 		return 0;
432 
433 	ret = ttm_bo_validate(bo, &place, &ctx);
434 	if (ret)
435 		return ret;
436 
437 	if (bo->ttm && i915_tt->filp) {
438 		/*
439 		 * The below fput(which eventually calls shmem_truncate) might
440 		 * be delayed by worker, so when directly called to purge the
441 		 * pages(like by the shrinker) we should try to be more
442 		 * aggressive and release the pages immediately.
443 		 */
444 		shmem_truncate_range(file_inode(i915_tt->filp),
445 				     0, (loff_t)-1);
446 		fput(fetch_and_zero(&i915_tt->filp));
447 	}
448 
449 	obj->write_domain = 0;
450 	obj->read_domains = 0;
451 	i915_ttm_adjust_gem_after_move(obj);
452 	i915_ttm_free_cached_io_rsgt(obj);
453 	obj->mm.madv = __I915_MADV_PURGED;
454 
455 	return 0;
456 }
457 
458 static int i915_ttm_shrink(struct drm_i915_gem_object *obj, unsigned int flags)
459 {
460 	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
461 	struct i915_ttm_tt *i915_tt =
462 		container_of(bo->ttm, typeof(*i915_tt), ttm);
463 	struct ttm_operation_ctx ctx = {
464 		.interruptible = true,
465 		.no_wait_gpu = flags & I915_GEM_OBJECT_SHRINK_NO_GPU_WAIT,
466 	};
467 	struct ttm_placement place = {};
468 	int ret;
469 
470 	if (!bo->ttm || i915_ttm_cpu_maps_iomem(bo->resource))
471 		return 0;
472 
473 	GEM_BUG_ON(!i915_tt->is_shmem);
474 
475 	if (!i915_tt->filp)
476 		return 0;
477 
478 	ret = ttm_bo_wait_ctx(bo, &ctx);
479 	if (ret)
480 		return ret;
481 
482 	switch (obj->mm.madv) {
483 	case I915_MADV_DONTNEED:
484 		return i915_ttm_purge(obj);
485 	case __I915_MADV_PURGED:
486 		return 0;
487 	}
488 
489 	if (bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED)
490 		return 0;
491 
492 	bo->ttm->page_flags |= TTM_TT_FLAG_SWAPPED;
493 	ret = ttm_bo_validate(bo, &place, &ctx);
494 	if (ret) {
495 		bo->ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED;
496 		return ret;
497 	}
498 
499 	if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK)
500 		__shmem_writeback(obj->base.size, i915_tt->filp->f_mapping);
501 
502 	return 0;
503 }
504 
505 static void i915_ttm_delete_mem_notify(struct ttm_buffer_object *bo)
506 {
507 	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
508 
509 	/*
510 	 * This gets called twice by ttm, so long as we have a ttm resource or
511 	 * ttm_tt then we can still safely call this. Due to pipeline-gutting,
512 	 * we maybe have NULL bo->resource, but in that case we should always
513 	 * have a ttm alive (like if the pages are swapped out).
514 	 */
515 	if ((bo->resource || bo->ttm) && !i915_ttm_is_ghost_object(bo)) {
516 		__i915_gem_object_pages_fini(obj);
517 		i915_ttm_free_cached_io_rsgt(obj);
518 	}
519 }
520 
521 static struct i915_refct_sgt *i915_ttm_tt_get_st(struct ttm_tt *ttm)
522 {
523 	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
524 	struct sg_table *st;
525 	int ret;
526 
527 	if (i915_tt->cached_rsgt.table.sgl)
528 		return i915_refct_sgt_get(&i915_tt->cached_rsgt);
529 
530 	st = &i915_tt->cached_rsgt.table;
531 	ret = sg_alloc_table_from_pages_segment(st,
532 			ttm->pages, ttm->num_pages,
533 			0, (unsigned long)ttm->num_pages << PAGE_SHIFT,
534 			i915_sg_segment_size(i915_tt->dev), GFP_KERNEL);
535 	if (ret) {
536 		st->sgl = NULL;
537 		return ERR_PTR(ret);
538 	}
539 
540 	ret = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
541 	if (ret) {
542 		sg_free_table(st);
543 		return ERR_PTR(ret);
544 	}
545 
546 	return i915_refct_sgt_get(&i915_tt->cached_rsgt);
547 }
548 
549 /**
550  * i915_ttm_resource_get_st - Get a refcounted sg-table pointing to the
551  * resource memory
552  * @obj: The GEM object used for sg-table caching
553  * @res: The struct ttm_resource for which an sg-table is requested.
554  *
555  * This function returns a refcounted sg-table representing the memory
556  * pointed to by @res. If @res is the object's current resource it may also
557  * cache the sg_table on the object or attempt to access an already cached
558  * sg-table. The refcounted sg-table needs to be put when no-longer in use.
