xref: /linux/drivers/gpu/drm/i915/gem/i915_gem_ttm.c (revision 6e7fd890f1d6ac83805409e9c346240de2705584)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include <linux/shmem_fs.h>
7 
8 #include <drm/ttm/ttm_placement.h>
9 #include <drm/ttm/ttm_tt.h>
10 #include <drm/drm_buddy.h>
11 
12 #include "i915_drv.h"
13 #include "i915_ttm_buddy_manager.h"
14 #include "intel_memory_region.h"
15 #include "intel_region_ttm.h"
16 
17 #include "gem/i915_gem_mman.h"
18 #include "gem/i915_gem_object.h"
19 #include "gem/i915_gem_region.h"
20 #include "gem/i915_gem_ttm.h"
21 #include "gem/i915_gem_ttm_move.h"
22 #include "gem/i915_gem_ttm_pm.h"
23 #include "gt/intel_gpu_commands.h"
24 
25 #define I915_TTM_PRIO_PURGE     0
26 #define I915_TTM_PRIO_NO_PAGES  1
27 #define I915_TTM_PRIO_HAS_PAGES 2
28 #define I915_TTM_PRIO_NEEDS_CPU_ACCESS 3
29 
30 /*
31  * Size of struct ttm_place vector in on-stack struct ttm_placement allocs
32  */
33 #define I915_TTM_MAX_PLACEMENTS INTEL_REGION_UNKNOWN
34 
35 /**
36  * struct i915_ttm_tt - TTM page vector with additional private information
37  * @ttm: The base TTM page vector.
38  * @dev: The struct device used for dma mapping and unmapping.
39  * @cached_rsgt: The cached scatter-gather table.
40  * @is_shmem: Set if using shmem.
41  * @filp: The shmem file, if using shmem backend.
42  *
43  * Note that DMA may be going on right up to the point where the page-
44  * vector is unpopulated in delayed destroy. Hence keep the
45  * scatter-gather table mapped and cached up to that point. This is
46  * different from the cached gem object io scatter-gather table which
47  * doesn't have an associated dma mapping.
48  */
49 struct i915_ttm_tt {
50 	struct ttm_tt ttm;
51 	struct device *dev;
52 	struct i915_refct_sgt cached_rsgt;
53 
54 	bool is_shmem;
55 	struct file *filp;
56 };
57 
58 static const struct ttm_place sys_placement_flags = {
59 	.fpfn = 0,
60 	.lpfn = 0,
61 	.mem_type = I915_PL_SYSTEM,
62 	.flags = 0,
63 };
64 
65 static struct ttm_placement i915_sys_placement = {
66 	.num_placement = 1,
67 	.placement = &sys_placement_flags,
68 };
69 
70 /**
71  * i915_ttm_sys_placement - Return the struct ttm_placement to be
72  * used for an object in system memory.
73  *
74  * Rather than making the struct extern, use this
75  * function.
76  *
77  * Return: A pointer to a static variable for sys placement.
78  */
79 struct ttm_placement *i915_ttm_sys_placement(void)
80 {
81 	return &i915_sys_placement;
82 }
83 
84 static int i915_ttm_err_to_gem(int err)
85 {
86 	/* Fastpath */
87 	if (likely(!err))
88 		return 0;
89 
90 	switch (err) {
91 	case -EBUSY:
92 		/*
93 		 * TTM likes to convert -EDEADLK to -EBUSY, and wants us to
94 		 * restart the operation, since we don't record the contending
95 		 * lock. We use -EAGAIN to restart.
96 		 */
97 		return -EAGAIN;
98 	case -ENOSPC:
99 		/*
100 		 * Memory type / region is full, and we can't evict.
101 		 * Except possibly system, that returns -ENOMEM;
102 		 */
103 		return -ENXIO;
104 	default:
105 		break;
106 	}
107 
108 	return err;
109 }
110 
111 static enum ttm_caching
112 i915_ttm_select_tt_caching(const struct drm_i915_gem_object *obj)
113 {
114 	/*
115 	 * Objects only allowed in system get cached cpu-mappings, or when
116 	 * evicting lmem-only buffers to system for swapping. Other objects get
117 	 * WC mapping for now. Even if in system.
118 	 */
119 	if (obj->mm.n_placements <= 1)
120 		return ttm_cached;
121 
122 	return ttm_write_combined;
123 }
124 
125 static void
126 i915_ttm_place_from_region(const struct intel_memory_region *mr,
127 			   struct ttm_place *place,
128 			   resource_size_t offset,
129 			   resource_size_t size,
130 			   unsigned int flags)
131 {
132 	memset(place, 0, sizeof(*place));
133 	place->mem_type = intel_region_to_ttm_type(mr);
134 
135 	if (mr->type == INTEL_MEMORY_SYSTEM)
136 		return;
137 
138 	if (flags & I915_BO_ALLOC_CONTIGUOUS)
139 		place->flags |= TTM_PL_FLAG_CONTIGUOUS;
140 	if (offset != I915_BO_INVALID_OFFSET) {
141 		WARN_ON(overflows_type(offset >> PAGE_SHIFT, place->fpfn));
142 		place->fpfn = offset >> PAGE_SHIFT;
143 		WARN_ON(overflows_type(place->fpfn + (size >> PAGE_SHIFT), place->lpfn));
144 		place->lpfn = place->fpfn + (size >> PAGE_SHIFT);
145 	} else if (resource_size(&mr->io) && resource_size(&mr->io) < mr->total) {
146 		if (flags & I915_BO_ALLOC_GPU_ONLY) {
147 			place->flags |= TTM_PL_FLAG_TOPDOWN;
148 		} else {
149 			place->fpfn = 0;
150 			WARN_ON(overflows_type(resource_size(&mr->io) >> PAGE_SHIFT, place->lpfn));
151 			place->lpfn = resource_size(&mr->io) >> PAGE_SHIFT;
152 		}
153 	}
154 }
155 
156 static void
157 i915_ttm_placement_from_obj(const struct drm_i915_gem_object *obj,
158 			    struct ttm_place *places,
159 			    struct ttm_placement *placement)
160 {
161 	unsigned int num_allowed = obj->mm.n_placements;
162 	unsigned int flags = obj->flags;
163 	unsigned int i;
164 
165 	i915_ttm_place_from_region(num_allowed ? obj->mm.placements[0] :
166 				   obj->mm.region, &places[0], obj->bo_offset,
167 				   obj->base.size, flags);
168 
169 	/* Cache this on object? */
170 	for (i = 0; i < num_allowed; ++i) {
171 		i915_ttm_place_from_region(obj->mm.placements[i],
172 					   &places[i + 1], obj->bo_offset,
173 					   obj->base.size, flags);
174 		places[i + 1].flags |= TTM_PL_FLAG_FALLBACK;
175 	}
176 
177 	placement->num_placement = num_allowed + 1;
178 	placement->placement = places;
179 }
180 
181 static int i915_ttm_tt_shmem_populate(struct ttm_device *bdev,
182 				      struct ttm_tt *ttm,
