1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include <linux/shmem_fs.h> 7 8 #include <drm/ttm/ttm_placement.h> 9 #include <drm/ttm/ttm_tt.h> 10 #include <drm/drm_buddy.h> 11 12 #include "i915_drv.h" 13 #include "i915_ttm_buddy_manager.h" 14 #include "intel_memory_region.h" 15 #include "intel_region_ttm.h" 16 17 #include "gem/i915_gem_mman.h" 18 #include "gem/i915_gem_object.h" 19 #include "gem/i915_gem_region.h" 20 #include "gem/i915_gem_ttm.h" 21 #include "gem/i915_gem_ttm_move.h" 22 #include "gem/i915_gem_ttm_pm.h" 23 #include "gt/intel_gpu_commands.h" 24 25 #define I915_TTM_PRIO_PURGE 0 26 #define I915_TTM_PRIO_NO_PAGES 1 27 #define I915_TTM_PRIO_HAS_PAGES 2 28 #define I915_TTM_PRIO_NEEDS_CPU_ACCESS 3 29 30 /* 31 * Size of struct ttm_place vector in on-stack struct ttm_placement allocs 32 */ 33 #define I915_TTM_MAX_PLACEMENTS INTEL_REGION_UNKNOWN 34 35 /** 36 * struct i915_ttm_tt - TTM page vector with additional private information 37 * @ttm: The base TTM page vector. 38 * @dev: The struct device used for dma mapping and unmapping. 39 * @cached_rsgt: The cached scatter-gather table. 40 * @is_shmem: Set if using shmem. 41 * @filp: The shmem file, if using shmem backend. 42 * 43 * Note that DMA may be going on right up to the point where the page- 44 * vector is unpopulated in delayed destroy. Hence keep the 45 * scatter-gather table mapped and cached up to that point. This is 46 * different from the cached gem object io scatter-gather table which 47 * doesn't have an associated dma mapping. 48 */ 49 struct i915_ttm_tt { 50 struct ttm_tt ttm; 51 struct device *dev; 52 struct i915_refct_sgt cached_rsgt; 53 54 bool is_shmem; 55 struct file *filp; 56 }; 57 58 static const struct ttm_place sys_placement_flags = { 59 .fpfn = 0, 60 .lpfn = 0, 61 .mem_type = I915_PL_SYSTEM, 62 .flags = 0, 63 }; 64 65 static struct ttm_placement i915_sys_placement = { 66 .num_placement = 1, 67 .placement = &sys_placement_flags, 68 }; 69 70 /** 71 * i915_ttm_sys_placement - Return the struct ttm_placement to be 72 * used for an object in system memory. 73 * 74 * Rather than making the struct extern, use this 75 * function. 76 * 77 * Return: A pointer to a static variable for sys placement. 78 */ 79 struct ttm_placement *i915_ttm_sys_placement(void) 80 { 81 return &i915_sys_placement; 82 } 83 84 static int i915_ttm_err_to_gem(int err) 85 { 86 /* Fastpath */ 87 if (likely(!err)) 88 return 0; 89 90 switch (err) { 91 case -EBUSY: 92 /* 93 * TTM likes to convert -EDEADLK to -EBUSY, and wants us to 94 * restart the operation, since we don't record the contending 95 * lock. We use -EAGAIN to restart. 96 */ 97 return -EAGAIN; 98 case -ENOSPC: 99 /* 100 * Memory type / region is full, and we can't evict. 101 * Except possibly system, that returns -ENOMEM; 102 */ 103 return -ENXIO; 104 default: 105 break; 106 } 107 108 return err; 109 } 110 111 static enum ttm_caching 112 i915_ttm_select_tt_caching(const struct drm_i915_gem_object *obj) 113 { 114 /* 115 * Objects only allowed in system get cached cpu-mappings, or when 116 * evicting lmem-only buffers to system for swapping. Other objects get 117 * WC mapping for now. Even if in system. 118 */ 119 if (obj->mm.n_placements <= 1) 120 return ttm_cached; 121 122 return ttm_write_combined; 123 } 124 125 static void 126 i915_ttm_place_from_region(const struct intel_memory_region *mr, 127 struct ttm_place *place, 128 resource_size_t offset, 129 resource_size_t size, 130 unsigned int flags) 131 { 132 memset(place, 0, sizeof(*place)); 133 place->mem_type = intel_region_to_ttm_type(mr); 134 135 if (mr->type == INTEL_MEMORY_SYSTEM) 136 return; 137 138 if (flags & I915_BO_ALLOC_CONTIGUOUS) 139 place->flags |= TTM_PL_FLAG_CONTIGUOUS; 140 if (offset != I915_BO_INVALID_OFFSET) { 141 WARN_ON(overflows_type(offset >> PAGE_SHIFT, place->fpfn)); 142 place->fpfn = offset >> PAGE_SHIFT; 143 WARN_ON(overflows_type(place->fpfn + (size >> PAGE_SHIFT), place->lpfn)); 144 place->lpfn = place->fpfn + (size >> PAGE_SHIFT); 145 } else if (resource_size(&mr->io) && resource_size(&mr->io) < mr->total) { 146 if (flags & I915_BO_ALLOC_GPU_ONLY) { 147 place->flags |= TTM_PL_FLAG_TOPDOWN; 148 } else { 149 place->fpfn = 0; 150 WARN_ON(overflows_type(resource_size(&mr->io) >> PAGE_SHIFT, place->lpfn)); 151 place->lpfn = resource_size(&mr->io) >> PAGE_SHIFT; 152 } 153 } 154 } 155 156 static void 157 i915_ttm_placement_from_obj(const struct drm_i915_gem_object *obj, 158 struct ttm_place *places, 159 struct ttm_placement *placement) 160 { 161 unsigned int num_allowed = obj->mm.n_placements; 162 unsigned int flags = obj->flags; 163 unsigned int i; 164 165 i915_ttm_place_from_region(num_allowed ? obj->mm.placements[0] : 166 obj->mm.region, &places[0], obj->bo_offset, 167 obj->base.size, flags); 168 169 /* Cache this on object? */ 170 for (i = 0; i < num_allowed; ++i) { 171 i915_ttm_place_from_region(obj->mm.placements[i], 172 &places[i + 1], obj->bo_offset, 173 obj->base.size, flags); 174 places[i + 1].flags |= TTM_PL_FLAG_FALLBACK; 175 } 176 177 placement->num_placement = num_allowed + 1; 178 placement->placement = places; 179 } 180 181 static int i915_ttm_tt_shmem_populate(struct ttm_device *bdev, 182 struct ttm_tt *ttm, 183 struct ttm_operation_ctx *ctx) 184 { 185 struct drm_i915_private *i915 = container_of(bdev, typeof(*i915), bdev); 186 