559  *
560  * Return: A valid pointer to a struct i915_refct_sgt or error pointer on
561  * failure.
562  */
563 struct i915_refct_sgt *
564 i915_ttm_resource_get_st(struct drm_i915_gem_object *obj,
565 			 struct ttm_resource *res)
566 {
567 	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
568 	u32 page_alignment;
569 
570 	if (!i915_ttm_gtt_binds_lmem(res))
571 		return i915_ttm_tt_get_st(bo->ttm);
572 
573 	page_alignment = bo->page_alignment << PAGE_SHIFT;
574 	if (!page_alignment)
575 		page_alignment = obj->mm.region->min_page_size;
576 
577 	/*
578 	 * If CPU mapping differs, we need to add the ttm_tt pages to
579 	 * the resulting st. Might make sense for GGTT.
580 	 */
581 	GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(res));
582 	if (bo->resource == res) {
583 		if (!obj->ttm.cached_io_rsgt) {
584 			struct i915_refct_sgt *rsgt;
585 
586 			rsgt = intel_region_ttm_resource_to_rsgt(obj->mm.region,
587 								 res,
588 								 page_alignment);
589 			if (IS_ERR(rsgt))
590 				return rsgt;
591 
592 			obj->ttm.cached_io_rsgt = rsgt;
593 		}
594 		return i915_refct_sgt_get(obj->ttm.cached_io_rsgt);
595 	}
596 
597 	return intel_region_ttm_resource_to_rsgt(obj->mm.region, res,
598 						 page_alignment);
599 }
600 
601 static int i915_ttm_truncate(struct drm_i915_gem_object *obj)
602 {
603 	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
604 	long err;
605 
606 	WARN_ON_ONCE(obj->mm.madv == I915_MADV_WILLNEED);
607 
608 	err = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
609 				    true, 15 * HZ);
610 	if (err < 0)
611 		return err;
612 	if (err == 0)
613 		return -EBUSY;
614 
615 	err = i915_ttm_move_notify(bo);
616 	if (err)
617 		return err;
618 
619 	return i915_ttm_purge(obj);
620 }
621 
622 static void i915_ttm_swap_notify(struct ttm_buffer_object *bo)
623 {
624 	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
625 	int ret;
626 
627 	if (i915_ttm_is_ghost_object(bo))
628 		return;
629 
630 	ret = i915_ttm_move_notify(bo);
631 	GEM_WARN_ON(ret);
632 	GEM_WARN_ON(obj->ttm.cached_io_rsgt);
633 	if (!ret && obj->mm.madv != I915_MADV_WILLNEED)
634 		i915_ttm_purge(obj);
635 }
636 
637 /**
638  * i915_ttm_resource_mappable - Return true if the ttm resource is CPU
639  * accessible.
640  * @res: The TTM resource to check.
641  *
642  * This is interesting on small-BAR systems where we may encounter lmem objects
643  * that can't be accessed via the CPU.
644  */
645 bool i915_ttm_resource_mappable(struct ttm_resource *res)
646 {
647 	struct i915_ttm_buddy_resource *bman_res = to_ttm_buddy_resource(res);
648 
649 	if (!i915_ttm_cpu_maps_iomem(res))
650 		return true;
651 
652 	return bman_res->used_visible_size == PFN_UP(bman_res->base.size);
653 }
654 
655 static int i915_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
656 {
657 	struct drm_i915_gem_object *obj = i915_ttm_to_gem(mem->bo);
658 	bool unknown_state;
659 
660 	if (i915_ttm_is_ghost_object(mem->bo))
661 		return -EINVAL;
662 
663 	if (!kref_get_unless_zero(&obj->base.refcount))
664 		return -EINVAL;
665 
666 	assert_object_held(obj);
667 
668 	unknown_state = i915_gem_object_has_unknown_state(obj);
669 	i915_gem_object_put(obj);
670 	if (unknown_state)
671 		return -EINVAL;
672 
673 	if (!i915_ttm_cpu_maps_iomem(mem))
674 		return 0;
675 
676 	if (!i915_ttm_resource_mappable(mem))
677 		return -EINVAL;
678 
679 	mem->bus.caching = ttm_write_combined;
680 	mem->bus.is_iomem = true;
681 
682 	return 0;
683 }
684 
685 static unsigned long i915_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
686 					 unsigned long page_offset)
687 {
688 	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
689 	struct scatterlist *sg;
690 	unsigned long base;
691 	unsigned int ofs;
692 
693 	GEM_BUG_ON(i915_ttm_is_ghost_object(bo));
694 	GEM_WARN_ON(bo->ttm);
695 
696 	base = obj->mm.region->iomap.base - obj->mm.region->region.start;
697 	sg = i915_gem_object_page_iter_get_sg(obj, &obj->ttm.get_io_page, page_offset, &ofs);
698 
699 	return ((base + sg_dma_address(sg)) >> PAGE_SHIFT) + ofs;
700 }
701 
702 static int i915_ttm_access_memory(struct ttm_buffer_object *bo,
703 				  unsigned long offset, void *buf,
704 				  int len, int write)
705 {
706 	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
707 	resource_size_t iomap = obj->mm.region->iomap.base -
708 		obj->mm.region->region.start;
709 	unsigned long page = offset >> PAGE_SHIFT;
710 	unsigned long bytes_left = len;
711 
712 	/*
713 	 * TODO: For now just let it fail if the resource is non-mappable,
714 	 * otherwise we need to perform the memcpy from the gpu here, without
715 	 * interfering with the object (like moving the entire thing).
