1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008-2015 Intel Corporation 5 */ 6 7 #include <linux/oom.h> 8 #include <linux/sched/mm.h> 9 #include <linux/shmem_fs.h> 10 #include <linux/slab.h> 11 #include <linux/swap.h> 12 #include <linux/pci.h> 13 #include <linux/dma-buf.h> 14 #include <linux/vmalloc.h> 15 16 #include "gt/intel_gt_requests.h" 17 #include "gt/intel_gt.h" 18 19 #include "i915_trace.h" 20 21 static bool swap_available(void) 22 { 23 return get_nr_swap_pages() > 0; 24 } 25 26 static bool can_release_pages(struct drm_i915_gem_object *obj) 27 { 28 /* Consider only shrinkable ojects. */ 29 if (!i915_gem_object_is_shrinkable(obj)) 30 return false; 31 32 /* 33 * We can only return physical pages to the system if we can either 34 * discard the contents (because the user has marked them as being 35 * purgeable) or if we can move their contents out to swap. 36 */ 37 return swap_available() || obj->mm.madv == I915_MADV_DONTNEED; 38 } 39 40 static bool drop_pages(struct drm_i915_gem_object *obj, 41 unsigned long shrink, bool trylock_vm) 42 { 43 unsigned long flags; 44 45 flags = 0; 46 if (shrink & I915_SHRINK_ACTIVE) 47 flags |= I915_GEM_OBJECT_UNBIND_ACTIVE; 48 if (!(shrink & I915_SHRINK_BOUND)) 49 flags |= I915_GEM_OBJECT_UNBIND_TEST; 50 if (trylock_vm) 51 flags |= I915_GEM_OBJECT_UNBIND_VM_TRYLOCK; 52 53 if (i915_gem_object_unbind(obj, flags) == 0) 54 return true; 55 56 return false; 57 } 58 59 static int try_to_writeback(struct drm_i915_gem_object *obj, unsigned int flags) 60 { 61 if (obj->ops->shrink) { 62 unsigned int shrink_flags = 0; 63 64 if (!(flags & I915_SHRINK_ACTIVE)) 65 shrink_flags |= I915_GEM_OBJECT_SHRINK_NO_GPU_WAIT; 66 67 if (flags & I915_SHRINK_WRITEBACK) 68 shrink_flags |= I915_GEM_OBJECT_SHRINK_WRITEBACK; 69 70 return obj->ops->shrink(obj, shrink_flags); 71 } 72 73 return 0; 74 } 75 76 /** 77 * i915_gem_shrink - Shrink buffer object caches 78 * @ww: i915 gem ww acquire ctx, or NULL 79 * @i915: i915 device 80 * @target: amount of memory to make available, in pages 81 * @nr_scanned: optional output for number of pages scanned (incremental) 82 * @shrink: control flags for selecting cache types 83 * 84 * This function is the main interface to the shrinker. It will try to release 85 * up to @target pages of main memory backing storage from buffer objects. 86 * Selection of the specific caches can be done with @flags. This is e.g. useful 87 * when purgeable objects should be removed from caches preferentially. 88 * 89 * Note that it's not guaranteed that released amount is actually available as 90 * free system memory - the pages might still be in-used to due to other reasons 91 * (like cpu mmaps) or the mm core has reused them before we could grab them. 92 * Therefore code that needs to explicitly shrink buffer objects caches (e.g. to 93 * avoid deadlocks in memory reclaim) must fall back to i915_gem_shrink_all(). 94 * 95 * Also note that any kind of pinning (both per-vma address space pins and 96 * backing storage pins at the buffer object level) result in the shrinker code 97 * having to skip the object. 98 * 99 * Returns: 100 * The number of pages of backing storage actually released. 101 */ 102 unsigned long 103 i915_gem_shrink(struct i915_gem_ww_ctx *ww, 104 struct drm_i915_private *i915, 105 unsigned long target, 106 unsigned long *nr_scanned, 107 unsigned int shrink) 108 { 109 const struct { 110 struct list_head *list; 111 unsigned int bit; 112 } phases[] = { 113 { &i915->mm.purge_list, ~0u }, 114 { 115 &i915->mm.shrink_list, 116 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND 117 }, 118 { NULL, 0 }, 119 }, *phase; 120 intel_wakeref_t wakeref = NULL; 121 unsigned long count = 0; 122 unsigned long scanned = 0; 123 int err = 0, i = 0; 124 struct intel_gt *gt; 125 126 /* CHV + VTD workaround use stop_machine(); need to trylock vm->mutex */ 127 bool trylock_vm = !ww && intel_vm_no_concurrent_access_wa(i915); 128 129 trace_i915_gem_shrink(i915, target, shrink); 130 131 /* 132 * Unbinding of objects will require HW access; Let us not wake the 133 * device just to recover a little memory. If absolutely necessary, 134 * we will force the wake during oom-notifier. 