struct intel_memory_region *mr = i915->mm.regions[INTEL_MEMORY_SYSTEM]; 187 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 188 const unsigned int max_segment = i915_sg_segment_size(i915->drm.dev); 189 const size_t size = (size_t)ttm->num_pages << PAGE_SHIFT; 190 struct file *filp = i915_tt->filp; 191 struct sgt_iter sgt_iter; 192 struct sg_table *st; 193 struct page *page; 194 unsigned long i; 195 int err; 196 197 if (!filp) { 198 struct address_space *mapping; 199 gfp_t mask; 200 201 filp = shmem_file_setup("i915-shmem-tt", size, VM_NORESERVE); 202 if (IS_ERR(filp)) 203 return PTR_ERR(filp); 204 205 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 206 207 mapping = filp->f_mapping; 208 mapping_set_gfp_mask(mapping, mask); 209 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM)); 210 211 i915_tt->filp = filp; 212 } 213 214 st = &i915_tt->cached_rsgt.table; 215 err = shmem_sg_alloc_table(i915, st, size, mr, filp->f_mapping, 216 max_segment); 217 if (err) 218 return err; 219 220 err = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 221 DMA_ATTR_SKIP_CPU_SYNC); 222 if (err) 223 goto err_free_st; 224 225 i = 0; 226 for_each_sgt_page(page, sgt_iter, st) 227 ttm->pages[i++] = page; 228 229 if (ttm->page_flags & TTM_TT_FLAG_SWAPPED) 230 ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED; 231 232 return 0; 233 234 err_free_st: 235 shmem_sg_free_table(st, filp->f_mapping, false, false); 236 237 return err; 238 } 239 240 static void i915_ttm_tt_shmem_unpopulate(struct ttm_tt *ttm) 241 { 242 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 243 bool backup = ttm->page_flags & TTM_TT_FLAG_SWAPPED; 244 struct sg_table *st = &i915_tt->cached_rsgt.table; 245 246 shmem_sg_free_table(st, file_inode(i915_tt->filp)->i_mapping, 247 backup, backup); 248 } 249 250 static void i915_ttm_tt_release(struct kref *ref) 251 { 252 struct i915_ttm_tt *i915_tt = 253 container_of(ref, typeof(*i915_tt), cached_rsgt.kref); 254 struct sg_table *st = &i915_tt->cached_rsgt.table; 255 256 GEM_WARN_ON(st->sgl); 257 258 kfree(i915_tt); 259 } 260 261 static const struct i915_refct_sgt_ops tt_rsgt_ops = { 262 .release = i915_ttm_tt_release 263 }; 264 265 static struct ttm_tt *i915_ttm_tt_create(struct ttm_buffer_object *bo, 266 uint32_t page_flags) 267 { 268 struct drm_i915_private *i915 = container_of(bo->bdev, typeof(*i915), 269 bdev); 270 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 271 unsigned long ccs_pages = 0; 272 enum ttm_caching caching; 273 struct i915_ttm_tt *i915_tt; 274 int ret; 275 276 if (i915_ttm_is_ghost_object(bo)) 277 return NULL; 278 279 i915_tt = kzalloc(sizeof(*i915_tt), GFP_KERNEL); 280 if (!i915_tt) 281 return NULL; 282 283 if (obj->flags & I915_BO_ALLOC_CPU_CLEAR && (!bo->resource || 284 ttm_manager_type(bo->bdev, bo->resource->mem_type)->use_tt)) 285 page_flags |= TTM_TT_FLAG_ZERO_ALLOC; 286 287 caching = i915_ttm_select_tt_caching(obj); 288 if (i915_gem_object_is_shrinkable(obj) && caching == ttm_cached) { 289 page_flags |= TTM_TT_FLAG_EXTERNAL | 290 TTM_TT_FLAG_EXTERNAL_MAPPABLE; 291 i915_tt->is_shmem = true; 292 } 293 294 if (i915_gem_object_needs_ccs_pages(obj)) 295 ccs_pages = DIV_ROUND_UP(DIV_ROUND_UP(bo->base.size, 296 NUM_BYTES_PER_CCS_BYTE), 297 PAGE_SIZE); 298 299 ret = ttm_tt_init(&i915_tt->ttm, bo, page_flags, caching, ccs_pages); 300 if (ret) 301 goto err_free; 302 303 __i915_refct_sgt_init(&i915_tt->cached_rsgt, bo->base.size, 304 &tt_rsgt_ops); 305 306 i915_tt->dev = obj->base.dev->dev; 307 308 return &i915_tt->ttm; 309 310 err_free: 311 kfree(i915_tt); 312 return NULL; 313 } 314 315 static int i915_ttm_tt_populate(struct ttm_device *bdev, 316 struct ttm_tt *ttm, 317 struct ttm_operation_ctx *ctx) 318 { 319 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 320 321 if (i915_tt->is_shmem) 322 return i915_ttm_tt_shmem_populate(bdev, ttm, ctx); 323 324 return ttm_pool_alloc(&bdev->pool, ttm, ctx); 325 } 326 327 static void i915_ttm_tt_unpopulate(struct ttm_device *bdev, struct ttm_tt *ttm) 328 { 329 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 330 struct sg_table *st = &i915_tt->cached_rsgt.table; 331 332 if (st->sgl) 333 dma_unmap_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0); 334 335 if (i915_tt->is_shmem) { 336 i915_ttm_tt_shmem_unpopulate(ttm); 337 } else { 338 sg_free_table(st); 339 ttm_pool_free(&bdev->pool, ttm); 340 } 341 } 342 343 static void i915_ttm_tt_destroy(struct ttm_device *bdev, struct ttm_tt *ttm) 344 { 345 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 346 347 if (i915_tt->filp) 348 fput(i915_tt->filp); 349 350 ttm_tt_fini(ttm); 351 i915_refct_sgt_put(&i915_tt->cached_rsgt); 352 } 353 354 static bool i915_ttm_eviction_valuable(struct ttm_buffer_object *bo, 355 const struct ttm_place *place) 356 { 357 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 358 359 if (i915_ttm_is_ghost_object(bo)) 360 return false; 361 362 /* 363 * EXTERNAL objects should never be swapped out by TTM, instead we need 364 * to handle that ourselves. TTM will already skip such objects for us, 365 * but we would like to avoid grabbing locks for no good reason. 