1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008-2015 Intel Corporation 5 */ 6 7 #include <linux/oom.h> 8 #include <linux/sched/mm.h> 9 #include <linux/shmem_fs.h> 10 #include <linux/slab.h> 11 #include <linux/swap.h> 12 #include <linux/pci.h> 13 #include <linux/dma-buf.h> 14 #include <linux/vmalloc.h> 15 16 #include "gt/intel_gt_requests.h" 17 18 #include "i915_trace.h" 19 20 static bool swap_available(void) 21 { 22 return get_nr_swap_pages() > 0; 23 } 24 25 static bool can_release_pages(struct drm_i915_gem_object *obj) 26 { 27 /* Consider only shrinkable ojects. */ 28 if (!i915_gem_object_is_shrinkable(obj)) 29 return false; 30 31 /* 32 * We can only return physical pages to the system if we can either 33 * discard the contents (because the user has marked them as being 34 * purgeable) or if we can move their contents out to swap. 35 */ 36 return swap_available() || obj->mm.madv == I915_MADV_DONTNEED; 37 } 38 39 static bool drop_pages(struct drm_i915_gem_object *obj, 40 unsigned long shrink, bool trylock_vm) 41 { 42 unsigned long flags; 43 44 flags = 0; 45 if (shrink & I915_SHRINK_ACTIVE) 46 flags |= I915_GEM_OBJECT_UNBIND_ACTIVE; 47 if (!(shrink & I915_SHRINK_BOUND)) 48 flags |= I915_GEM_OBJECT_UNBIND_TEST; 49 if (trylock_vm) 50 flags |= I915_GEM_OBJECT_UNBIND_VM_TRYLOCK; 51 52 if (i915_gem_object_unbind(obj, flags) == 0) 53 return true; 54 55 return false; 56 } 57 58 static int try_to_writeback(struct drm_i915_gem_object *obj, unsigned int flags) 59 { 60 if (obj->ops->shrink) { 61 unsigned int shrink_flags = 0; 62 63 if (!(flags & I915_SHRINK_ACTIVE)) 64 shrink_flags |= I915_GEM_OBJECT_SHRINK_NO_GPU_WAIT; 65 66 if (flags & I915_SHRINK_WRITEBACK) 67 shrink_flags |= I915_GEM_OBJECT_SHRINK_WRITEBACK; 68 69 return obj->ops->shrink(obj, shrink_flags); 70 } 71 72 return 0; 73 } 74 75 /** 76 * i915_gem_shrink - Shrink buffer object caches 77 * @ww: i915 gem ww acquire ctx, or NULL 78 * @i915: i915 device 79 * @target: amount of memory to make available, in pages 80 * @nr_scanned: optional output for number of pages scanned (incremental) 81 * @shrink: control flags for selecting cache types 82 * 83 * This function is the main interface to the shrinker. It will try to release 84 * up to @target pages of main memory backing storage from buffer objects. 85 * Selection of the specific caches can be done with @flags. This is e.g. useful 86 * when purgeable objects should be removed from caches preferentially. 87 * 88 * Note that it's not guaranteed that released amount is actually available as 89 * free system memory - the pages might still be in-used to due to other reasons 90 * (like cpu mmaps) or the mm core has reused them before we could grab them. 91 * Therefore code that needs to explicitly shrink buffer objects caches (e.g. to 92 * avoid deadlocks in memory reclaim) must fall back to i915_gem_shrink_all(). 93 * 94 * Also note that any kind of pinning (both per-vma address space pins and 95 * backing storage pins at the buffer object level) result in the shrinker code 96 * having to skip the object. 97 * 98 * Returns: 99 * The number of pages of backing storage actually released. 100 */ 101 unsigned long 102 i915_gem_shrink(struct i915_gem_ww_ctx *ww, 103 struct drm_i915_private *i915, 104 unsigned long target, 105 unsigned long *nr_scanned, 106 unsigned int shrink) 107 { 108 const struct { 109 struct list_head *list; 110 unsigned int bit; 111 } phases[] = { 112 { &i915->mm.purge_list, ~0u }, 113 { 114 &i915->mm.shrink_list, 115 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND 116 }, 117 { NULL, 0 }, 118 }, *phase; 119 intel_wakeref_t wakeref = 0; 120 unsigned long count = 0; 121 unsigned long scanned = 0; 122 int err = 0; 123 124 /* CHV + VTD workaround use stop_machine(); need to trylock vm->mutex */ 125 bool trylock_vm = !ww && intel_vm_no_concurrent_access_wa(i915); 126 127 trace_i915_gem_shrink(i915, target, shrink); 128 129 /* 130 * Unbinding of objects will require HW access; Let us not wake the 131 * device just to recover a little memory. If absolutely necessary, 132 * we will force the wake during oom-notifier. 