183 				      struct ttm_operation_ctx *ctx)
184 {
185 	struct drm_i915_private *i915 = container_of(bdev, typeof(*i915), bdev);
186 	struct intel_memory_region *mr = i915->mm.regions[INTEL_MEMORY_SYSTEM];
187 	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
188 	const unsigned int max_segment = i915_sg_segment_size(i915->drm.dev);
189 	const size_t size = (size_t)ttm->num_pages << PAGE_SHIFT;
190 	struct file *filp = i915_tt->filp;
191 	struct sgt_iter sgt_iter;
192 	struct sg_table *st;
193 	struct page *page;
194 	unsigned long i;
195 	int err;
196 
197 	if (!filp) {
198 		struct address_space *mapping;
199 		gfp_t mask;
200 
201 		filp = shmem_file_setup("i915-shmem-tt", size, VM_NORESERVE);
202 		if (IS_ERR(filp))
203 			return PTR_ERR(filp);
204 
205 		mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
206 
207 		mapping = filp->f_mapping;
208 		mapping_set_gfp_mask(mapping, mask);
209 		GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
210 
211 		i915_tt->filp = filp;
212 	}
213 
214 	st = &i915_tt->cached_rsgt.table;
215 	err = shmem_sg_alloc_table(i915, st, size, mr, filp->f_mapping,
216 				   max_segment);
217 	if (err)
218 		return err;
219 
220 	err = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL,
221 			      DMA_ATTR_SKIP_CPU_SYNC);
222 	if (err)
223 		goto err_free_st;
224 
225 	i = 0;
226 	for_each_sgt_page(page, sgt_iter, st)
227 		ttm->pages[i++] = page;
228 
229 	if (ttm->page_flags & TTM_TT_FLAG_SWAPPED)
230 		ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED;
231 
232 	return 0;
233 
234 err_free_st:
235 	shmem_sg_free_table(st, filp->f_mapping, false, false);
236 
237 	return err;
238 }
239 
240 static void i915_ttm_tt_shmem_unpopulate(struct ttm_tt *ttm)
241 {
242 	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
243 	bool backup = ttm->page_flags & TTM_TT_FLAG_SWAPPED;
244 	struct sg_table *st = &i915_tt->cached_rsgt.table;
245 
246 	shmem_sg_free_table(st, file_inode(i915_tt->filp)->i_mapping,
247 			    backup, backup);
248 }
249 
250 static void i915_ttm_tt_release(struct kref *ref)
251 {
252 	struct i915_ttm_tt *i915_tt =
253 		container_of(ref, typeof(*i915_tt), cached_rsgt.kref);
254 	struct sg_table *st = &i915_tt->cached_rsgt.table;
255 
256 	GEM_WARN_ON(st->sgl);
257 
258 	kfree(i915_tt);
259 }
260 
261 static const struct i915_refct_sgt_ops tt_rsgt_ops = {
262 	.release = i915_ttm_tt_release
263 };
264 
265 static struct ttm_tt *i915_ttm_tt_create(struct ttm_buffer_object *bo,
266 					 uint32_t page_flags)
267 {
268 	struct drm_i915_private *i915 = container_of(bo->bdev, typeof(*i915),
269 						     bdev);
270 	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
271 	unsigned long ccs_pages = 0;
272 	enum ttm_caching caching;
273 	struct i915_ttm_tt *i915_tt;
274 	int ret;
275 
276 	if (i915_ttm_is_ghost_object(bo))
277 		return NULL;
278 
279 	i915_tt = kzalloc(sizeof(*i915_tt), GFP_KERNEL);
280 	if (!i915_tt)
281 		return NULL;
282 
283 	if (obj->flags & I915_BO_ALLOC_CPU_CLEAR && (!bo->resource ||
284 	    ttm_manager_type(bo->bdev, bo->resource->mem_type)->use_tt))
285 		page_flags |= TTM_TT_FLAG_ZERO_ALLOC;
286 
287 	caching = i915_ttm_select_tt_caching(obj);
288 	if (i915_gem_object_is_shrinkable(obj) && caching == ttm_cached) {
289 		page_flags |= TTM_TT_FLAG_EXTERNAL |
290 			      TTM_TT_FLAG_EXTERNAL_MAPPABLE;
291 		i915_tt->is_shmem = true;
292 	}
293 
294 	if (i915_gem_object_needs_ccs_pages(obj))
295 		ccs_pages = DIV_ROUND_UP(DIV_ROUND_UP(bo->base.size,
296 						      NUM_BYTES_PER_CCS_BYTE),
297 					 PAGE_SIZE);
298 
299 	ret = ttm_tt_init(&i915_tt->ttm, bo, page_flags, caching, ccs_pages);
300 	if (ret)
301 		goto err_free;
302 
303 	__i915_refct_sgt_init(&i915_tt->cached_rsgt, bo->base.size,
304 			      &tt_rsgt_ops);
305 
306 	i915_tt->dev = obj->base.dev->dev;
307 
308 	return &i915_tt->ttm;
309 
310 err_free:
311 	kfree(i915_tt);
312 	return NULL;
313 }
314 
315 static int i915_ttm_tt_populate(struct ttm_device *bdev,
316 				struct ttm_tt *ttm,
317 				struct ttm_operation_ctx *ctx)
318 {
319 	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
320 
321 	if (i915_tt->is_shmem)
322 		return i915_ttm_tt_shmem_populate(bdev, ttm, ctx);
323 
324 	return ttm_pool_alloc(&bdev->pool, ttm, ctx);
325 }
326 
327 static void i915_ttm_tt_unpopulate(struct ttm_device *bdev, struct ttm_tt *ttm)
328 {
329 	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
330 	struct sg_table *st = &i915_tt->cached_rsgt.table;
331 
332 	if (st->sgl)
333 		dma_unmap_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
334 
335 	if (i915_tt->is_shmem) {
336 		i915_ttm_tt_shmem_unpopulate(ttm);
337 	} else {
338 		sg_free_table(st);
339 		ttm_pool_free(&bdev->pool, ttm);
340 	}
341 }
342 
343 static void i915_ttm_tt_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
344 {
345 	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
346 
347 	if (i915_tt->filp)
348 		fput(i915_tt->filp);
349 
350 	ttm_tt_fini(ttm);
351 	i915_refct_sgt_put(&i915_tt->cached_rsgt);
352 }
353 
354 static bool i915_ttm_eviction_valuable(struct ttm_buffer_object *bo,
355 				       const struct ttm_place *place)
356 {
357 	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
358 
359 	if (i915_ttm_is_ghost_object(bo))
360 		return false;
361 
362 	/*
363 	 * EXTERNAL objects should never be swapped out by TTM, instead we need
364 	 * to handle that ourselves. TTM will already skip such objects for us,
365 	 * but we would like to avoid grabbing locks for no good reason.