366 */ 367 if (bo->ttm && bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 368 return false; 369 370 /* Will do for now. Our pinned objects are still on TTM's LRU lists */ 371 if (!i915_gem_object_evictable(obj)) 372 return false; 373 374 return ttm_bo_eviction_valuable(bo, place); 375 } 376 377 static void i915_ttm_evict_flags(struct ttm_buffer_object *bo, 378 struct ttm_placement *placement) 379 { 380 *placement = i915_sys_placement; 381 } 382 383 /** 384 * i915_ttm_free_cached_io_rsgt - Free object cached LMEM information 385 * @obj: The GEM object 386 * This function frees any LMEM-related information that is cached on 387 * the object. For example the radix tree for fast page lookup and the 388 * cached refcounted sg-table 389 */ 390 void i915_ttm_free_cached_io_rsgt(struct drm_i915_gem_object *obj) 391 { 392 struct radix_tree_iter iter; 393 void __rcu **slot; 394 395 if (!obj->ttm.cached_io_rsgt) 396 return; 397 398 rcu_read_lock(); 399 radix_tree_for_each_slot(slot, &obj->ttm.get_io_page.radix, &iter, 0) 400 radix_tree_delete(&obj->ttm.get_io_page.radix, iter.index); 401 rcu_read_unlock(); 402 403 i915_refct_sgt_put(obj->ttm.cached_io_rsgt); 404 obj->ttm.cached_io_rsgt = NULL; 405 } 406 407 /** 408 * i915_ttm_purge - Clear an object of its memory 409 * @obj: The object 410 * 411 * This function is called to clear an object of it's memory when it is 412 * marked as not needed anymore. 413 * 414 * Return: 0 on success, negative error code on failure. 415 */ 416 int i915_ttm_purge(struct drm_i915_gem_object *obj) 417 { 418 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 419 struct i915_ttm_tt *i915_tt = 420 container_of(bo->ttm, typeof(*i915_tt), ttm); 421 struct ttm_operation_ctx ctx = { 422 .interruptible = true, 423 .no_wait_gpu = false, 424 }; 425 struct ttm_placement place = {}; 426 int ret; 427 428 if (obj->mm.madv == __I915_MADV_PURGED) 429 return 0; 430 431 ret = ttm_bo_validate(bo, &place, &ctx); 432 if (ret) 433 return ret; 434 435 if (bo->ttm && i915_tt->filp) { 436 /* 437 * The below fput(which eventually calls shmem_truncate) might 438 * be delayed by worker, so when directly called to purge the 439 * pages(like by the shrinker) we should try to be more 440 * aggressive and release the pages immediately. 441 */ 442 shmem_truncate_range(file_inode(i915_tt->filp), 443 0, (loff_t)-1); 444 fput(fetch_and_zero(&i915_tt->filp)); 445 } 446 447 obj->write_domain = 0; 448 obj->read_domains = 0; 449 i915_ttm_adjust_gem_after_move(obj); 450 i915_ttm_free_cached_io_rsgt(obj); 451 obj->mm.madv = __I915_MADV_PURGED; 452 453 return 0; 454 } 455 456 static int i915_ttm_shrink(struct drm_i915_gem_object *obj, unsigned int flags) 457 { 458 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 459 struct i915_ttm_tt *i915_tt = 460 container_of(bo->ttm, typeof(*i915_tt), ttm); 461 struct ttm_operation_ctx ctx = { 462 .interruptible = true, 463 .no_wait_gpu = flags & I915_GEM_OBJECT_SHRINK_NO_GPU_WAIT, 464 }; 465 struct ttm_placement place = {}; 466 int ret; 467 468 if (!bo->ttm || i915_ttm_cpu_maps_iomem(bo->resource)) 469 return 0; 470 471 GEM_BUG_ON(!i915_tt->is_shmem); 472 473 if (!i915_tt->filp) 474 return 0; 475 476 ret = ttm_bo_wait_ctx(bo, &ctx); 477 if (ret) 478 return ret; 479 480 switch (obj->mm.madv) { 481 case I915_MADV_DONTNEED: 482 return i915_ttm_purge(obj); 483 case __I915_MADV_PURGED: 484 return 0; 485 } 486 487 if (bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED) 488 return 0; 489 490 bo->ttm->page_flags |= TTM_TT_FLAG_SWAPPED; 491 ret = ttm_bo_validate(bo, &place, &ctx); 492 if (ret) { 493 bo->ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED; 494 return ret; 495 } 496 497 if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK) 498 __shmem_writeback(obj->base.size, i915_tt->filp->f_mapping); 499 500 return 0; 501 } 502 503 static void i915_ttm_delete_mem_notify(struct ttm_buffer_object *bo) 504 { 505 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 506 507 /* 508 * This gets called twice by ttm, so long as we have a ttm resource or 509 * ttm_tt then we can still safely call this. Due to pipeline-gutting, 510 * we maybe have NULL bo->resource, but in that case we should always 511 * have a ttm alive (like if the pages are swapped out). 512 */ 513 if ((bo->resource || bo->ttm) && !i915_ttm_is_ghost_object(bo)) { 514 __i915_gem_object_pages_fini(obj); 515 i915_ttm_free_cached_io_rsgt(obj); 516 } 517 } 518 519 static struct i915_refct_sgt *i915_ttm_tt_get_st(struct ttm_tt *ttm) 520 { 521 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 522 struct sg_table *st; 523 int ret; 524 525 if (i915_tt->cached_rsgt.table.sgl) 526 return i915_refct_sgt_get(&i915_tt->cached_rsgt); 527 528 st = &i915_tt->cached_rsgt.table; 529 ret = sg_alloc_table_from_pages_segment(st, 530 ttm->pages, ttm->num_pages, 531 0, (unsigned long)ttm->num_pages << PAGE_SHIFT, 532 i915_sg_segment_size(i915_tt->dev), GFP_KERNEL); 533 if (ret) { 534 st->sgl = NULL; 535 return ERR_PTR(ret); 536 } 537 538 ret = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0); 539 if (ret) { 540 sg_free_table(st); 541 return ERR_PTR(ret); 542 } 543 544 return i915_refct_sgt_get(&i915_tt->cached_rsgt); 545 } 546 547 /** 548 * i915_ttm_resource_get_st - Get a refcounted sg-table pointing to the 549 * resource memory 550 * @obj: The GEM object used for sg-table caching 551 * @res: The struct ttm_resource for which an sg-table is requested. 