135 */ 136 if (shrink & I915_SHRINK_BOUND) { 137 wakeref = intel_runtime_pm_get_if_in_use(&i915->runtime_pm); 138 if (!wakeref) 139 shrink &= ~I915_SHRINK_BOUND; 140 } 141 142 /* 143 * When shrinking the active list, we should also consider active 144 * contexts. Active contexts are pinned until they are retired, and 145 * so can not be simply unbound to retire and unpin their pages. To 146 * shrink the contexts, we must wait until the gpu is idle and 147 * completed its switch to the kernel context. In short, we do 148 * not have a good mechanism for idling a specific context, but 149 * what we can do is give them a kick so that we do not keep idle 150 * contexts around longer than is necessary. 151 */ 152 if (shrink & I915_SHRINK_ACTIVE) { 153 for_each_gt(gt, i915, i) 154 /* Retire requests to unpin all idle contexts */ 155 intel_gt_retire_requests(gt); 156 } 157 158 /* 159 * As we may completely rewrite the (un)bound list whilst unbinding 160 * (due to retiring requests) we have to strictly process only 161 * one element of the list at the time, and recheck the list 162 * on every iteration. 163 * 164 * In particular, we must hold a reference whilst removing the 165 * object as we may end up waiting for and/or retiring the objects. 166 * This might release the final reference (held by the active list) 167 * and result in the object being freed from under us. This is 168 * similar to the precautions the eviction code must take whilst 169 * removing objects. 170 * 171 * Also note that although these lists do not hold a reference to 172 * the object we can safely grab one here: The final object 173 * unreferencing and the bound_list are both protected by the 174 * dev->struct_mutex and so we won't ever be able to observe an 175 * object on the bound_list with a reference count equals 0. 176 */ 177 for (phase = phases; phase->list; phase++) { 178 struct list_head still_in_list; 179 struct drm_i915_gem_object *obj; 180 unsigned long flags; 181 182 if ((shrink & phase->bit) == 0) 183 continue; 184 185 INIT_LIST_HEAD(&still_in_list); 186 187 /* 188 * We serialize our access to unreferenced objects through 189 * the use of the struct_mutex. While the objects are not 190 * yet freed (due to RCU then a workqueue) we still want 191 * to be able to shrink their pages, so they remain on 192 * the unbound/bound list until actually freed. 193 */ 194 spin_lock_irqsave(&i915->mm.obj_lock, flags); 195 while (count < target && 196 (obj = list_first_entry_or_null(phase->list, 197 typeof(*obj), 198 mm.link))) { 199 list_move_tail(&obj->mm.link, &still_in_list); 200 201 if (shrink & I915_SHRINK_VMAPS && 202 !is_vmalloc_addr(obj->mm.mapping)) 203 continue; 204 205 if (!(shrink & I915_SHRINK_ACTIVE) && 206 i915_gem_object_is_framebuffer(obj)) 207 continue; 208 209 if (!can_release_pages(obj)) 210 continue; 211 212 if (!kref_get_unless_zero(&obj->base.refcount)) 213 continue; 214 215 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 216 217 /* May arrive from get_pages on another bo */ 218 if (!ww) { 219 if (!i915_gem_object_trylock(obj, NULL)) 220 goto skip; 221 } else { 222 err = i915_gem_object_lock(obj, ww); 223 if (err) 224 goto skip; 225 } 226 227 if (drop_pages(obj, shrink, trylock_vm) && 228 !