716 	 */
717 	if (!i915_ttm_resource_mappable(bo->resource))
718 		return -EIO;
719 
720 	offset -= page << PAGE_SHIFT;
721 	do {
722 		unsigned long bytes = min(bytes_left, PAGE_SIZE - offset);
723 		void __iomem *ptr;
724 		dma_addr_t daddr;
725 
726 		daddr = i915_gem_object_get_dma_address(obj, page);
727 		ptr = ioremap_wc(iomap + daddr + offset, bytes);
728 		if (!ptr)
729 			return -EIO;
730 
731 		if (write)
732 			memcpy_toio(ptr, buf, bytes);
733 		else
734 			memcpy_fromio(buf, ptr, bytes);
735 		iounmap(ptr);
736 
737 		page++;
738 		buf += bytes;
739 		bytes_left -= bytes;
740 		offset = 0;
741 	} while (bytes_left);
742 
743 	return len;
744 }
745 
746 /*
747  * All callbacks need to take care not to downcast a struct ttm_buffer_object
748  * without checking its subclass, since it might be a TTM ghost object.
749  */
750 static struct ttm_device_funcs i915_ttm_bo_driver = {
751 	.ttm_tt_create = i915_ttm_tt_create,
752 	.ttm_tt_populate = i915_ttm_tt_populate,
753 	.ttm_tt_unpopulate = i915_ttm_tt_unpopulate,
754 	.ttm_tt_destroy = i915_ttm_tt_destroy,
755 	.eviction_valuable = i915_ttm_eviction_valuable,
756 	.evict_flags = i915_ttm_evict_flags,
757 	.move = i915_ttm_move,
758 	.swap_notify = i915_ttm_swap_notify,
759 	.delete_mem_notify = i915_ttm_delete_mem_notify,
760 	.io_mem_reserve = i915_ttm_io_mem_reserve,
761 	.io_mem_pfn = i915_ttm_io_mem_pfn,
762 	.access_memory = i915_ttm_access_memory,
763 };
764 
765 /**
766  * i915_ttm_driver - Return a pointer to the TTM device funcs
767  *
768  * Return: Pointer to statically allocated TTM device funcs.
769  */
770 struct ttm_device_funcs *i915_ttm_driver(void)
771 {
772 	return &i915_ttm_bo_driver;
773 }
774 
775 static int __i915_ttm_get_pages(struct drm_i915_gem_object *obj,
776 				struct ttm_placement *placement)
777 {
778 	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
779 	struct ttm_operation_ctx ctx = {
780 		.interruptible = true,
781 		.no_wait_gpu = false,
782 	};
783 	struct ttm_placement initial_placement;
784 	struct ttm_place initial_place;
785 	int ret;
786 
787 	/* First try only the requested placement. No eviction. */
788 	initial_placement.num_placement = 1;
789 	memcpy(&initial_place, placement->placement, sizeof(struct ttm_place));
790 	initial_place.flags |= TTM_PL_FLAG_DESIRED;
791 	initial_placement.placement = &initial_place;
792 	ret = ttm_bo_validate(bo, &initial_placement, &ctx);
793 	if (ret) {
794 		ret = i915_ttm_err_to_gem(ret);
795 		/*
796 		 * Anything that wants to restart the operation gets to
797 		 * do that.
798 		 */
799 		if (ret == -EDEADLK || ret == -EINTR || ret == -ERESTARTSYS ||
800 		    ret == -EAGAIN)
801 			return ret;
802 
803 		/*
804 		 * If the initial attempt fails, allow all accepted placements,
805 		 * evicting if necessary.