552 * 553 * This function returns a refcounted sg-table representing the memory 554 * pointed to by @res. If @res is the object's current resource it may also 555 * cache the sg_table on the object or attempt to access an already cached 556 * sg-table. The refcounted sg-table needs to be put when no-longer in use. 557 * 558 * Return: A valid pointer to a struct i915_refct_sgt or error pointer on 559 * failure. 560 */ 561 struct i915_refct_sgt * 562 i915_ttm_resource_get_st(struct drm_i915_gem_object *obj, 563 struct ttm_resource *res) 564 { 565 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 566 u32 page_alignment; 567 568 if (!i915_ttm_gtt_binds_lmem(res)) 569 return i915_ttm_tt_get_st(bo->ttm); 570 571 page_alignment = bo->page_alignment << PAGE_SHIFT; 572 if (!page_alignment) 573 page_alignment = obj->mm.region->min_page_size; 574 575 /* 576 * If CPU mapping differs, we need to add the ttm_tt pages to 577 * the resulting st. Might make sense for GGTT. 578 */ 579 GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(res)); 580 if (bo->resource == res) { 581 if (!obj->ttm.cached_io_rsgt) { 582 struct i915_refct_sgt *rsgt; 583 584 rsgt = intel_region_ttm_resource_to_rsgt(obj->mm.region, 585 res, 586 page_alignment); 587 if (IS_ERR(rsgt)) 588 return rsgt; 589 590 obj->ttm.cached_io_rsgt = rsgt; 591 } 592 return i915_refct_sgt_get(obj->ttm.cached_io_rsgt); 593 } 594 595 return intel_region_ttm_resource_to_rsgt(obj->mm.region, res, 596 page_alignment); 597 } 598 599 static int i915_ttm_truncate(struct drm_i915_gem_object *obj) 600 { 601 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 602 long err; 603 604 WARN_ON_ONCE(obj->mm.madv == I915_MADV_WILLNEED); 605 606 err = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, 607 true, 15 * HZ); 608 if (err < 0) 609 return err; 610 if (err == 0) 611 return -EBUSY; 612 613 err = i915_ttm_move_notify(bo); 614 if (err) 615 return err; 616 617 return i915_ttm_purge(obj); 618 } 619 620 static void i915_ttm_swap_notify(struct ttm_buffer_object *bo) 621 { 622 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 623 int ret; 624 625 if (i915_ttm_is_ghost_object(bo)) 626 return; 627 628 ret = i915_ttm_move_notify(bo); 629 GEM_WARN_ON(ret); 630 GEM_WARN_ON(obj->ttm.cached_io_rsgt); 631 if (!ret && obj->mm.madv != I915_MADV_WILLNEED) 632 i915_ttm_purge(obj); 633 } 634 635 /** 636 * i915_ttm_resource_mappable - Return true if the ttm resource is CPU 637 * accessible. 638 * @res: The TTM resource to check. 639 * 640 * This is interesting on small-BAR systems where we may encounter lmem objects 641 * that can't be accessed via the CPU. 642 */ 643 bool i915_ttm_resource_mappable(struct ttm_resource *res) 644 { 645 struct i915_ttm_buddy_resource *bman_res = to_ttm_buddy_resource(res); 646 647 if (!i915_ttm_cpu_maps_iomem(res)) 648 return true; 649 650 return bman_res->used_visible_size == PFN_UP(bman_res->base.size); 651 } 652 653 static int i915_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem) 654 { 655 struct drm_i915_gem_object *obj = i915_ttm_to_gem(mem->bo); 656 bool unknown_state; 657 658 if (i915_ttm_is_ghost_object(mem->bo)) 659 return -EINVAL; 660 661 if (!kref_get_unless_zero(&obj->base.refcount)) 662 return -EINVAL; 663 664 assert_object_held(obj); 665 666 unknown_state = i915_gem_object_has_unknown_state(obj); 667 i915_gem_object_put(obj); 668 if (unknown_state) 669 return -EINVAL; 670 671 if (!i915_ttm_cpu_maps_iomem(mem)) 672 return 0; 673 674 if (!i915_ttm_resource_mappable(mem)) 675 return -EINVAL; 676 677 mem->bus.caching = ttm_write_combined; 678 mem->bus.is_iomem = true; 679 680 return 0; 681 } 682 683 static unsigned long i915_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 684 unsigned long page_offset) 685 { 686 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 687 struct scatterlist *sg; 688 unsigned long base; 689 unsigned int ofs; 690 691 GEM_BUG_ON(i915_ttm_is_ghost_object(bo)); 692 GEM_WARN_ON(bo->ttm); 693 694 base = obj->mm.region->iomap.base - obj->mm.region->region.start; 695 sg = i915_gem_object_page_iter_get_sg(obj, &obj->ttm.get_io_page, page_offset, &ofs); 696 697 return ((base + sg_dma_address(sg)) >> PAGE_SHIFT) + ofs; 698 } 699 700 static int i915_ttm_access_memory(struct ttm_buffer_object *bo, 701 unsigned long offset, void *buf, 702 int len, int write) 703 { 704 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 705 resource_size_t iomap = obj->mm.region->iomap.base - 706 obj->mm.region->region.start; 707 unsigned long page = offset >> PAGE_SHIFT; 708 unsigned long bytes_left = len; 709 710 /* 711 * TODO: For now just let it fail if the resource is non-mappable, 712 * otherwise we need to perform the memcpy from the gpu here, without 713 * interfering with the object (like moving the entire thing). 714 */ 715 if (!i915_ttm_resource_mappable(bo->resource)) 716 return -EIO; 717 718 offset -= page << PAGE_SHIFT; 719 do { 720 unsigned long bytes = min(bytes_left, PAGE_SIZE - offset); 721 void __iomem *ptr; 722 dma_addr_t daddr; 723 724 daddr = i915_gem_object_get_dma_address(obj, page); 725 ptr = ioremap_wc(iomap + daddr + offset, bytes); 726 if (!ptr) 727 return -EIO; 728 729 if (write) 730 memcpy_toio(ptr, buf, bytes); 731 else 732 memcpy_fromio(buf, ptr, bytes); 733 iounmap(ptr); 734 735 page++; 736 buf += bytes; 737 bytes_left -= bytes; 738 offset = 0; 739 } while (bytes_left); 740 741 return len; 742 } 743 744 /* 745 * All callbacks need to take care not to downcast a struct ttm_buffer_object 746 * without checking its subclass, since it might be a TTM ghost object. 