133 */ 134 if (shrink & I915_SHRINK_BOUND) { 135 wakeref = intel_runtime_pm_get_if_in_use(&i915->runtime_pm); 136 if (!wakeref) 137 shrink &= ~I915_SHRINK_BOUND; 138 } 139 140 /* 141 * When shrinking the active list, we should also consider active 142 * contexts. Active contexts are pinned until they are retired, and 143 * so can not be simply unbound to retire and unpin their pages. To 144 * shrink the contexts, we must wait until the gpu is idle and 145 * completed its switch to the kernel context. In short, we do 146 * not have a good mechanism for idling a specific context, but 147 * what we can do is give them a kick so that we do not keep idle 148 * contexts around longer than is necessary. 149 */ 150 if (shrink & I915_SHRINK_ACTIVE) 151 /* Retire requests to unpin all idle contexts */ 152 intel_gt_retire_requests(to_gt(i915)); 153 154 /* 155 * As we may completely rewrite the (un)bound list whilst unbinding 156 * (due to retiring requests) we have to strictly process only 157 * one element of the list at the time, and recheck the list 158 * on every iteration. 159 * 160 * In particular, we must hold a reference whilst removing the 161 * object as we may end up waiting for and/or retiring the objects. 162 * This might release the final reference (held by the active list) 163 * and result in the object being freed from under us. This is 164 * similar to the precautions the eviction code must take whilst 165 * removing objects. 166 * 167 * Also note that although these lists do not hold a reference to 168 * the object we can safely grab one here: The final object 169 * unreferencing and the bound_list are both protected by the 170 * dev->struct_mutex and so we won't ever be able to observe an 171 * object on the bound_list with a reference count equals 0. 172 */ 173 for (phase = phases; phase->list; phase++) { 174 struct list_head still_in_list; 175 struct drm_i915_gem_object *obj; 176 unsigned long flags; 177 178 if ((shrink & phase->bit) == 0) 179 continue; 180 181 INIT_LIST_HEAD(&still_in_list); 182 183 /* 184 * We serialize our access to unreferenced objects through 185 * the use of the struct_mutex. While the objects are not 186 * yet freed (due to RCU then a workqueue) we still want 187 * to be able to shrink their pages, so they remain on 188 * the unbound/bound list until actually freed. 189 */ 190 spin_lock_irqsave(&i915->mm.obj_lock, flags); 191 while (count < target && 192 (obj = list_first_entry_or_null(phase->list, 193 typeof(*obj), 194 mm.link))) { 195 list_move_tail(&obj->mm.link, &still_in_list); 196 197 if (shrink & I915_SHRINK_VMAPS && 198 !is_vmalloc_addr(obj->mm.mapping)) 199 continue; 200 201 if (!(shrink & I915_SHRINK_ACTIVE) && 202 i915_gem_object_is_framebuffer(obj)) 203 continue; 204 205 if (!can_release_pages(obj)) 206 continue; 207 208 if (!kref_get_unless_zero(&obj->base.refcount)) 209 continue; 210 211 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 212 213 /* May arrive from get_pages on another bo */ 214 if (!ww) { 215 if (!i915_gem_object_trylock(obj, NULL)) 216 goto skip; 217 } else { 218 err = i915_gem_object_lock(obj, ww); 219 if (err) 220 goto skip; 221 } 222 223 if (drop_pages(obj, shrink, trylock_vm) && 224 !