366 	 */
367 	if (bo->ttm && bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
368 		return false;
369 
370 	/* Will do for now. Our pinned objects are still on TTM's LRU lists */
371 	if (!i915_gem_object_evictable(obj))
372 		return false;
373 
374 	return ttm_bo_eviction_valuable(bo, place);
375 }
376 
377 static void i915_ttm_evict_flags(struct ttm_buffer_object *bo,
378 				 struct ttm_placement *placement)
379 {
380 	*placement = i915_sys_placement;
381 }
382 
383 /**
384  * i915_ttm_free_cached_io_rsgt - Free object cached LMEM information
385  * @obj: The GEM object
386  * This function frees any LMEM-related information that is cached on
387  * the object. For example the radix tree for fast page lookup and the
388  * cached refcounted sg-table
389  */
390 void i915_ttm_free_cached_io_rsgt(struct drm_i915_gem_object *obj)
391 {
392 	struct radix_tree_iter iter;
393 	void __rcu **slot;
394 
395 	if (!obj->ttm.cached_io_rsgt)
396 		return;
397 
398 	rcu_read_lock();
399 	radix_tree_for_each_slot(slot, &obj->ttm.get_io_page.radix, &iter, 0)
400 		radix_tree_delete(&obj->ttm.get_io_page.radix, iter.index);
401 	rcu_read_unlock();
402 
403 	i915_refct_sgt_put(obj->ttm.cached_io_rsgt);
404 	obj->ttm.cached_io_rsgt = NULL;
405 }
406 
407 /**
408  * i915_ttm_purge - Clear an object of its memory
409  * @obj: The object
410  *
411  * This function is called to clear an object of it's memory when it is
412  * marked as not needed anymore.
413  *
414  * Return: 0 on success, negative error code on failure.
415  */
416 int i915_ttm_purge(struct drm_i915_gem_object *obj)
417 {
418 	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
419 	struct i915_ttm_tt *i915_tt =
420 		container_of(bo->ttm, typeof(*i915_tt), ttm);
421 	struct ttm_operation_ctx ctx = {
422 		.interruptible = true,
423 		.no_wait_gpu = false,
424 	};
425 	struct ttm_placement place = {};
426 	int ret;
427 
428 	if (obj->mm.madv == __I915_MADV_PURGED)
429 		return 0;
430 
431 	ret = ttm_bo_validate(bo, &place, &ctx);
432 	if (ret)
433 		return ret;
434 
435 	if (bo->ttm && i915_tt->filp) {
436 		/*
437 		 * The below fput(which eventually calls shmem_truncate) might
438 		 * be delayed by worker, so when directly called to purge the
439 		 * pages(like by the shrinker) we should try to be more
440 		 * aggressive and release the pages immediately.
441 		 */
442 		shmem_truncate_range(file_inode(i915_tt->filp),
443 				     0, (loff_t)-1);
444 		fput(fetch_and_zero(&i915_tt->filp));
445 	}
446 
447 	obj->write_domain = 0;
448 	obj->read_domains = 0;
449 	i915_ttm_adjust_gem_after_move(obj);
450 	i915_ttm_free_cached_io_rsgt(obj);
451 	obj->mm.madv = __I915_MADV_PURGED;
452 
453 	return 0;
454 }
455 
456 static int i915_ttm_shrink(struct drm_i915_gem_object *obj, unsigned int flags)
457 {
458 	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
459 	struct i915_ttm_tt *i915_tt =
460 		container_of(bo->ttm, typeof(*i915_tt), ttm);
461 	struct ttm_operation_ctx ctx = {
462 		.interruptible = true,
463 		.no_wait_gpu = flags & I915_GEM_OBJECT_SHRINK_NO_GPU_WAIT,
464 	};
465 	struct ttm_placement place = {};
466 	int ret;
467 
468 	if (!bo->ttm || i915_ttm_cpu_maps_iomem(bo->resource))
469 		return 0;
470 
471 	GEM_BUG_ON(!i915_tt->is_shmem);
472 
473 	if (!i915_tt->filp)
474 		return 0;
475 
476 	ret = ttm_bo_wait_ctx(bo, &ctx);
477 	if (ret)
478 		return ret;
479 
480 	switch (obj->mm.madv) {
481 	case I915_MADV_DONTNEED:
482 		return i915_ttm_purge(obj);
483 	case __I915_MADV_PURGED:
484 		return 0;
485 	}
486 
487 	if (bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED)
488 		return 0;
489 
490 	bo->ttm->page_flags |= TTM_TT_FLAG_SWAPPED;
491 	ret = ttm_bo_validate(bo, &place, &ctx);
492 	if (ret) {
493 		bo->ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED;
494 		return ret;
495 	}
496 
497 	if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK)
498 		__shmem_writeback(obj->base.size, i915_tt->filp->f_mapping);
499 
500 	return 0;
501 }
502 
503 static void i915_ttm_delete_mem_notify(struct ttm_buffer_object *bo)
504 {
505 	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
506 
507 	/*
508 	 * This gets called twice by ttm, so long as we have a ttm resource or
509 	 * ttm_tt then we can still safely call this. Due to pipeline-gutting,
510 	 * we maybe have NULL bo->resource, but in that case we should always
511 	 * have a ttm alive (like if the pages are swapped out).
512 	 */
513 	if ((bo->resource || bo->ttm) && !i915_ttm_is_ghost_object(bo)) {
514 		__i915_gem_object_pages_fini(obj);
515 		i915_ttm_free_cached_io_rsgt(obj);
516 	}
517 }
518 
519 static struct i915_refct_sgt *i915_ttm_tt_get_st(struct ttm_tt *ttm)
520 {
521 	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
522 	struct sg_table *st;
523 	int ret;
524 
525 	if (i915_tt->cached_rsgt.table.sgl)
526 		return i915_refct_sgt_get(&i915_tt->cached_rsgt);
527 
528 	st = &i915_tt->cached_rsgt.table;
529 	ret = sg_alloc_table_from_pages_segment(st,
530 			ttm->pages, ttm->num_pages,
531 			0, (unsigned long)ttm->num_pages << PAGE_SHIFT,
532 			i915_sg_segment_size(i915_tt->dev), GFP_KERNEL);
533 	if (ret) {
534 		st->sgl = NULL;
535 		return ERR_PTR(ret);
536 	}
537 
538 	ret = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
539 	if (ret) {
540 		sg_free_table(st);
541 		return ERR_PTR(ret);
542 	}
543 
544 	return i915_refct_sgt_get(&i915_tt->cached_rsgt);
545 }
546 
547 /**
548  * i915_ttm_resource_get_st - Get a refcounted sg-table pointing to the
549  * resource memory
550  * @obj: The GEM object used for sg-table caching
551  * @res: The struct ttm_resource for which an sg-table is requested.