806 		 */
807 		ret = ttm_bo_validate(bo, placement, &ctx);
808 		if (ret)
809 			return i915_ttm_err_to_gem(ret);
810 	}
811 
812 	if (bo->ttm && !ttm_tt_is_populated(bo->ttm)) {
813 		ret = ttm_bo_populate(bo, &ctx);
814 		if (ret)
815 			return ret;
816 
817 		i915_ttm_adjust_domains_after_move(obj);
818 		i915_ttm_adjust_gem_after_move(obj);
819 	}
820 
821 	if (!i915_gem_object_has_pages(obj)) {
822 		struct i915_refct_sgt *rsgt =
823 			i915_ttm_resource_get_st(obj, bo->resource);
824 
825 		if (IS_ERR(rsgt))
826 			return PTR_ERR(rsgt);
827 
828 		GEM_BUG_ON(obj->mm.rsgt);
829 		obj->mm.rsgt = rsgt;
830 		__i915_gem_object_set_pages(obj, &rsgt->table);
831 	}
832 
833 	GEM_BUG_ON(bo->ttm && ((obj->base.size >> PAGE_SHIFT) < bo->ttm->num_pages));
834 	i915_ttm_adjust_lru(obj);
835 	return ret;
836 }
837 
838 static int i915_ttm_get_pages(struct drm_i915_gem_object *obj)
839 {
840 	struct ttm_place places[I915_TTM_MAX_PLACEMENTS + 1];
841 	struct ttm_placement placement;
842 
843 	/* restricted by sg_alloc_table */
844 	if (overflows_type(obj->base.size >> PAGE_SHIFT, unsigned int))
845 		return -E2BIG;
846 
847 	GEM_BUG_ON(obj->mm.n_placements > I915_TTM_MAX_PLACEMENTS);
848 
849 	/* Move to the requested placement. */
850 	i915_ttm_placement_from_obj(obj, places, &placement);
851 
852 	return __i915_ttm_get_pages(obj, &placement);
853 }
854 
855 /**
856  * DOC: Migration vs eviction
857  *
858  * GEM migration may not be the same as TTM migration / eviction. If
859  * the TTM core decides to evict an object it may be evicted to a
860  * TTM memory type that is not in the object's allowable GEM regions, or
861  * in fact theoretically to a TTM memory type that doesn't correspond to
862  * a GEM memory region. In that case the object's GEM region is not
863  * updated, and the data is migrated back to the GEM region at
864  * get_pages time. TTM may however set up CPU ptes to the object even
865  * when it is evicted.
866  * Gem forced migration using the i915_ttm_migrate() op, is allowed even
867  * to regions that are not in the object's list of allowable placements.
868  */
869 static int __i915_ttm_migrate(struct drm_i915_gem_object *obj,
870 			      struct intel_memory_region *mr,
871 			      unsigned int flags)
872 {
873 	struct ttm_place requested;
874 	struct ttm_placement placement;
875 	int ret;
876 
877 	i915_ttm_place_from_region(mr, &requested, obj->bo_offset,
878 				   obj->base.size, flags);
879 	placement.num_placement = 1;
880 	placement.placement = &requested;
881 
882 	ret = __i915_ttm_get_pages(obj, &placement);
883 	if (ret)
884 		return ret;
885 
886 	/*
887 	 * Reinitialize the region bindings. This is primarily
888 	 * required for objects where the new region is not in
889 	 * its allowable placements.
890 	 */
891 	if (obj->mm.region != mr) {
892 		i915_gem_object_release_memory_region(obj);
893 		i915_gem_object_init_memory_region(obj, mr);
894 	}
895 
896 	return 0;
897 }
898 
899 static int i915_ttm_migrate(struct drm_i915_gem_object *obj,
900 			    struct intel_memory_region *mr,
901 			    unsigned int flags)
902 {
903 	return __i915_ttm_migrate(obj, mr, flags);
904 }
905 
906 static void i915_ttm_put_pages(struct drm_i915_gem_object *obj,
907 			       struct sg_table *st)
908 {
909 	/*
910 	 * We're currently not called from a shrinker, so put_pages()
911 	 * typically means the object is about to destroyed, or called
912 	 * from move_notify(). So just avoid doing much for now.
913 	 * If the object is not destroyed next, The TTM eviction logic
914 	 * and shrinkers will move it out if needed.
915 	 */
916 
917 	if (obj->mm.rsgt)
918 		i915_refct_sgt_put(fetch_and_zero(&obj->mm.rsgt));
919 }
920 
921 /**
922  * i915_ttm_adjust_lru - Adjust an object's position on relevant LRU lists.
923  * @obj: The object
924  */
925 void i915_ttm_adjust_lru(struct drm_i915_gem_object *obj)
926 {
927 	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
928 	struct i915_ttm_tt *i915_tt =
929 		container_of(bo->ttm, typeof(*i915_tt), ttm);
930 	bool shrinkable =
931 		bo->ttm && i915_tt->filp && ttm_tt_is_populated(bo->ttm);
932 
933 	/*
934 	 * Don't manipulate the TTM LRUs while in TTM bo destruction.
935 	 * We're called through i915_ttm_delete_mem_notify().