__i915_gem_object_put_pages(obj) && 229 !try_to_writeback(obj, shrink)) 230 count += obj->base.size >> PAGE_SHIFT; 231 232 if (!ww) 233 i915_gem_object_unlock(obj); 234 235 scanned += obj->base.size >> PAGE_SHIFT; 236 skip: 237 i915_gem_object_put(obj); 238 239 spin_lock_irqsave(&i915->mm.obj_lock, flags); 240 if (err) 241 break; 242 } 243 list_splice_tail(&still_in_list, phase->list); 244 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 245 if (err) 246 break; 247 } 248 249 if (shrink & I915_SHRINK_BOUND) 250 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 251 252 if (err) 253 return err; 254 255 if (nr_scanned) 256 *nr_scanned += scanned; 257 return count; 258 } 259 260 /** 261 * i915_gem_shrink_all - Shrink buffer object caches completely 262 * @i915: i915 device 263 * 264 * This is a simple wraper around i915_gem_shrink() to aggressively shrink all 265 * caches completely. It also first waits for and retires all outstanding 266 * requests to also be able to release backing storage for active objects. 267 * 268 * This should only be used in code to intentionally quiescent the gpu or as a 269 * last-ditch effort when memory seems to have run out. 270 * 271 * Returns: 272 * The number of pages of backing storage actually released. 273 */ 274 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915) 275 { 276 intel_wakeref_t wakeref; 277 unsigned long freed = 0; 278 279 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 280 freed = i915_gem_shrink(NULL, i915, -1UL, NULL, 281 I915_SHRINK_BOUND | 282 I915_SHRINK_UNBOUND); 283 } 284 285 return freed; 286 } 287 288 static unsigned long 289 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc) 290 { 291 struct drm_i915_private *i915 = shrinker->private_data; 292 unsigned long num_objects; 293 unsigned long count; 294 295 count = READ_ONCE(i915->mm.shrink_memory) >> PAGE_SHIFT; 296 num_objects = READ_ONCE(i915->mm.shrink_count); 297 298 /* 299 * Update our preferred vmscan batch size for the next pass. 300 * Our rough guess for an effective batch size is roughly 2 301 * available GEM objects worth of pages. That is we don't want 302 * the shrinker to fire, until it is worth the cost of freeing an 303 * entire GEM object. 304 */ 305 if (num_objects) { 306 unsigned long avg = 2 * count / num_objects; 307 308 i915->mm.shrinker->batch = 309 max((i915->mm.shrinker->batch + avg) >> 1, 310 128ul /* default SHRINK_BATCH */); 311 } 312 313 return count; 314 } 315 316 static unsigned long 317 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc) 318 { 319 struct drm_i915_private *i915 = shrinker->private_data; 320 unsigned long freed; 321 322 sc->nr_scanned = 0; 323 324 freed = i915_gem_shrink(NULL, i915, 325 sc->nr_to_scan, 326 &sc->nr_scanned, 327 I915_SHRINK_BOUND | 328 I915_SHRINK_UNBOUND); 329 if (sc->nr_scanned < sc->nr_to_scan && current_is_kswapd()) { 330 intel_wakeref_t wakeref; 331 332 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 333 freed += i915_gem_shrink(NULL, i915, 334 sc->nr_to_scan - sc->nr_scanned, 335 &sc->nr_scanned, 336 I915_SHRINK_ACTIVE | 337 I915_SHRINK_BOUND | 338 I915_SHRINK_UNBOUND | 339 I915_SHRINK_WRITEBACK); 340 } 341 } 342 343 return sc->nr_scanned ? freed : SHRINK_STOP; 344 } 345 346 static int 347 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr) 348 { 349 struct drm_i915_private *i915 = 350 container_of(nb, struct drm_i915_private, mm.oom_notifier); 351 struct drm_i915_gem_object *obj; 352 unsigned long unevictable, available, freed_pages; 353 intel_wakeref_t wakeref; 354 unsigned long flags; 355 356 freed_pages = 0; 357 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 358 freed_pages += i915_gem_shrink(NULL, i915, -1UL, NULL, 359 I915_SHRINK_BOUND | 360 I915_SHRINK_UNBOUND | 361 I915_SHRINK_WRITEBACK); 362 363 /* Because we may be allocating inside our own driver, we cannot 364 * assert that there are no objects with pinned pages that are not 365 * being pointed to by hardware. 