552  *
553  * This function returns a refcounted sg-table representing the memory
554  * pointed to by @res. If @res is the object's current resource it may also
555  * cache the sg_table on the object or attempt to access an already cached
556  * sg-table. The refcounted sg-table needs to be put when no-longer in use.
557  *
558  * Return: A valid pointer to a struct i915_refct_sgt or error pointer on
559  * failure.
560  */
561 struct i915_refct_sgt *
562 i915_ttm_resource_get_st(struct drm_i915_gem_object *obj,
563 			 struct ttm_resource *res)
564 {
565 	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
566 	u32 page_alignment;
567 
568 	if (!i915_ttm_gtt_binds_lmem(res))
569 		return i915_ttm_tt_get_st(bo->ttm);
570 
571 	page_alignment = bo->page_alignment << PAGE_SHIFT;
572 	if (!page_alignment)
573 		page_alignment = obj->mm.region->min_page_size;
574 
575 	/*
576 	 * If CPU mapping differs, we need to add the ttm_tt pages to
577 	 * the resulting st. Might make sense for GGTT.
578 	 */
579 	GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(res));
580 	if (bo->resource == res) {
581 		if (!obj->ttm.cached_io_rsgt) {
582 			struct i915_refct_sgt *rsgt;
583 
584 			rsgt = intel_region_ttm_resource_to_rsgt(obj->mm.region,
585 								 res,
586 								 page_alignment);
587 			if (IS_ERR(rsgt))
588 				return rsgt;
589 
590 			obj->ttm.cached_io_rsgt = rsgt;
591 		}
592 		return i915_refct_sgt_get(obj->ttm.cached_io_rsgt);
593 	}
594 
595 	return intel_region_ttm_resource_to_rsgt(obj->mm.region, res,
596 						 page_alignment);
597 }
598 
599 static int i915_ttm_truncate(struct drm_i915_gem_object *obj)
600 {
601 	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
602 	long err;
603 
604 	WARN_ON_ONCE(obj->mm.madv == I915_MADV_WILLNEED);
605 
606 	err = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
607 				    true, 15 * HZ);
608 	if (err < 0)
609 		return err;
610 	if (err == 0)
611 		return -EBUSY;
612 
613 	err = i915_ttm_move_notify(bo);
614 	if (err)
615 		return err;
616 
617 	return i915_ttm_purge(obj);
618 }
619 
620 static void i915_ttm_swap_notify(struct ttm_buffer_object *bo)
621 {
622 	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
623 	int ret;
624 
625 	if (i915_ttm_is_ghost_object(bo))
626 		return;
627 
628 	ret = i915_ttm_move_notify(bo);
629 	GEM_WARN_ON(ret);
630 	GEM_WARN_ON(obj->ttm.cached_io_rsgt);
631 	if (!ret && obj->mm.madv != I915_MADV_WILLNEED)
632 		i915_ttm_purge(obj);
633 }
634 
635 /**
636  * i915_ttm_resource_mappable - Return true if the ttm resource is CPU
637  * accessible.
638  * @res: The TTM resource to check.
639  *
640  * This is interesting on small-BAR systems where we may encounter lmem objects
641  * that can't be accessed via the CPU.
642  */
643 bool i915_ttm_resource_mappable(struct ttm_resource *res)
644 {
645 	struct i915_ttm_buddy_resource *bman_res = to_ttm_buddy_resource(res);
646 
647 	if (!i915_ttm_cpu_maps_iomem(res))
648 		return true;
649 
650 	return bman_res->used_visible_size == PFN_UP(bman_res->base.size);
651 }
652 
653 static int i915_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
654 {
655 	struct drm_i915_gem_object *obj = i915_ttm_to_gem(mem->bo);
656 	bool unknown_state;
657 
658 	if (i915_ttm_is_ghost_object(mem->bo))
659 		return -EINVAL;
660 
661 	if (!kref_get_unless_zero(&obj->base.refcount))
662 		return -EINVAL;
663 
664 	assert_object_held(obj);
665 
666 	unknown_state = i915_gem_object_has_unknown_state(obj);
667 	i915_gem_object_put(obj);
668 	if (unknown_state)
669 		return -EINVAL;
670 
671 	if (!i915_ttm_cpu_maps_iomem(mem))
672 		return 0;
673 
674 	if (!i915_ttm_resource_mappable(mem))
675 		return -EINVAL;
676 
677 	mem->bus.caching = ttm_write_combined;
678 	mem->bus.is_iomem = true;
679 
680 	return 0;
681 }
682 
683 static unsigned long i915_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
684 					 unsigned long page_offset)
685 {
686 	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
687 	struct scatterlist *sg;
688 	unsigned long base;
689 	unsigned int ofs;
690 
691 	GEM_BUG_ON(i915_ttm_is_ghost_object(bo));
692 	GEM_WARN_ON(bo->ttm);
693 
694 	base = obj->mm.region->iomap.base - obj->mm.region->region.start;
695 	sg = i915_gem_object_page_iter_get_sg(obj, &obj->ttm.get_io_page, page_offset, &ofs);
696 
697 	return ((base + sg_dma_address(sg)) >> PAGE_SHIFT) + ofs;
698 }
699 
700 static int i915_ttm_access_memory(struct ttm_buffer_object *bo,
701 				  unsigned long offset, void *buf,
702 				  int len, int write)
703 {
704 	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
705 	resource_size_t iomap = obj->mm.region->iomap.base -
706 		obj->mm.region->region.start;
707 	unsigned long page = offset >> PAGE_SHIFT;
708 	unsigned long bytes_left = len;
709 
710 	/*
711 	 * TODO: For now just let it fail if the resource is non-mappable,
712 	 * otherwise we need to perform the memcpy from the gpu here, without
713 	 * interfering with the object (like moving the entire thing).
714 	 */
715 	if (!i915_ttm_resource_mappable(bo->resource))
716 		return -EIO;
717 
718 	offset -= page << PAGE_SHIFT;
719 	do {
720 		unsigned long bytes = min(bytes_left, PAGE_SIZE - offset);
721 		void __iomem *ptr;
722 		dma_addr_t daddr;
723 
724 		daddr = i915_gem_object_get_dma_address(obj, page);
725 		ptr = ioremap_wc(iomap + daddr + offset, bytes);
726 		if (!ptr)
727 			return -EIO;
728 
729 		if (write)
730 			memcpy_toio(ptr, buf, bytes);
731 		else
732 			memcpy_fromio(buf, ptr, bytes);
733 		iounmap(ptr);
734 
735 		page++;
736 		buf += bytes;
737 		bytes_left -= bytes;
738 		offset = 0;
739 	} while (bytes_left);
740 
741 	return len;
742 }
743 
744 /*
745  * All callbacks need to take care not to downcast a struct ttm_buffer_object
746  * without checking its subclass, since it might be a TTM ghost object.