936 	 */
937 	if (!kref_read(&bo->kref))
938 		return;
939 
940 	/*
941 	 * We skip managing the shrinker LRU in set_pages() and just manage
942 	 * everything here. This does at least solve the issue with having
943 	 * temporary shmem mappings(like with evicted lmem) not being visible to
944 	 * the shrinker. Only our shmem objects are shrinkable, everything else
945 	 * we keep as unshrinkable.
946 	 *
947 	 * To make sure everything plays nice we keep an extra shrink pin in TTM
948 	 * if the underlying pages are not currently shrinkable. Once we release
949 	 * our pin, like when the pages are moved to shmem, the pages will then
950 	 * be added to the shrinker LRU, assuming the caller isn't also holding
951 	 * a pin.
952 	 *
953 	 * TODO: consider maybe also bumping the shrinker list here when we have
954 	 * already unpinned it, which should give us something more like an LRU.
955 	 *
956 	 * TODO: There is a small window of opportunity for this function to
957 	 * get called from eviction after we've dropped the last GEM refcount,
958 	 * but before the TTM deleted flag is set on the object. Avoid
959 	 * adjusting the shrinker list in such cases, since the object is
960 	 * not available to the shrinker anyway due to its zero refcount.
961 	 * To fix this properly we should move to a TTM shrinker LRU list for
962 	 * these objects.
963 	 */
964 	if (kref_get_unless_zero(&obj->base.refcount)) {
965 		if (shrinkable != obj->mm.ttm_shrinkable) {
966 			if (shrinkable) {
967 				if (obj->mm.madv == I915_MADV_WILLNEED)
968 					__i915_gem_object_make_shrinkable(obj);
969 				else
970 					__i915_gem_object_make_purgeable(obj);
971 			} else {
972 				i915_gem_object_make_unshrinkable(obj);
973 			}
974 
975 			obj->mm.ttm_shrinkable = shrinkable;
976 		}
977 		i915_gem_object_put(obj);
978 	}
979 
980 	/*
981 	 * Put on the correct LRU list depending on the MADV status
982 	 */
983 	spin_lock(&bo->bdev->lru_lock);
984 	if (shrinkable) {
985 		/* Try to keep shmem_tt from being considered for shrinking. */
986 		bo->priority = TTM_MAX_BO_PRIORITY - 1;
987 	} else if (obj->mm.madv != I915_MADV_WILLNEED) {
988 		bo->priority = I915_TTM_PRIO_PURGE;
989 	} else if (!i915_gem_object_has_pages(obj)) {
990 		bo->priority = I915_TTM_PRIO_NO_PAGES;
991 	} else {
992 		struct ttm_resource_manager *man =
993 			ttm_manager_type(bo->bdev, bo->resource->mem_type);
994 
995 		/*
996 		 * If we need to place an LMEM resource which doesn't need CPU
997 		 * access then we should try not to victimize mappable objects
998 		 * first, since we likely end up stealing more of the mappable
999 		 * portion. And likewise when we try to find space for a mappable
1000 		 * object, we know not to ever victimize objects that don't
1001 		 * occupy any mappable pages.
1002 		 */
1003 		if (i915_ttm_cpu_maps_iomem(bo->resource) &&
1004 		    i915_ttm_buddy_man_visible_size(man) < man->size &&
1005 		    !(obj->flags & I915_BO_ALLOC_GPU_ONLY))
1006 			bo->priority = I915_TTM_PRIO_NEEDS_CPU_ACCESS;
1007 		else
1008 			bo->priority = I915_TTM_PRIO_HAS_PAGES;
1009 	}
1010 
1011 	ttm_bo_move_to_lru_tail(bo);
1012 	spin_unlock(&bo->bdev->lru_lock);
1013 }
1014 
1015 /*
1016  * TTM-backed gem object destruction requires some clarification.
1017  * Basically we have two possibilities here. We can either rely on the
1018  * i915 delayed destruction and put the TTM object when the object
1019  * is idle. This would be detected by TTM which would bypass the
1020  * TTM delayed destroy handling. The other approach is to put the TTM
1021  * object early and rely on the TTM destroyed handling, and then free
1022  * the leftover parts of the GEM object once TTM's destroyed list handling is
1023  * complete. For now, we rely on the latter for two reasons:
1024  * a) TTM can evict an object even when it's on the delayed destroy list,
1025  * which in theory allows for complete eviction.
1026  * b) There is work going on in TTM to allow freeing an object even when
1027  * it's not idle, and using the TTM destroyed list handling could help us
1028  * benefit from that.