747 */ 748 static struct ttm_device_funcs i915_ttm_bo_driver = { 749 .ttm_tt_create = i915_ttm_tt_create, 750 .ttm_tt_populate = i915_ttm_tt_populate, 751 .ttm_tt_unpopulate = i915_ttm_tt_unpopulate, 752 .ttm_tt_destroy = i915_ttm_tt_destroy, 753 .eviction_valuable = i915_ttm_eviction_valuable, 754 .evict_flags = i915_ttm_evict_flags, 755 .move = i915_ttm_move, 756 .swap_notify = i915_ttm_swap_notify, 757 .delete_mem_notify = i915_ttm_delete_mem_notify, 758 .io_mem_reserve = i915_ttm_io_mem_reserve, 759 .io_mem_pfn = i915_ttm_io_mem_pfn, 760 .access_memory = i915_ttm_access_memory, 761 }; 762 763 /** 764 * i915_ttm_driver - Return a pointer to the TTM device funcs 765 * 766 * Return: Pointer to statically allocated TTM device funcs. 767 */ 768 struct ttm_device_funcs *i915_ttm_driver(void) 769 { 770 return &i915_ttm_bo_driver; 771 } 772 773 static int __i915_ttm_get_pages(struct drm_i915_gem_object *obj, 774 struct ttm_placement *placement) 775 { 776 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 777 struct ttm_operation_ctx ctx = { 778 .interruptible = true, 779 .no_wait_gpu = false, 780 }; 781 struct ttm_placement initial_placement; 782 struct ttm_place initial_place; 783 int ret; 784 785 /* First try only the requested placement. No eviction. */ 786 initial_placement.num_placement = 1; 787 memcpy(&initial_place, placement->placement, sizeof(struct ttm_place)); 788 initial_place.flags |= TTM_PL_FLAG_DESIRED; 789 initial_placement.placement = &initial_place; 790 ret = ttm_bo_validate(bo, &initial_placement, &ctx); 791 if (ret) { 792 ret = i915_ttm_err_to_gem(ret); 793 /* 794 * Anything that wants to restart the operation gets to 795 * do that. 796 */ 797 if (ret == -EDEADLK || ret == -EINTR || ret == -ERESTARTSYS || 798 ret == -EAGAIN) 799 return ret; 800 801 /* 802 * If the initial attempt fails, allow all accepted placements, 803 * evicting if necessary. 804 */ 805 ret = ttm_bo_validate(bo, placement, &ctx); 806 if (ret) 807 return i915_ttm_err_to_gem(ret); 808 } 809 810 if (bo->ttm && !ttm_tt_is_populated(bo->ttm)) { 811 ret = ttm_tt_populate(bo->bdev, bo->ttm, &ctx); 812 if (ret) 813 return ret; 814 815 i915_ttm_adjust_domains_after_move(obj); 816 i915_ttm_adjust_gem_after_move(obj); 817 } 818 819 if (!i915_gem_object_has_pages(obj)) { 820 struct i915_refct_sgt *rsgt = 821 i915_ttm_resource_get_st(obj, bo->resource); 822 823 if (IS_ERR(rsgt)) 824 return PTR_ERR(rsgt); 825 826 GEM_BUG_ON(obj->mm.rsgt); 827 obj->mm.rsgt = rsgt; 828 __i915_gem_object_set_pages(obj, &rsgt->table); 829 } 830 831 GEM_BUG_ON(bo->ttm && ((obj->base.size >> PAGE_SHIFT) < bo->ttm->num_pages)); 832 i915_ttm_adjust_lru(obj); 833 return ret; 834 } 835 836 static int i915_ttm_get_pages(struct drm_i915_gem_object *obj) 837 { 838 struct ttm_place places[I915_TTM_MAX_PLACEMENTS + 1]; 839 struct ttm_placement placement; 840 841 /* restricted by sg_alloc_table */ 842 if (overflows_type(obj->base.size >> PAGE_SHIFT, unsigned int)) 843 return -E2BIG; 844 845 GEM_BUG_ON(obj->mm.n_placements > I915_TTM_MAX_PLACEMENTS); 846 847 /* Move to the requested placement. */ 848 i915_ttm_placement_from_obj(obj, places, &placement); 849 850 return __i915_ttm_get_pages(obj, &placement); 851 } 852 853 /** 854 * DOC: Migration vs eviction 855 * 856 * GEM migration may not be the same as TTM migration / eviction. If 857 * the TTM core decides to evict an object it may be evicted to a 858 * TTM memory type that is not in the object's allowable GEM regions, or 859 * in fact theoretically to a TTM memory type that doesn't correspond to 860 * a GEM memory region. In that case the object's GEM region is not 861 * updated, and the data is migrated back to the GEM region at 862 * get_pages time. TTM may however set up CPU ptes to the object even 863 * when it is evicted. 864 * Gem forced migration using the i915_ttm_migrate() op, is allowed even 865 * to regions that are not in the object's list of allowable placements. 866 */ 867 static int __i915_ttm_migrate(struct drm_i915_gem_object *obj, 868 struct intel_memory_region *mr, 869 unsigned int flags) 870 { 871 struct ttm_place requested; 872 struct ttm_placement placement; 873 int ret; 874 875 i915_ttm_place_from_region(mr, &requested, obj->bo_offset, 876 obj->base.size, flags); 877 placement.num_placement = 1; 878 placement.placement = &requested; 879 880 ret = __i915_ttm_get_pages(obj, &placement); 881 if (ret) 882 return ret; 883 884 /* 885 * Reinitialize the region bindings. This is primarily 886 * required for objects where the new region is not in 887 * its allowable placements. 888 */ 889 if (obj->mm.region != mr) { 890 i915_gem_object_release_memory_region(obj); 891 i915_gem_object_init_memory_region(obj, mr); 892 } 893 894 return 0; 895 } 896 897 static int i915_ttm_migrate(struct drm_i915_gem_object *obj, 898 struct intel_memory_region *mr, 899 unsigned int flags) 900 { 901 return __i915_ttm_migrate(obj, mr, flags); 902 } 903 904 static void i915_ttm_put_pages(struct drm_i915_gem_object *obj, 905 struct sg_table *st) 906 { 907 /* 908 * We're currently not called from a shrinker, so put_pages() 909 * typically means the object is about to destroyed, or called 910 * from move_notify(). So just avoid doing much for now. 911 * If the object is not destroyed next, The TTM eviction logic 912 * and shrinkers will move it out if needed. 