747  */
748 static struct ttm_device_funcs i915_ttm_bo_driver = {
749 	.ttm_tt_create = i915_ttm_tt_create,
750 	.ttm_tt_populate = i915_ttm_tt_populate,
751 	.ttm_tt_unpopulate = i915_ttm_tt_unpopulate,
752 	.ttm_tt_destroy = i915_ttm_tt_destroy,
753 	.eviction_valuable = i915_ttm_eviction_valuable,
754 	.evict_flags = i915_ttm_evict_flags,
755 	.move = i915_ttm_move,
756 	.swap_notify = i915_ttm_swap_notify,
757 	.delete_mem_notify = i915_ttm_delete_mem_notify,
758 	.io_mem_reserve = i915_ttm_io_mem_reserve,
759 	.io_mem_pfn = i915_ttm_io_mem_pfn,
760 	.access_memory = i915_ttm_access_memory,
761 };
762 
763 /**
764  * i915_ttm_driver - Return a pointer to the TTM device funcs
765  *
766  * Return: Pointer to statically allocated TTM device funcs.
767  */
768 struct ttm_device_funcs *i915_ttm_driver(void)
769 {
770 	return &i915_ttm_bo_driver;
771 }
772 
773 static int __i915_ttm_get_pages(struct drm_i915_gem_object *obj,
774 				struct ttm_placement *placement)
775 {
776 	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
777 	struct ttm_operation_ctx ctx = {
778 		.interruptible = true,
779 		.no_wait_gpu = false,
780 	};
781 	struct ttm_placement initial_placement;
782 	struct ttm_place initial_place;
783 	int ret;
784 
785 	/* First try only the requested placement. No eviction. */
786 	initial_placement.num_placement = 1;
787 	memcpy(&initial_place, placement->placement, sizeof(struct ttm_place));
788 	initial_place.flags |= TTM_PL_FLAG_DESIRED;
789 	initial_placement.placement = &initial_place;
790 	ret = ttm_bo_validate(bo, &initial_placement, &ctx);
791 	if (ret) {
792 		ret = i915_ttm_err_to_gem(ret);
793 		/*
794 		 * Anything that wants to restart the operation gets to
795 		 * do that.
796 		 */
797 		if (ret == -EDEADLK || ret == -EINTR || ret == -ERESTARTSYS ||
798 		    ret == -EAGAIN)
799 			return ret;
800 
801 		/*
802 		 * If the initial attempt fails, allow all accepted placements,
803 		 * evicting if necessary.
804 		 */
805 		ret = ttm_bo_validate(bo, placement, &ctx);
806 		if (ret)
807 			return i915_ttm_err_to_gem(ret);
808 	}
809 
810 	if (bo->ttm && !ttm_tt_is_populated(bo->ttm)) {
811 		ret = ttm_tt_populate(bo->bdev, bo->ttm, &ctx);
812 		if (ret)
813 			return ret;
814 
815 		i915_ttm_adjust_domains_after_move(obj);
816 		i915_ttm_adjust_gem_after_move(obj);
817 	}
818 
819 	if (!i915_gem_object_has_pages(obj)) {
820 		struct i915_refct_sgt *rsgt =
821 			i915_ttm_resource_get_st(obj, bo->resource);
822 
823 		if (IS_ERR(rsgt))
824 			return PTR_ERR(rsgt);
825 
826 		GEM_BUG_ON(obj->mm.rsgt);
827 		obj->mm.rsgt = rsgt;
828 		__i915_gem_object_set_pages(obj, &rsgt->table);
829 	}
830 
831 	GEM_BUG_ON(bo->ttm && ((obj->base.size >> PAGE_SHIFT) < bo->ttm->num_pages));
832 	i915_ttm_adjust_lru(obj);
833 	return ret;
834 }
835 
836 static int i915_ttm_get_pages(struct drm_i915_gem_object *obj)
837 {
838 	struct ttm_place places[I915_TTM_MAX_PLACEMENTS + 1];
839 	struct ttm_placement placement;
840 
841 	/* restricted by sg_alloc_table */
842 	if (overflows_type(obj->base.size >> PAGE_SHIFT, unsigned int))
843 		return -E2BIG;
844 
845 	GEM_BUG_ON(obj->mm.n_placements > I915_TTM_MAX_PLACEMENTS);
846 
847 	/* Move to the requested placement. */
848 	i915_ttm_placement_from_obj(obj, places, &placement);
849 
850 	return __i915_ttm_get_pages(obj, &placement);
851 }
852 
853 /**
854  * DOC: Migration vs eviction
855  *
856  * GEM migration may not be the same as TTM migration / eviction. If
857  * the TTM core decides to evict an object it may be evicted to a
858  * TTM memory type that is not in the object's allowable GEM regions, or
859  * in fact theoretically to a TTM memory type that doesn't correspond to
860  * a GEM memory region. In that case the object's GEM region is not
861  * updated, and the data is migrated back to the GEM region at
862  * get_pages time. TTM may however set up CPU ptes to the object even
863  * when it is evicted.
864  * Gem forced migration using the i915_ttm_migrate() op, is allowed even
865  * to regions that are not in the object's list of allowable placements.
866  */
867 static int __i915_ttm_migrate(struct drm_i915_gem_object *obj,
868 			      struct intel_memory_region *mr,
869 			      unsigned int flags)
870 {
871 	struct ttm_place requested;
872 	struct ttm_placement placement;
873 	int ret;
874 
875 	i915_ttm_place_from_region(mr, &requested, obj->bo_offset,
876 				   obj->base.size, flags);
877 	placement.num_placement = 1;
878 	placement.placement = &requested;
879 
880 	ret = __i915_ttm_get_pages(obj, &placement);
881 	if (ret)
882 		return ret;
883 
884 	/*
885 	 * Reinitialize the region bindings. This is primarily
886 	 * required for objects where the new region is not in
887 	 * its allowable placements.
888 	 */
889 	if (obj->mm.region != mr) {
890 		i915_gem_object_release_memory_region(obj);
891 		i915_gem_object_init_memory_region(obj, mr);
892 	}
893 
894 	return 0;
895 }
896 
897 static int i915_ttm_migrate(struct drm_i915_gem_object *obj,
898 			    struct intel_memory_region *mr,
899 			    unsigned int flags)
900 {
901 	return __i915_ttm_migrate(obj, mr, flags);
902 }
903 
904 static void i915_ttm_put_pages(struct drm_i915_gem_object *obj,
905 			       struct sg_table *st)
906 {
907 	/*
908 	 * We're currently not called from a shrinker, so put_pages()
909 	 * typically means the object is about to destroyed, or called
910 	 * from move_notify(). So just avoid doing much for now.