1029  */
1030 static void i915_ttm_delayed_free(struct drm_i915_gem_object *obj)
1031 {
1032 	GEM_BUG_ON(!obj->ttm.created);
1033 
1034 	ttm_bo_fini(i915_gem_to_ttm(obj));
1035 }
1036 
1037 static vm_fault_t vm_fault_ttm(struct vm_fault *vmf)
1038 {
1039 	struct vm_area_struct *area = vmf->vma;
1040 	struct ttm_buffer_object *bo = area->vm_private_data;
1041 	struct drm_device *dev = bo->base.dev;
1042 	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
1043 	intel_wakeref_t wakeref = NULL;
1044 	vm_fault_t ret;
1045 	int idx;
1046 
1047 	/* Sanity check that we allow writing into this object */
1048 	if (unlikely(i915_gem_object_is_readonly(obj) &&
1049 		     area->vm_flags & VM_WRITE))
1050 		return VM_FAULT_SIGBUS;
1051 
1052 	ret = ttm_bo_vm_reserve(bo, vmf);
1053 	if (ret)
1054 		return ret;
1055 
1056 	if (obj->mm.madv != I915_MADV_WILLNEED) {
1057 		dma_resv_unlock(bo->base.resv);
1058 		return VM_FAULT_SIGBUS;
1059 	}
1060 
1061 	/*
1062 	 * This must be swapped out with shmem ttm_tt (pipeline-gutting).
1063 	 * Calling ttm_bo_validate() here with TTM_PL_SYSTEM should only go as
1064 	 * far as far doing a ttm_bo_move_null(), which should skip all the
1065 	 * other junk.
1066 	 */
1067 	if (!bo->resource) {
1068 		struct ttm_operation_ctx ctx = {
1069 			.interruptible = true,
1070 			.no_wait_gpu = true, /* should be idle already */
1071 		};
1072 		int err;
1073 
1074 		GEM_BUG_ON(!bo->ttm || !(bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED));
1075 
1076 		err = ttm_bo_validate(bo, i915_ttm_sys_placement(), &ctx);
1077 		if (err) {
1078 			dma_resv_unlock(bo->base.resv);
1079 			return VM_FAULT_SIGBUS;
1080 		}
1081 	} else if (!i915_ttm_resource_mappable(bo->resource)) {
1082 		int err = -ENODEV;
1083 		int i;
1084 
1085 		for (i = 0; i < obj->mm.n_placements; i++) {
1086 			struct intel_memory_region *mr = obj->mm.placements[i];
1087 			unsigned int flags;
1088 
1089 			if (!resource_size(&mr->io) && mr->type != INTEL_MEMORY_SYSTEM)
1090 				continue;
1091 
1092 			flags = obj->flags;
1093 			flags &= ~I915_BO_ALLOC_GPU_ONLY;
1094 			err = __i915_ttm_migrate(obj, mr, flags);
1095 			if (!err)
1096 				break;
1097 		}
1098 
1099 		if (err) {
1100 			drm_dbg_ratelimited(dev,
1101 					    "Unable to make resource CPU accessible(err = %pe)\n",
1102 					    ERR_PTR(err));
1103 			dma_resv_unlock(bo->base.resv);
1104 			ret = VM_FAULT_SIGBUS;
1105 			goto out_rpm;
1106 		}
1107 	}
1108 
1109 	if (i915_ttm_cpu_maps_iomem(bo->resource))
1110 		wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm);
1111 
1112 	if (drm_dev_enter(dev, &idx)) {
1113 		ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
1114 					       TTM_BO_VM_NUM_PREFAULT);
1115 		drm_dev_exit(idx);
1116 	} else {
1117 		ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
1118 	}
1119 
1120 	if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
1121 		goto out_rpm;
1122 
1123 	/*
1124 	 * ttm_bo_vm_reserve() already has dma_resv_lock.
1125 	 * userfault_count is protected by dma_resv lock and rpm wakeref.