__i915_gem_object_put_pages(obj) && 225 !try_to_writeback(obj, shrink)) 226 count += obj->base.size >> PAGE_SHIFT; 227 228 if (!ww) 229 i915_gem_object_unlock(obj); 230 231 scanned += obj->base.size >> PAGE_SHIFT; 232 skip: 233 i915_gem_object_put(obj); 234 235 spin_lock_irqsave(&i915->mm.obj_lock, flags); 236 if (err) 237 break; 238 } 239 list_splice_tail(&still_in_list, phase->list); 240 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 241 if (err) 242 break; 243 } 244 245 if (shrink & I915_SHRINK_BOUND) 246 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 247 248 if (err) 249 return err; 250 251 if (nr_scanned) 252 *nr_scanned += scanned; 253 return count; 254 } 255 256 /** 257 * i915_gem_shrink_all - Shrink buffer object caches completely 258 * @i915: i915 device 259 * 260 * This is a simple wraper around i915_gem_shrink() to aggressively shrink all 261 * caches completely. It also first waits for and retires all outstanding 262 * requests to also be able to release backing storage for active objects. 263 * 264 * This should only be used in code to intentionally quiescent the gpu or as a 265 * last-ditch effort when memory seems to have run out. 266 * 267 * Returns: 268 * The number of pages of backing storage actually released. 269 */ 270 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915) 271 { 272 intel_wakeref_t wakeref; 273 unsigned long freed = 0; 274 275 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 276 freed = i915_gem_shrink(NULL, i915, -1UL, NULL, 277 I915_SHRINK_BOUND | 278 I915_SHRINK_UNBOUND); 279 } 280 281 return freed; 282 } 283 284 static unsigned long 285 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc) 286 { 287 struct drm_i915_private *i915 = shrinker->private_data; 288 unsigned long num_objects; 289 unsigned long count; 290 291 count = READ_ONCE(i915->mm.shrink_memory) >> PAGE_SHIFT; 292 num_objects = READ_ONCE(i915->mm.shrink_count); 293 294 /* 295 * Update our preferred vmscan batch size for the next pass. 296 * Our rough guess for an effective batch size is roughly 2 297 * available GEM objects worth of pages. That is we don't want 298 * the shrinker to fire, until it is worth the cost of freeing an 299 * entire GEM object. 300 */ 301 if (num_objects) { 302 unsigned long avg = 2 * count / num_objects; 303 304 i915->mm.shrinker->batch = 305 max((i915->mm.shrinker->batch + avg) >> 1, 306 128ul /* default SHRINK_BATCH */); 307 } 308 309 return count; 310 } 311 312 static unsigned long 313 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc) 314 { 315 struct drm_i915_private *i915 = shrinker->private_data; 316 unsigned long freed; 317 318 sc->nr_scanned = 0; 319 320 freed = i915_gem_shrink(NULL, i915, 321 sc->nr_to_scan, 322 &sc->nr_scanned, 323 I915_SHRINK_BOUND | 324 I915_SHRINK_UNBOUND); 325 if (sc->nr_scanned < sc->nr_to_scan && current_is_kswapd()) { 326 intel_wakeref_t wakeref; 327 328 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 329 freed += i915_gem_shrink(NULL, i915, 330 sc->nr_to_scan - sc->nr_scanned, 331 &sc->nr_scanned, 332 I915_SHRINK_ACTIVE | 333 I915_SHRINK_BOUND | 334 I915_SHRINK_UNBOUND | 335 I915_SHRINK_WRITEBACK); 336 } 337 } 338 339 return sc->nr_scanned ? freed : SHRINK_STOP; 340 } 341 342 static int 343 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr) 344 { 345 struct drm_i915_private *i915 = 346 container_of(nb, struct drm_i915_private, mm.oom_notifier); 347 struct drm_i915_gem_object *obj; 348 unsigned long unevictable, available, freed_pages; 349 intel_wakeref_t wakeref; 350 unsigned long flags; 351 352 freed_pages = 0; 353 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 354 freed_pages += i915_gem_shrink(NULL, i915, -1UL, NULL, 355 I915_SHRINK_BOUND | 356 I915_SHRINK_UNBOUND | 357 I915_SHRINK_WRITEBACK); 358 359 /* Because we may be allocating inside our own driver, we cannot 360 * assert that there are no objects with pinned pages that are not 361 * being pointed to by hardware. 