913 */ 914 915 if (obj->mm.rsgt) 916 i915_refct_sgt_put(fetch_and_zero(&obj->mm.rsgt)); 917 } 918 919 /** 920 * i915_ttm_adjust_lru - Adjust an object's position on relevant LRU lists. 921 * @obj: The object 922 */ 923 void i915_ttm_adjust_lru(struct drm_i915_gem_object *obj) 924 { 925 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 926 struct i915_ttm_tt *i915_tt = 927 container_of(bo->ttm, typeof(*i915_tt), ttm); 928 bool shrinkable = 929 bo->ttm && i915_tt->filp && ttm_tt_is_populated(bo->ttm); 930 931 /* 932 * Don't manipulate the TTM LRUs while in TTM bo destruction. 933 * We're called through i915_ttm_delete_mem_notify(). 934 */ 935 if (!kref_read(&bo->kref)) 936 return; 937 938 /* 939 * We skip managing the shrinker LRU in set_pages() and just manage 940 * everything here. This does at least solve the issue with having 941 * temporary shmem mappings(like with evicted lmem) not being visible to 942 * the shrinker. Only our shmem objects are shrinkable, everything else 943 * we keep as unshrinkable. 944 * 945 * To make sure everything plays nice we keep an extra shrink pin in TTM 946 * if the underlying pages are not currently shrinkable. Once we release 947 * our pin, like when the pages are moved to shmem, the pages will then 948 * be added to the shrinker LRU, assuming the caller isn't also holding 949 * a pin. 950 * 951 * TODO: consider maybe also bumping the shrinker list here when we have 952 * already unpinned it, which should give us something more like an LRU. 953 * 954 * TODO: There is a small window of opportunity for this function to 955 * get called from eviction after we've dropped the last GEM refcount, 956 * but before the TTM deleted flag is set on the object. Avoid 957 * adjusting the shrinker list in such cases, since the object is 958 * not available to the shrinker anyway due to its zero refcount. 959 * To fix this properly we should move to a TTM shrinker LRU list for 960 * these objects. 961 */ 962 if (kref_get_unless_zero(&obj->base.refcount)) { 963 if (shrinkable != obj->mm.ttm_shrinkable) { 964 if (shrinkable) { 965 if (obj->mm.madv == I915_MADV_WILLNEED) 966 __i915_gem_object_make_shrinkable(obj); 967 else 968 __i915_gem_object_make_purgeable(obj); 969 } else { 970 i915_gem_object_make_unshrinkable(obj); 971 } 972 973 obj->mm.ttm_shrinkable = shrinkable; 974 } 975 i915_gem_object_put(obj); 976 } 977 978 /* 979 * Put on the correct LRU list depending on the MADV status 980 */ 981 spin_lock(&bo->bdev->lru_lock); 982 if (shrinkable) { 983 /* Try to keep shmem_tt from being considered for shrinking. */ 984 bo->priority = TTM_MAX_BO_PRIORITY - 1; 985 } else if (obj->mm.madv != I915_MADV_WILLNEED) { 986 bo->priority = I915_TTM_PRIO_PURGE; 987 } else if (!i915_gem_object_has_pages(obj)) { 988 bo->priority = I915_TTM_PRIO_NO_PAGES; 989 } else { 990 struct ttm_resource_manager *man = 991 ttm_manager_type(bo->bdev, bo->resource->mem_type); 992 993 /* 994 * If we need to place an LMEM resource which doesn't need CPU 995 * access then we should try not to victimize mappable objects 996 * first, since we likely end up stealing more of the mappable 997 * portion. And likewise when we try to find space for a mappble 998 * object, we know not to ever victimize objects that don't 999 * occupy any mappable pages. 1000 */ 1001 if (i915_ttm_cpu_maps_iomem(bo->resource) && 1002 i915_ttm_buddy_man_visible_size(man) < man->size && 1003 !(obj->flags & I915_BO_ALLOC_GPU_ONLY)) 1004 bo->priority = I915_TTM_PRIO_NEEDS_CPU_ACCESS; 1005 else 1006 bo->priority = I915_TTM_PRIO_HAS_PAGES; 1007 } 1008 1009 ttm_bo_move_to_lru_tail(bo); 1010 spin_unlock(&bo->bdev->lru_lock); 1011 } 1012 1013 /* 1014 * TTM-backed gem object destruction requires some clarification. 1015 * Basically we have two possibilities here. We can either rely on the 1016 * i915 delayed destruction and put the TTM object when the object 1017 * is idle. This would be detected by TTM which would bypass the 1018 * TTM delayed destroy handling. The other approach is to put the TTM 1019 * object early and rely on the TTM destroyed handling, and then free 1020 * the leftover parts of the GEM object once TTM's destroyed list handling is 1021 * complete. For now, we rely on the latter for two reasons: 1022 * a) TTM can evict an object even when it's on the delayed destroy list, 1023 * which in theory allows for complete eviction. 1024 * b) There is work going on in TTM to allow freeing an object even when 1025 * it's not idle, and using the TTM destroyed list handling could help us 1026 * benefit from that. 1027 */ 1028 static void i915_ttm_delayed_free(struct drm_i915_gem_object *obj) 1029 { 1030 GEM_BUG_ON(!obj->ttm.created); 1031 1032 ttm_bo_put(i915_gem_to_ttm(obj)); 1033 } 1034 1035 static vm_fault_t vm_fault_ttm(struct vm_fault *vmf) 1036 { 1037 struct vm_area_struct *area = vmf->vma; 1038 struct ttm_buffer_object *bo = area->vm_private_data; 1039 struct drm_device *dev = bo->base.dev; 1040 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 1041 intel_wakeref_t wakeref = 0; 1042 vm_fault_t ret; 1043 int idx; 1044 1045 /* Sanity check that we allow writing into this object */ 1046 if (unlikely(i915_gem_object_is_readonly(obj) && 1047 area->vm_flags & VM_WRITE)) 1048 return VM_FAULT_SIGBUS; 1049 1050 ret = ttm_bo_vm_reserve(bo, vmf); 1051 if (ret) 1052 return ret; 1053 1054 if (obj->mm.madv != I915_MADV_WILLNEED) { 1055 dma_resv_unlock(bo->base.resv); 1056 return VM_FAULT_SIGBUS; 1057 } 1058 1059 /* 1060 * This must be swapped out with shmem ttm_tt (pipeline-gutting). 