1126 	 */
1127 	if (ret == VM_FAULT_NOPAGE && wakeref && !obj->userfault_count) {
1128 		obj->userfault_count = 1;
1129 		spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1130 		list_add(&obj->userfault_link, &to_i915(obj->base.dev)->runtime_pm.lmem_userfault_list);
1131 		spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1132 
1133 		GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(bo->resource));
1134 	}
1135 
1136 	if (wakeref && CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND != 0)
1137 		intel_wakeref_auto(&to_i915(obj->base.dev)->runtime_pm.userfault_wakeref,
1138 				   msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND));
1139 
1140 	i915_ttm_adjust_lru(obj);
1141 
1142 	dma_resv_unlock(bo->base.resv);
1143 
1144 out_rpm:
1145 	if (wakeref)
1146 		intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref);
1147 
1148 	return ret;
1149 }
1150 
1151 static int
1152 vm_access_ttm(struct vm_area_struct *area, unsigned long addr,
1153 	      void *buf, int len, int write)
1154 {
1155 	struct drm_i915_gem_object *obj =
1156 		i915_ttm_to_gem(area->vm_private_data);
1157 
1158 	if (i915_gem_object_is_readonly(obj) && write)
1159 		return -EACCES;
1160 
1161 	return ttm_bo_vm_access(area, addr, buf, len, write);
1162 }
1163 
1164 static void ttm_vm_open(struct vm_area_struct *vma)
1165 {
1166 	struct drm_i915_gem_object *obj =
1167 		i915_ttm_to_gem(vma->vm_private_data);
1168 
1169 	GEM_BUG_ON(i915_ttm_is_ghost_object(vma->vm_private_data));
1170 	i915_gem_object_get(obj);
1171 }
1172 
1173 static void ttm_vm_close(struct vm_area_struct *vma)
1174 {
1175 	struct drm_i915_gem_object *obj =
1176 		i915_ttm_to_gem(vma->vm_private_data);
1177 
1178 	GEM_BUG_ON(i915_ttm_is_ghost_object(vma->vm_private_data));
1179 	i915_gem_object_put(obj);
1180 }
1181 
1182 static const struct vm_operations_struct vm_ops_ttm = {
1183 	.fault = vm_fault_ttm,
1184 	.access = vm_access_ttm,
1185 	.open = ttm_vm_open,
1186 	.close = ttm_vm_close,
1187 };
1188 
1189 static u64 i915_ttm_mmap_offset(struct drm_i915_gem_object *obj)
1190 {
1191 	/* The ttm_bo must be allocated with I915_BO_ALLOC_USER */
1192 	GEM_BUG_ON(!drm_mm_node_allocated(&obj->base.vma_node.vm_node));
1193 
1194 	return drm_vma_node_offset_addr(&obj->base.vma_node);
1195 }
1196 
1197 static void i915_ttm_unmap_virtual(struct drm_i915_gem_object *obj)
1198 {
1199 	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
1200 	intel_wakeref_t wakeref = NULL;
1201 
1202 	assert_object_held_shared(obj);
1203 
1204 	if (i915_ttm_cpu_maps_iomem(bo->resource)) {
1205 		wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm);
1206 
1207 		/* userfault_count is protected by obj lock and rpm wakeref. */
1208 		if (obj->userfault_count) {
1209 			spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1210 			list_del(&obj->userfault_link);
1211 			spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1212 			obj->userfault_count = 0;
1213 		}
1214 	}
1215 
1216 	GEM_WARN_ON(obj->userfault_count);
1217 
1218 	ttm_bo_unmap_virtual(i915_gem_to_ttm(obj));
1219 
1220 	if (wakeref)
1221 		intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref);
1222 }
1223 
1224 static const struct drm_i915_gem_object_ops i915_gem_ttm_obj_ops = {
1225 	.name = "i915_gem_object_ttm",
1226 	.flags = I915_GEM_OBJECT_IS_SHRINKABLE |
1227 		 I915_GEM_OBJECT_SELF_MANAGED_SHRINK_LIST,
1228 
1229 	.get_pages = i915_ttm_get_pages,
1230 	.put_pages = i915_ttm_put_pages,
1231 	.truncate = i915_ttm_truncate,
1232 	.shrink = i915_ttm_shrink,
1233 
1234 	.adjust_lru = i915_ttm_adjust_lru,
1235 	.delayed_free = i915_ttm_delayed_free,
1236 	.migrate = i915_ttm_migrate,
1237 
1238 	.mmap_offset = i915_ttm_mmap_offset,
1239 	.unmap_virtual = i915_ttm_unmap_virtual,
1240 	.mmap_ops = &vm_ops_ttm,
1241 };
1242 
1243 void i915_ttm_bo_destroy(struct ttm_buffer_object *bo)
1244 {
1245 	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
1246 
1247 	i915_gem_object_release_memory_region(obj);
1248 	mutex_destroy(&obj->ttm.get_io_page.lock);
1249 
1250 	if (obj->ttm.created) {
1251 		/*
1252 		 * We freely manage the shrinker LRU outide of the mm.pages life
1253 		 * cycle. As a result when destroying the object we should be
1254 		 * extra paranoid and ensure we remove it from the LRU, before
1255 		 * we free the object.
1256 		 *
1257 		 * Touching the ttm_shrinkable outside of the object lock here
1258 		 * should be safe now that the last GEM object ref was dropped.
1259 		 */
1260 		if (obj->mm.ttm_shrinkable)
1261 			i915_gem_object_make_unshrinkable(obj);
1262 
1263 		i915_ttm_backup_free(obj);
1264 
1265 		/* This releases all gem object bindings to the backend. */
1266 		__i915_gem_free_object(obj);
1267 
1268 		call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
1269 	} else {
1270 		__i915_gem_object_fini(obj);
1271 	}
1272 }
1273 
1274 /*
1275  * __i915_gem_ttm_object_init - Initialize a ttm-backed i915 gem object
1276  * @mem: The initial memory region for the object.
1277  * @obj: The gem object.