911 	 * If the object is not destroyed next, The TTM eviction logic
912 	 * and shrinkers will move it out if needed.
913 	 */
914 
915 	if (obj->mm.rsgt)
916 		i915_refct_sgt_put(fetch_and_zero(&obj->mm.rsgt));
917 }
918 
919 /**
920  * i915_ttm_adjust_lru - Adjust an object's position on relevant LRU lists.
921  * @obj: The object
922  */
923 void i915_ttm_adjust_lru(struct drm_i915_gem_object *obj)
924 {
925 	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
926 	struct i915_ttm_tt *i915_tt =
927 		container_of(bo->ttm, typeof(*i915_tt), ttm);
928 	bool shrinkable =
929 		bo->ttm && i915_tt->filp && ttm_tt_is_populated(bo->ttm);
930 
931 	/*
932 	 * Don't manipulate the TTM LRUs while in TTM bo destruction.
933 	 * We're called through i915_ttm_delete_mem_notify().
934 	 */
935 	if (!kref_read(&bo->kref))
936 		return;
937 
938 	/*
939 	 * We skip managing the shrinker LRU in set_pages() and just manage
940 	 * everything here. This does at least solve the issue with having
941 	 * temporary shmem mappings(like with evicted lmem) not being visible to
942 	 * the shrinker. Only our shmem objects are shrinkable, everything else
943 	 * we keep as unshrinkable.
944 	 *
945 	 * To make sure everything plays nice we keep an extra shrink pin in TTM
946 	 * if the underlying pages are not currently shrinkable. Once we release
947 	 * our pin, like when the pages are moved to shmem, the pages will then
948 	 * be added to the shrinker LRU, assuming the caller isn't also holding
949 	 * a pin.
950 	 *
951 	 * TODO: consider maybe also bumping the shrinker list here when we have
952 	 * already unpinned it, which should give us something more like an LRU.
953 	 *
954 	 * TODO: There is a small window of opportunity for this function to
955 	 * get called from eviction after we've dropped the last GEM refcount,
956 	 * but before the TTM deleted flag is set on the object. Avoid
957 	 * adjusting the shrinker list in such cases, since the object is
958 	 * not available to the shrinker anyway due to its zero refcount.
959 	 * To fix this properly we should move to a TTM shrinker LRU list for
960 	 * these objects.
961 	 */
962 	if (kref_get_unless_zero(&obj->base.refcount)) {
963 		if (shrinkable != obj->mm.ttm_shrinkable) {
964 			if (shrinkable) {
965 				if (obj->mm.madv == I915_MADV_WILLNEED)
966 					__i915_gem_object_make_shrinkable(obj);
967 				else
968 					__i915_gem_object_make_purgeable(obj);
969 			} else {
970 				i915_gem_object_make_unshrinkable(obj);
971 			}
972 
973 			obj->mm.ttm_shrinkable = shrinkable;
974 		}
975 		i915_gem_object_put(obj);
976 	}
977 
978 	/*
979 	 * Put on the correct LRU list depending on the MADV status
980 	 */
981 	spin_lock(&bo->bdev->lru_lock);
982 	if (shrinkable) {
983 		/* Try to keep shmem_tt from being considered for shrinking. */
984 		bo->priority = TTM_MAX_BO_PRIORITY - 1;
985 	} else if (obj->mm.madv != I915_MADV_WILLNEED) {
986 		bo->priority = I915_TTM_PRIO_PURGE;
987 	} else if (!i915_gem_object_has_pages(obj)) {
988 		bo->priority = I915_TTM_PRIO_NO_PAGES;
989 	} else {
990 		struct ttm_resource_manager *man =
991 			ttm_manager_type(bo->bdev, bo->resource->mem_type);
992 
993 		/*
994 		 * If we need to place an LMEM resource which doesn't need CPU
995 		 * access then we should try not to victimize mappable objects
996 		 * first, since we likely end up stealing more of the mappable
997 		 * portion. And likewise when we try to find space for a mappble
998 		 * object, we know not to ever victimize objects that don't
999 		 * occupy any mappable pages.
1000 		 */
1001 		if (i915_ttm_cpu_maps_iomem(bo->resource) &&
1002 		    i915_ttm_buddy_man_visible_size(man) < man->size &&
1003 		    !(obj->flags & I915_BO_ALLOC_GPU_ONLY))
1004 			bo->priority = I915_TTM_PRIO_NEEDS_CPU_ACCESS;
1005 		else
1006 			bo->priority = I915_TTM_PRIO_HAS_PAGES;
1007 	}
1008 
1009 	ttm_bo_move_to_lru_tail(bo);
1010 	spin_unlock(&bo->bdev->lru_lock);
1011 }
1012 
1013 /*
1014  * TTM-backed gem object destruction requires some clarification.
1015  * Basically we have two possibilities here. We can either rely on the
1016  * i915 delayed destruction and put the TTM object when the object
1017  * is idle. This would be detected by TTM which would bypass the
1018  * TTM delayed destroy handling. The other approach is to put the TTM
1019  * object early and rely on the TTM destroyed handling, and then free
1020  * the leftover parts of the GEM object once TTM's destroyed list handling is
1021  * complete. For now, we rely on the latter for two reasons:
1022  * a) TTM can evict an object even when it's on the delayed destroy list,
1023  * which in theory allows for complete eviction.
1024  * b) There is work going on in TTM to allow freeing an object even when
1025  * it's not idle, and using the TTM destroyed list handling could help us
1026  * benefit from that.
1027  */
1028 static void i915_ttm_delayed_free(struct drm_i915_gem_object *obj)
1029 {
1030 	GEM_BUG_ON(!obj->ttm.created);
1031 
1032 	ttm_bo_put(i915_gem_to_ttm(obj));
1033 }
1034 
1035 static vm_fault_t vm_fault_ttm(struct vm_fault *vmf)
1036 {
1037 	struct vm_area_struct *area = vmf->vma;
1038 	struct ttm_buffer_object *bo = area->vm_private_data;
1039 	struct drm_device *dev = bo->base.dev;
1040 	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
1041 	intel_wakeref_t wakeref = 0;
1042 	vm_fault_t ret;
1043 	int idx;
1044 
1045 	/* Sanity check that we allow writing into this object */
1046 	if (unlikely(i915_gem_object_is_readonly(obj) &&
1047 		     area->vm_flags & VM_WRITE))
1048 		return VM_FAULT_SIGBUS;
1049 
1050 	ret = ttm_bo_vm_reserve(bo, vmf);
1051 	if (ret)
1052 		return ret;
1053 
1054 	if (obj->mm.madv != I915_MADV_WILLNEED) {
1055 		dma_resv_unlock(bo->base.resv);
1056 		return VM_FAULT_SIGBUS;
1057 	}
1058 
1059 	/*
1060 	 * This must be swapped out with shmem ttm_tt (pipeline-gutting).