366 */ 367 available = unevictable = 0; 368 spin_lock_irqsave(&i915->mm.obj_lock, flags); 369 list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) { 370 if (!can_release_pages(obj)) 371 unevictable += obj->base.size >> PAGE_SHIFT; 372 else 373 available += obj->base.size >> PAGE_SHIFT; 374 } 375 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 376 377 if (freed_pages || available) 378 pr_info("Purging GPU memory, %lu pages freed, " 379 "%lu pages still pinned, %lu pages left available.\n", 380 freed_pages, unevictable, available); 381 382 *(unsigned long *)ptr += freed_pages; 383 return NOTIFY_DONE; 384 } 385 386 static int 387 i915_gem_shrinker_vmap(struct notifier_block *nb, unsigned long event, void *ptr) 388 { 389 struct drm_i915_private *i915 = 390 container_of(nb, struct drm_i915_private, mm.vmap_notifier); 391 struct i915_vma *vma, *next; 392 unsigned long freed_pages = 0; 393 intel_wakeref_t wakeref; 394 struct intel_gt *gt; 395 int i; 396 397 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 398 freed_pages += i915_gem_shrink(NULL, i915, -1UL, NULL, 399 I915_SHRINK_BOUND | 400 I915_SHRINK_UNBOUND | 401 I915_SHRINK_VMAPS); 402 403 /* We also want to clear any cached iomaps as they wrap vmap */ 404 for_each_gt(gt, i915, i) { 405 mutex_lock(>->ggtt->vm.mutex); 406 list_for_each_entry_safe(vma, next, 407 >->ggtt->vm.bound_list, vm_link) { 408 unsigned long count = i915_vma_size(vma) >> PAGE_SHIFT; 409 struct drm_i915_gem_object *obj = vma->obj; 410 411 if (!vma->iomap || i915_vma_is_active(vma)) 412 continue; 413 414 if (!i915_gem_object_trylock(obj, NULL)) 415 continue; 416 417 if (__i915_vma_unbind(vma) == 0) 418 freed_pages += count; 419 420 i915_gem_object_unlock(obj); 421 } 422 mutex_unlock(>->ggtt->vm.mutex); 423 } 424 425 *(unsigned long *)ptr += freed_pages; 426 return NOTIFY_DONE; 427 } 428 429 void i915_gem_driver_register__shrinker(struct drm_i915_private *i915) 430 { 431 i915->mm.shrinker = shrinker_alloc(0, "drm-i915_gem"); 432 if (!i915->mm.shrinker) { 433 drm_WARN_ON(&i915->drm, 1); 434 } else { 435 i915->mm.shrinker->scan_objects = i915_gem_shrinker_scan; 436 i915->mm.shrinker->count_objects = i915_gem_shrinker_count; 437 i915->mm.shrinker->batch = 4096; 438 i915->mm.shrinker->private_data = i915; 439 440 shrinker_register(i915->mm.shrinker); 441 } 442 443 i915->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom; 444 drm_WARN_ON(&i915->drm, register_oom_notifier(&i915->mm.oom_notifier)); 445 446 i915->mm.vmap_notifier.notifier_call = i915_gem_shrinker_vmap; 447 drm_WARN_ON(&i915->drm, 448 register_vmap_purge_notifier(&i915->mm.vmap_notifier)); 449 } 450 451 void i915_gem_driver_unregister__shrinker(struct drm_i915_private *i915) 452 { 453 drm_WARN_ON(&i915->drm, 454 unregister_vmap_purge_notifier(&i915->mm.vmap_notifier)); 455 drm_WARN_ON(&i915->drm, 456 unregister_oom_notifier(&i915->mm.oom_notifier)); 457 shrinker_free(i915->mm.shrinker); 458 } 459 460 void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915, 461 struct mutex *mutex) 462 { 463 if (!IS_ENABLED(CONFIG_LOCKDEP)) 464 return; 465 466 fs_reclaim_acquire(GFP_KERNEL); 467 468 mutex_acquire(&mutex->dep_map, 0, 0, _RET_IP_); 469 mutex_release(&mutex->dep_map, _RET_IP_); 470 471 fs_reclaim_release(GFP_KERNEL); 472 } 473 474 /** 475 * i915_gem_object_make_unshrinkable - Hide the object from the shrinker. By 476 * default all object types that support shrinking(see IS_SHRINKABLE), will also 477 * make the object visible to the shrinker after allocating the system memory 478 * pages. 479 * @obj: The GEM object. 480 * 481 * This is typically used for special kernel internal objects that can't be 482 * easily processed by the shrinker, like if they are perma-pinned. 