1278  * @size: Object size in bytes.
1279  * @flags: gem object flags.
1280  *
1281  * Return: 0 on success, negative error code on failure.
1282  */
1283 int __i915_gem_ttm_object_init(struct intel_memory_region *mem,
1284 			       struct drm_i915_gem_object *obj,
1285 			       resource_size_t offset,
1286 			       resource_size_t size,
1287 			       resource_size_t page_size,
1288 			       unsigned int flags)
1289 {
1290 	static struct lock_class_key lock_class;
1291 	struct drm_i915_private *i915 = mem->i915;
1292 	struct ttm_operation_ctx ctx = {
1293 		.interruptible = true,
1294 		.no_wait_gpu = false,
1295 	};
1296 	enum ttm_bo_type bo_type;
1297 	int ret;
1298 
1299 	drm_gem_private_object_init(&i915->drm, &obj->base, size);
1300 	i915_gem_object_init(obj, &i915_gem_ttm_obj_ops, &lock_class, flags);
1301 
1302 	obj->bo_offset = offset;
1303 
1304 	/* Don't put on a region list until we're either locked or fully initialized. */
1305 	obj->mm.region = mem;
1306 	INIT_LIST_HEAD(&obj->mm.region_link);
1307 
1308 	INIT_RADIX_TREE(&obj->ttm.get_io_page.radix, GFP_KERNEL | __GFP_NOWARN);
1309 	mutex_init(&obj->ttm.get_io_page.lock);
1310 	bo_type = (obj->flags & I915_BO_ALLOC_USER) ? ttm_bo_type_device :
1311 		ttm_bo_type_kernel;
1312 
1313 	obj->base.vma_node.driver_private = i915_gem_to_ttm(obj);
1314 
1315 	/* Forcing the page size is kernel internal only */
1316 	GEM_BUG_ON(page_size && obj->mm.n_placements);
1317 
1318 	/*
1319 	 * Keep an extra shrink pin to prevent the object from being made
1320 	 * shrinkable too early. If the ttm_tt is ever allocated in shmem, we
1321 	 * drop the pin. The TTM backend manages the shrinker LRU itself,
1322 	 * outside of the normal mm.pages life cycle.
1323 	 */
1324 	i915_gem_object_make_unshrinkable(obj);
1325 
1326 	/*
1327 	 * If this function fails, it will call the destructor, but
1328 	 * our caller still owns the object. So no freeing in the
1329 	 * destructor until obj->ttm.created is true.
1330 	 * Similarly, in delayed_destroy, we can't call ttm_bo_fini()
1331 	 * until successful initialization.
1332 	 */
1333 	ret = ttm_bo_init_reserved(&i915->bdev, i915_gem_to_ttm(obj), bo_type,
1334 				   &i915_sys_placement, page_size >> PAGE_SHIFT,
1335 				   &ctx, NULL, NULL, i915_ttm_bo_destroy);
1336 
1337 	/*
1338 	 * XXX: The ttm_bo_init_reserved() functions returns -ENOSPC if the size
1339 	 * is too big to add vma. The direct function that returns -ENOSPC is
1340 	 * drm_mm_insert_node_in_range(). To handle the same error as other code
1341 	 * that returns -E2BIG when the size is too large, it converts -ENOSPC to
1342 	 * -E2BIG.
1343 	 */
1344 	if (size >> PAGE_SHIFT > INT_MAX && ret == -ENOSPC)
1345 		ret = -E2BIG;
1346 
1347 	if (ret)
1348 		return i915_ttm_err_to_gem(ret);
1349 
1350 	obj->ttm.created = true;
1351 	i915_gem_object_release_memory_region(obj);
1352 	i915_gem_object_init_memory_region(obj, mem);
1353 	i915_ttm_adjust_domains_after_move(obj);
1354 	i915_ttm_adjust_gem_after_move(obj);
1355 	i915_gem_object_unlock(obj);
1356 
1357 	return 0;
1358 }
1359 
1360 static const struct intel_memory_region_ops ttm_system_region_ops = {
1361 	.init_object = __i915_gem_ttm_object_init,
1362 	.release = intel_region_ttm_fini,
1363 };
1364 
1365 struct intel_memory_region *
1366 i915_gem_ttm_system_setup(struct drm_i915_private *i915,
1367 			  u16 type, u16 instance)
1368 {
1369 	struct intel_memory_region *mr;
1370 
1371 	mr = intel_memory_region_create(i915, 0,
1372 					totalram_pages() << PAGE_SHIFT,
1373 					PAGE_SIZE, 0, 0,
1374 					type, instance,
1375 					&ttm_system_region_ops);
1376 	if (IS_ERR(mr))
1377 		return mr;
1378 
1379 	intel_memory_region_set_name(mr, "system-ttm");
1380 	return mr;
1381 }
1382