1061 	 * Calling ttm_bo_validate() here with TTM_PL_SYSTEM should only go as
1062 	 * far as far doing a ttm_bo_move_null(), which should skip all the
1063 	 * other junk.
1064 	 */
1065 	if (!bo->resource) {
1066 		struct ttm_operation_ctx ctx = {
1067 			.interruptible = true,
1068 			.no_wait_gpu = true, /* should be idle already */
1069 		};
1070 		int err;
1071 
1072 		GEM_BUG_ON(!bo->ttm || !(bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED));
1073 
1074 		err = ttm_bo_validate(bo, i915_ttm_sys_placement(), &ctx);
1075 		if (err) {
1076 			dma_resv_unlock(bo->base.resv);
1077 			return VM_FAULT_SIGBUS;
1078 		}
1079 	} else if (!i915_ttm_resource_mappable(bo->resource)) {
1080 		int err = -ENODEV;
1081 		int i;
1082 
1083 		for (i = 0; i < obj->mm.n_placements; i++) {
1084 			struct intel_memory_region *mr = obj->mm.placements[i];
1085 			unsigned int flags;
1086 
1087 			if (!resource_size(&mr->io) && mr->type != INTEL_MEMORY_SYSTEM)
1088 				continue;
1089 
1090 			flags = obj->flags;
1091 			flags &= ~I915_BO_ALLOC_GPU_ONLY;
1092 			err = __i915_ttm_migrate(obj, mr, flags);
1093 			if (!err)
1094 				break;
1095 		}
1096 
1097 		if (err) {
1098 			drm_dbg_ratelimited(dev,
1099 					    "Unable to make resource CPU accessible(err = %pe)\n",
1100 					    ERR_PTR(err));
1101 			dma_resv_unlock(bo->base.resv);
1102 			ret = VM_FAULT_SIGBUS;
1103 			goto out_rpm;
1104 		}
1105 	}
1106 
1107 	if (i915_ttm_cpu_maps_iomem(bo->resource))
1108 		wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm);
1109 
1110 	if (drm_dev_enter(dev, &idx)) {
1111 		ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
1112 					       TTM_BO_VM_NUM_PREFAULT);
1113 		drm_dev_exit(idx);
1114 	} else {
1115 		ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
1116 	}
1117 
1118 	if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
1119 		goto out_rpm;
1120 
1121 	/*
1122 	 * ttm_bo_vm_reserve() already has dma_resv_lock.
1123 	 * userfault_count is protected by dma_resv lock and rpm wakeref.
1124 	 */
1125 	if (ret == VM_FAULT_NOPAGE && wakeref && !obj->userfault_count) {
1126 		obj->userfault_count = 1;
1127 		spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1128 		list_add(&obj->userfault_link, &to_i915(obj->base.dev)->runtime_pm.lmem_userfault_list);
1129 		spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1130 
1131 		GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(bo->resource));
1132 	}
1133 
1134 	if (wakeref & CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND)
1135 		intel_wakeref_auto(&to_i915(obj->base.dev)->runtime_pm.userfault_wakeref,
1136 				   msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND));
1137 
1138 	i915_ttm_adjust_lru(obj);
1139 
1140 	dma_resv_unlock(bo->base.resv);
1141 
1142 out_rpm:
1143 	if (wakeref)
1144 		intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref);
1145 
1146 	return ret;
1147 }
1148 
1149 static int
1150 vm_access_ttm(struct vm_area_struct *area, unsigned long addr,
1151 	      void *buf, int len, int write)
1152 {
1153 	struct drm_i915_gem_object *obj =
1154 		i915_ttm_to_gem(area->vm_private_data);
1155 
1156 	if (i915_gem_object_is_readonly(obj) && write)
1157 		return -EACCES;
1158 
1159 	return ttm_bo_vm_access(area, addr, buf, len, write);
1160 }
1161 
1162 static void ttm_vm_open(struct vm_area_struct *vma)
1163 {
1164 	struct drm_i915_gem_object *obj =
1165 		i915_ttm_to_gem(vma->vm_private_data);
1166 
1167 	GEM_BUG_ON(i915_ttm_is_ghost_object(vma->vm_private_data));
1168 	i915_gem_object_get(obj);
1169 }
1170 
1171 static void ttm_vm_close(struct vm_area_struct *vma)
1172 {
1173 	struct drm_i915_gem_object *obj =
1174 		i915_ttm_to_gem(vma->vm_private_data);
1175 
1176 	GEM_BUG_ON(i915_ttm_is_ghost_object(vma->vm_private_data));
1177 	i915_gem_object_put(obj);
1178 }
1179 
1180 static const struct vm_operations_struct vm_ops_ttm = {
1181 	.fault = vm_fault_ttm,
1182 	.access = vm_access_ttm,
1183 	.open = ttm_vm_open,
1184 	.close = ttm_vm_close,
1185 };
1186 
1187 static u64 i915_ttm_mmap_offset(struct drm_i915_gem_object *obj)
1188 {
1189 	/* The ttm_bo must be allocated with I915_BO_ALLOC_USER */
1190 	GEM_BUG_ON(!drm_mm_node_allocated(&obj->base.vma_node.vm_node));
1191 
1192 	return drm_vma_node_offset_addr(&obj->base.vma_node);
1193 }
1194 
1195 static void i915_ttm_unmap_virtual(struct drm_i915_gem_object *obj)
1196 {
1197 	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
1198 	intel_wakeref_t wakeref = 0;
1199 
1200 	assert_object_held_shared(obj);
1201 
1202 	if (i915_ttm_cpu_maps_iomem(bo->resource)) {
1203 		wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm);
1204 
1205 		/* userfault_count is protected by obj lock and rpm wakeref. */
1206 		if (obj->userfault_count) {
1207 			spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1208 			list_del(&obj->userfault_link);
1209 			spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1210 			obj->userfault_count = 0;
1211 		}
1212 	}
1213 
1214 	GEM_WARN_ON(obj->userfault_count);
1215 
1216 	ttm_bo_unmap_virtual(i915_gem_to_ttm(obj));
1217 
1218 	if (wakeref)
1219 		intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref);
1220 }
1221 
1222 static const struct drm_i915_gem_object_ops i915_gem_ttm_obj_ops = {
1223 	.name = "i915_gem_object_ttm",
1224 	.flags = I915_GEM_OBJECT_IS_SHRINKABLE |
1225 		 I915_GEM_OBJECT_SELF_MANAGED_SHRINK_LIST,
1226 
1227 	.get_pages = i915_ttm_get_pages,
1228 	.put_pages = i915_ttm_put_pages,
1229 	.truncate = i915_ttm_truncate,
1230 	.shrink = i915_ttm_shrink,
1231 
1232 	.adjust_lru = i915_ttm_adjust_lru,
1233 	.delayed_free = i915_ttm_delayed_free,
1234 	.migrate = i915_ttm_migrate,
1235 
1236 	.mmap_offset = i915_ttm_mmap_offset,
1237 	.unmap_virtual = i915_ttm_unmap_virtual,
1238 	.mmap_ops = &vm_ops_ttm,
1239 };
1240 
1241 void i915_ttm_bo_destroy(struct ttm_buffer_object *bo)
1242 {
1243 	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
1244 
1245 	i915_gem_object_release_memory_region(obj);
1246 	mutex_destroy(&obj->ttm.get_io_page.lock);
1247 
1248 	if (obj->ttm.created) {
1249 		/*
1250 		 * We freely manage the shrinker LRU outide of the mm.pages life
1251 		 * cycle. As a result when destroying the object we should be
1252 		 * extra paranoid and ensure we remove it from the LRU, before
1253 		 * we free the object.