1061 * Calling ttm_bo_validate() here with TTM_PL_SYSTEM should only go as 1062 * far as far doing a ttm_bo_move_null(), which should skip all the 1063 * other junk. 1064 */ 1065 if (!bo->resource) { 1066 struct ttm_operation_ctx ctx = { 1067 .interruptible = true, 1068 .no_wait_gpu = true, /* should be idle already */ 1069 }; 1070 int err; 1071 1072 GEM_BUG_ON(!bo->ttm || !(bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED)); 1073 1074 err = ttm_bo_validate(bo, i915_ttm_sys_placement(), &ctx); 1075 if (err) { 1076 dma_resv_unlock(bo->base.resv); 1077 return VM_FAULT_SIGBUS; 1078 } 1079 } else if (!i915_ttm_resource_mappable(bo->resource)) { 1080 int err = -ENODEV; 1081 int i; 1082 1083 for (i = 0; i < obj->mm.n_placements; i++) { 1084 struct intel_memory_region *mr = obj->mm.placements[i]; 1085 unsigned int flags; 1086 1087 if (!resource_size(&mr->io) && mr->type != INTEL_MEMORY_SYSTEM) 1088 continue; 1089 1090 flags = obj->flags; 1091 flags &= ~I915_BO_ALLOC_GPU_ONLY; 1092 err = __i915_ttm_migrate(obj, mr, flags); 1093 if (!err) 1094 break; 1095 } 1096 1097 if (err) { 1098 drm_dbg_ratelimited(dev, 1099 "Unable to make resource CPU accessible(err = %pe)\n", 1100 ERR_PTR(err)); 1101 dma_resv_unlock(bo->base.resv); 1102 ret = VM_FAULT_SIGBUS; 1103 goto out_rpm; 1104 } 1105 } 1106 1107 if (i915_ttm_cpu_maps_iomem(bo->resource)) 1108 wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm); 1109 1110 if (drm_dev_enter(dev, &idx)) { 1111 ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot, 1112 TTM_BO_VM_NUM_PREFAULT); 1113 drm_dev_exit(idx); 1114 } else { 1115 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot); 1116 } 1117 1118 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) 1119 goto out_rpm; 1120 1121 /* 1122 * ttm_bo_vm_reserve() already has dma_resv_lock. 1123 * userfault_count is protected by dma_resv lock and rpm wakeref. 1124 */ 1125 if (ret == VM_FAULT_NOPAGE && wakeref && !obj->userfault_count) { 1126 obj->userfault_count = 1; 1127 spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock); 1128 list_add(&obj->userfault_link, &to_i915(obj->base.dev)->runtime_pm.lmem_userfault_list); 1129 spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock); 1130 1131 GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(bo->resource)); 1132 } 1133 1134 if (wakeref & CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND) 1135 intel_wakeref_auto(&to_i915(obj->base.dev)->runtime_pm.userfault_wakeref, 1136 msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND)); 1137 1138 i915_ttm_adjust_lru(obj); 1139 1140 dma_resv_unlock(bo->base.resv); 1141 1142 out_rpm: 1143 if (wakeref) 1144 intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref); 1145 1146 return ret; 1147 } 1148 1149 static int 1150 vm_access_ttm(struct vm_area_struct *area, unsigned long addr, 1151 void *buf, int len, int write) 1152 { 1153 struct drm_i915_gem_object *obj = 1154 i915_ttm_to_gem(area->vm_private_data); 1155 1156 if (i915_gem_object_is_readonly(obj) && write) 1157 return -EACCES; 1158 1159 return ttm_bo_vm_access(area, addr, buf, len, write); 1160 } 1161 1162 static void ttm_vm_open(struct vm_area_struct *vma) 1163 { 1164 struct drm_i915_gem_object *obj = 1165 i915_ttm_to_gem(vma->vm_private_data); 1166 1167 GEM_BUG_ON(i915_ttm_is_ghost_object(vma->vm_private_data)); 1168 i915_gem_object_get(obj); 1169 } 1170 1171 static void ttm_vm_close(struct vm_area_struct *vma) 1172 { 1173 struct drm_i915_gem_object *obj = 1174 i915_ttm_to_gem(vma->vm_private_data); 1175 1176 GEM_BUG_ON(i915_ttm_is_ghost_object(vma->vm_private_data)); 1177 i915_gem_object_put(obj); 1178 } 1179 1180 static const struct vm_operations_struct vm_ops_ttm = { 1181 .fault = vm_fault_ttm, 1182 .access = vm_access_ttm, 1183 .open = ttm_vm_open, 1184 .close = ttm_vm_close, 1185 }; 1186 1187 static u64 i915_ttm_mmap_offset(struct drm_i915_gem_object *obj) 1188 { 1189 /* The ttm_bo must be allocated with I915_BO_ALLOC_USER */ 1190 GEM_BUG_ON(!drm_mm_node_allocated(&obj->base.vma_node.vm_node)); 1191 1192 return drm_vma_node_offset_addr(&obj->base.vma_node); 1193 } 1194 1195 static void i915_ttm_unmap_virtual(struct drm_i915_gem_object *obj) 1196 { 1197 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 1198 intel_wakeref_t wakeref = 0; 1199 1200 assert_object_held_shared(obj); 1201 1202 if (i915_ttm_cpu_maps_iomem(bo->resource)) { 1203 wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm); 1204 1205 /* userfault_count is protected by obj lock and rpm wakeref. */ 1206 if (obj->userfault_count) { 1207 spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock); 1208 list_del(&obj->userfault_link); 1209 spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock); 1210 obj->userfault_count = 0; 1211 } 1212 } 1213 1214 GEM_WARN_ON(obj->userfault_count); 1215 1216 ttm_bo_unmap_virtual(i915_gem_to_ttm(obj)); 1217 1218 if (wakeref) 1219 intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref); 1220 } 1221 