483 */ 484 void i915_gem_object_make_unshrinkable(struct drm_i915_gem_object *obj) 485 { 486 struct drm_i915_private *i915 = obj_to_i915(obj); 487 unsigned long flags; 488 489 /* 490 * We can only be called while the pages are pinned or when 491 * the pages are released. If pinned, we should only be called 492 * from a single caller under controlled conditions; and on release 493 * only one caller may release us. Neither the two may cross. 494 */ 495 if (atomic_add_unless(&obj->mm.shrink_pin, 1, 0)) 496 return; 497 498 spin_lock_irqsave(&i915->mm.obj_lock, flags); 499 if (!atomic_fetch_inc(&obj->mm.shrink_pin) && 500 !list_empty(&obj->mm.link)) { 501 list_del_init(&obj->mm.link); 502 i915->mm.shrink_count--; 503 i915->mm.shrink_memory -= obj->base.size; 504 } 505 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 506 } 507 508 static void ___i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj, 509 struct list_head *head) 510 { 511 struct drm_i915_private *i915 = obj_to_i915(obj); 512 unsigned long flags; 513 514 if (!i915_gem_object_is_shrinkable(obj)) 515 return; 516 517 if (atomic_add_unless(&obj->mm.shrink_pin, -1, 1)) 518 return; 519 520 spin_lock_irqsave(&i915->mm.obj_lock, flags); 521 GEM_BUG_ON(!kref_read(&obj->base.refcount)); 522 if (atomic_dec_and_test(&obj->mm.shrink_pin)) { 523 GEM_BUG_ON(!list_empty(&obj->mm.link)); 524 525 list_add_tail(&obj->mm.link, head); 526 i915->mm.shrink_count++; 527 i915->mm.shrink_memory += obj->base.size; 528 529 } 530 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 531 } 532 533 /** 534 * __i915_gem_object_make_shrinkable - Move the object to the tail of the 535 * shrinkable list. Objects on this list might be swapped out. Used with 536 * WILLNEED objects. 537 * @obj: The GEM object. 538 * 539 * DO NOT USE. This is intended to be called on very special objects that don't 540 * yet have mm.pages, but are guaranteed to have potentially reclaimable pages 541 * underneath. 542 */ 543 void __i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj) 544 { 545 ___i915_gem_object_make_shrinkable(obj, 546 &obj_to_i915(obj)->mm.shrink_list); 547 } 548 549 /** 550 * __i915_gem_object_make_purgeable - Move the object to the tail of the 551 * purgeable list. Objects on this list might be swapped out. Used with 552 * DONTNEED objects. 553 * @obj: The GEM object. 554 * 555 * DO NOT USE. This is intended to be called on very special objects that don't 556 * yet have mm.pages, but are guaranteed to have potentially reclaimable pages 557 * underneath. 558 */ 559 void __i915_gem_object_make_purgeable(struct drm_i915_gem_object *obj) 560 { 561 ___i915_gem_object_make_shrinkable(obj, 562 &obj_to_i915(obj)->mm.purge_list); 563 } 564 565 /** 566 * i915_gem_object_make_shrinkable - Move the object to the tail of the 567 * shrinkable list. Objects on this list might be swapped out. Used with 568 * WILLNEED objects. 569 * @obj: The GEM object. 570 * 571 * MUST only be called on objects which have backing pages. 572 * 573 * MUST be balanced with previous call to i915_gem_object_make_unshrinkable(). 574 */ 575 void i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj) 576 { 577 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 578 __i915_gem_object_make_shrinkable(obj); 579 } 580 581 /** 582 * i915_gem_object_make_purgeable - Move the object to the tail of the purgeable 583 * list. Used with DONTNEED objects. Unlike with shrinkable objects, the 584 * shrinker will attempt to discard the backing pages, instead of trying to swap 585 * them out. 586 * @obj: The GEM object. 587 * 588 * MUST only be called on objects which have backing pages. 589 * 590 * MUST be balanced with previous call to i915_gem_object_make_unshrinkable(). 591 */ 592 void i915_gem_object_make_purgeable(struct drm_i915_gem_object *obj) 593 { 594 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 595 __i915_gem_object_make_purgeable(obj); 596 } 597