1254 		 *
1255 		 * Touching the ttm_shrinkable outside of the object lock here
1256 		 * should be safe now that the last GEM object ref was dropped.
1257 		 */
1258 		if (obj->mm.ttm_shrinkable)
1259 			i915_gem_object_make_unshrinkable(obj);
1260 
1261 		i915_ttm_backup_free(obj);
1262 
1263 		/* This releases all gem object bindings to the backend. */
1264 		__i915_gem_free_object(obj);
1265 
1266 		call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
1267 	} else {
1268 		__i915_gem_object_fini(obj);
1269 	}
1270 }
1271 
1272 /*
1273  * __i915_gem_ttm_object_init - Initialize a ttm-backed i915 gem object
1274  * @mem: The initial memory region for the object.
1275  * @obj: The gem object.
1276  * @size: Object size in bytes.
1277  * @flags: gem object flags.
1278  *
1279  * Return: 0 on success, negative error code on failure.
1280  */
1281 int __i915_gem_ttm_object_init(struct intel_memory_region *mem,
1282 			       struct drm_i915_gem_object *obj,
1283 			       resource_size_t offset,
1284 			       resource_size_t size,
1285 			       resource_size_t page_size,
1286 			       unsigned int flags)
1287 {
1288 	static struct lock_class_key lock_class;
1289 	struct drm_i915_private *i915 = mem->i915;
1290 	struct ttm_operation_ctx ctx = {
1291 		.interruptible = true,
1292 		.no_wait_gpu = false,
1293 	};
1294 	enum ttm_bo_type bo_type;
1295 	int ret;
1296 
1297 	drm_gem_private_object_init(&i915->drm, &obj->base, size);
1298 	i915_gem_object_init(obj, &i915_gem_ttm_obj_ops, &lock_class, flags);
1299 
1300 	obj->bo_offset = offset;
1301 
1302 	/* Don't put on a region list until we're either locked or fully initialized. */
1303 	obj->mm.region = mem;
1304 	INIT_LIST_HEAD(&obj->mm.region_link);
1305 
1306 	INIT_RADIX_TREE(&obj->ttm.get_io_page.radix, GFP_KERNEL | __GFP_NOWARN);
1307 	mutex_init(&obj->ttm.get_io_page.lock);
1308 	bo_type = (obj->flags & I915_BO_ALLOC_USER) ? ttm_bo_type_device :
1309 		ttm_bo_type_kernel;
1310 
1311 	obj->base.vma_node.driver_private = i915_gem_to_ttm(obj);
1312 
1313 	/* Forcing the page size is kernel internal only */
1314 	GEM_BUG_ON(page_size && obj->mm.n_placements);
1315 
1316 	/*
1317 	 * Keep an extra shrink pin to prevent the object from being made
1318 	 * shrinkable too early. If the ttm_tt is ever allocated in shmem, we
1319 	 * drop the pin. The TTM backend manages the shrinker LRU itself,
1320 	 * outside of the normal mm.pages life cycle.
1321 	 */
1322 	i915_gem_object_make_unshrinkable(obj);
1323 
1324 	/*
1325 	 * If this function fails, it will call the destructor, but
1326 	 * our caller still owns the object. So no freeing in the
1327 	 * destructor until obj->ttm.created is true.
1328 	 * Similarly, in delayed_destroy, we can't call ttm_bo_put()
1329 	 * until successful initialization.
1330 	 */
1331 	ret = ttm_bo_init_reserved(&i915->bdev, i915_gem_to_ttm(obj), bo_type,
1332 				   &i915_sys_placement, page_size >> PAGE_SHIFT,
1333 				   &ctx, NULL, NULL, i915_ttm_bo_destroy);
1334 
1335 	/*
1336 	 * XXX: The ttm_bo_init_reserved() functions returns -ENOSPC if the size
1337 	 * is too big to add vma. The direct function that returns -ENOSPC is
1338 	 * drm_mm_insert_node_in_range(). To handle the same error as other code
1339 	 * that returns -E2BIG when the size is too large, it converts -ENOSPC to
1340 	 * -E2BIG.
1341 	 */
1342 	if (size >> PAGE_SHIFT > INT_MAX && ret == -ENOSPC)
1343 		ret = -E2BIG;
1344 
1345 	if (ret)
1346 		return i915_ttm_err_to_gem(ret);
1347 
1348 	obj->ttm.created = true;
1349 	i915_gem_object_release_memory_region(obj);
1350 	i915_gem_object_init_memory_region(obj, mem);
1351 	i915_ttm_adjust_domains_after_move(obj);
1352 	i915_ttm_adjust_gem_after_move(obj);
1353 	i915_gem_object_unlock(obj);
1354 
1355 	return 0;
1356 }
1357 
1358 static const struct intel_memory_region_ops ttm_system_region_ops = {
1359 	.init_object = __i915_gem_ttm_object_init,
1360 	.release = intel_region_ttm_fini,
1361 };
1362 
1363 struct intel_memory_region *
1364 i915_gem_ttm_system_setup(struct drm_i915_private *i915,
1365 			  u16 type, u16 instance)
1366 {
1367 	struct intel_memory_region *mr;
1368 
1369 	mr = intel_memory_region_create(i915, 0,
1370 					totalram_pages() << PAGE_SHIFT,
1371 					PAGE_SIZE, 0, 0,
1372 					type, instance,
1373 					&ttm_system_region_ops);
1374 	if (IS_ERR(mr))
1375 		return mr;
1376 
1377 	intel_memory_region_set_name(mr, "system-ttm");
1378 	return mr;
1379 }
1380