1222 static const struct drm_i915_gem_object_ops i915_gem_ttm_obj_ops = { 1223 .name = "i915_gem_object_ttm", 1224 .flags = I915_GEM_OBJECT_IS_SHRINKABLE | 1225 I915_GEM_OBJECT_SELF_MANAGED_SHRINK_LIST, 1226 1227 .get_pages = i915_ttm_get_pages, 1228 .put_pages = i915_ttm_put_pages, 1229 .truncate = i915_ttm_truncate, 1230 .shrink = i915_ttm_shrink, 1231 1232 .adjust_lru = i915_ttm_adjust_lru, 1233 .delayed_free = i915_ttm_delayed_free, 1234 .migrate = i915_ttm_migrate, 1235 1236 .mmap_offset = i915_ttm_mmap_offset, 1237 .unmap_virtual = i915_ttm_unmap_virtual, 1238 .mmap_ops = &vm_ops_ttm, 1239 }; 1240 1241 void i915_ttm_bo_destroy(struct ttm_buffer_object *bo) 1242 { 1243 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 1244 1245 i915_gem_object_release_memory_region(obj); 1246 mutex_destroy(&obj->ttm.get_io_page.lock); 1247 1248 if (obj->ttm.created) { 1249 /* 1250 * We freely manage the shrinker LRU outide of the mm.pages life 1251 * cycle. As a result when destroying the object we should be 1252 * extra paranoid and ensure we remove it from the LRU, before 1253 * we free the object. 1254 * 1255 * Touching the ttm_shrinkable outside of the object lock here 1256 * should be safe now that the last GEM object ref was dropped. 1257 */ 1258 if (obj->mm.ttm_shrinkable) 1259 i915_gem_object_make_unshrinkable(obj); 1260 1261 i915_ttm_backup_free(obj); 1262 1263 /* This releases all gem object bindings to the backend. */ 1264 __i915_gem_free_object(obj); 1265 1266 call_rcu(&obj->rcu, __i915_gem_free_object_rcu); 1267 } else { 1268 __i915_gem_object_fini(obj); 1269 } 1270 } 1271 1272 /* 1273 * __i915_gem_ttm_object_init - Initialize a ttm-backed i915 gem object 1274 * @mem: The initial memory region for the object. 1275 * @obj: The gem object. 1276 * @size: Object size in bytes. 1277 * @flags: gem object flags. 1278 * 1279 * Return: 0 on success, negative error code on failure. 1280 */ 1281 int __i915_gem_ttm_object_init(struct intel_memory_region *mem, 1282 struct drm_i915_gem_object *obj, 1283 resource_size_t offset, 1284 resource_size_t size, 1285 resource_size_t page_size, 1286 unsigned int flags) 1287 { 1288 static struct lock_class_key lock_class; 1289 struct drm_i915_private *i915 = mem->i915; 1290 struct ttm_operation_ctx ctx = { 1291 .interruptible = true, 1292 .no_wait_gpu = false, 1293 }; 1294 enum ttm_bo_type bo_type; 1295 int ret; 1296 1297 drm_gem_private_object_init(&i915->drm, &obj->base, size); 1298 i915_gem_object_init(obj, &i915_gem_ttm_obj_ops, &lock_class, flags); 1299 1300 obj->bo_offset = offset; 1301 1302 /* Don't put on a region list until we're either locked or fully initialized. */ 1303 obj->mm.region = mem; 1304 INIT_LIST_HEAD(&obj->mm.region_link); 1305 1306 INIT_RADIX_TREE(&obj->ttm.get_io_page.radix, GFP_KERNEL | __GFP_NOWARN); 1307 mutex_init(&obj->ttm.get_io_page.lock); 1308 bo_type = (obj->flags & I915_BO_ALLOC_USER) ? ttm_bo_type_device : 1309 ttm_bo_type_kernel; 1310 1311 obj->base.vma_node.driver_private = i915_gem_to_ttm(obj); 1312 1313 /* Forcing the page size is kernel internal only */ 1314 GEM_BUG_ON(page_size && obj->mm.n_placements); 1315 1316 /* 1317 * Keep an extra shrink pin to prevent the object from being made 1318 * shrinkable too early. If the ttm_tt is ever allocated in shmem, we 1319 * drop the pin. The TTM backend manages the shrinker LRU itself, 1320 * outside of the normal mm.pages life cycle. 1321 */ 1322 i915_gem_object_make_unshrinkable(obj); 1323 1324 /* 1325 * If this function fails, it will call the destructor, but 1326 * our caller still owns the object. So no freeing in the 1327 * destructor until obj->ttm.created is true. 1328 * Similarly, in delayed_destroy, we can't call ttm_bo_put() 1329 * until successful initialization. 1330 */ 1331 ret = ttm_bo_init_reserved(&i915->bdev, i915_gem_to_ttm(obj), bo_type, 1332 &i915_sys_placement, page_size >> PAGE_SHIFT, 1333 &ctx, NULL, NULL, i915_ttm_bo_destroy); 1334 1335 /* 1336 * XXX: The ttm_bo_init_reserved() functions returns -ENOSPC if the size 1337 * is too big to add vma. The direct function that returns -ENOSPC is 1338 * drm_mm_insert_node_in_range(). To handle the same error as other code 1339 * that returns -E2BIG when the size is too large, it converts -ENOSPC to 1340 * -E2BIG. 1341 */ 1342 if (size >> PAGE_SHIFT > INT_MAX && ret == -ENOSPC) 1343 ret = -E2BIG; 1344 1345 if (ret) 1346 return i915_ttm_err_to_gem(ret); 1347 1348 obj->ttm.created = true; 1349 i915_gem_object_release_memory_region(obj); 1350 i915_gem_object_init_memory_region(obj, mem); 1351 i915_ttm_adjust_domains_after_move(obj); 1352 i915_ttm_adjust_gem_after_move(obj); 1353 i915_gem_object_unlock(obj); 1354 1355 return 0; 1356 } 1357 1358 static const struct intel_memory_region_ops ttm_system_region_ops = { 1359 .init_object = __i915_gem_ttm_object_init, 1360 .release = intel_region_ttm_fini, 1361 }; 1362 1363 struct intel_memory_region * 1364 i915_gem_ttm_system_setup(struct drm_i915_private *i915, 1365 u16 type, u16 instance) 1366 { 1367 struct intel_memory_region *mr; 1368 1369 mr = intel_memory_region_create(i915, 0, 1370 totalram_pages() << PAGE_SHIFT, 1371 PAGE_SIZE, 0, 0, 1372 type, instance, 1373 &ttm_system_region_ops); 1374 if (IS_ERR(mr)) 1375 return mr; 1376 1377 intel_memory_region_set_name(mr, "system-ttm"); 1378 return mr; 1379 } 1380