362 */ 363 available = unevictable = 0; 364 spin_lock_irqsave(&i915->mm.obj_lock, flags); 365 list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) { 366 if (!can_release_pages(obj)) 367 unevictable += obj->base.size >> PAGE_SHIFT; 368 else 369 available += obj->base.size >> PAGE_SHIFT; 370 } 371 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 372 373 if (freed_pages || available) 374 pr_info("Purging GPU memory, %lu pages freed, " 375 "%lu pages still pinned, %lu pages left available.\n", 376 freed_pages, unevictable, available); 377 378 *(unsigned long *)ptr += freed_pages; 379 return NOTIFY_DONE; 380 } 381 382 static int 383 i915_gem_shrinker_vmap(struct notifier_block *nb, unsigned long event, void *ptr) 384 { 385 struct drm_i915_private *i915 = 386 container_of(nb, struct drm_i915_private, mm.vmap_notifier); 387 struct i915_vma *vma, *next; 388 unsigned long freed_pages = 0; 389 intel_wakeref_t wakeref; 390 391 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 392 freed_pages += i915_gem_shrink(NULL, i915, -1UL, NULL, 393 I915_SHRINK_BOUND | 394 I915_SHRINK_UNBOUND | 395 I915_SHRINK_VMAPS); 396 397 /* We also want to clear any cached iomaps as they wrap vmap */ 398 mutex_lock(&to_gt(i915)->ggtt->vm.mutex); 399 list_for_each_entry_safe(vma, next, 400 &to_gt(i915)->ggtt->vm.bound_list, vm_link) { 401 unsigned long count = i915_vma_size(vma) >> PAGE_SHIFT; 402 struct drm_i915_gem_object *obj = vma->obj; 403 404 if (!vma->iomap || i915_vma_is_active(vma)) 405 continue; 406 407 if (!i915_gem_object_trylock(obj, NULL)) 408 continue; 409 410 if (__i915_vma_unbind(vma) == 0) 411 freed_pages += count; 412 413 i915_gem_object_unlock(obj); 414 } 415 mutex_unlock(&to_gt(i915)->ggtt->vm.mutex); 416 417 *(unsigned long *)ptr += freed_pages; 418 return NOTIFY_DONE; 419 } 420 421 void i915_gem_driver_register__shrinker(struct drm_i915_private *i915) 422 { 423 i915->mm.shrinker = shrinker_alloc(0, "drm-i915_gem"); 424 if (!i915->mm.shrinker) { 425 drm_WARN_ON(&i915->drm, 1); 426 } else { 427 i915->mm.shrinker->scan_objects = i915_gem_shrinker_scan; 428 i915->mm.shrinker->count_objects = i915_gem_shrinker_count; 429 i915->mm.shrinker->batch = 4096; 430 i915->mm.shrinker->private_data = i915; 431 432 shrinker_register(i915->mm.shrinker); 433 } 434 435 i915->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom; 436 drm_WARN_ON(&i915->drm, register_oom_notifier(&i915->mm.oom_notifier)); 437 438 i915->mm.vmap_notifier.notifier_call = i915_gem_shrinker_vmap; 439 drm_WARN_ON(&i915->drm, 440 register_vmap_purge_notifier(&i915->mm.vmap_notifier)); 441 } 442 443 void i915_gem_driver_unregister__shrinker(struct drm_i915_private *i915) 444 { 445 drm_WARN_ON(&i915->drm, 446 unregister_vmap_purge_notifier(&i915->mm.vmap_notifier)); 447 drm_WARN_ON(&i915->drm, 448 unregister_oom_notifier(&i915->mm.oom_notifier)); 449 shrinker_free(i915->mm.shrinker); 450 } 451 452 void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915, 453 struct mutex *mutex) 454 { 455 if (!IS_ENABLED(CONFIG_LOCKDEP)) 456 return; 457 458 fs_reclaim_acquire(GFP_KERNEL); 459 460 mutex_acquire(&mutex->dep_map, 0, 0, _RET_IP_); 461 mutex_release(&mutex->dep_map, _RET_IP_); 462 463 fs_reclaim_release(GFP_KERNEL); 464 } 465 466 /** 467 * i915_gem_object_make_unshrinkable - Hide the object from the shrinker. By 468 * default all object types that support shrinking(see IS_SHRINKABLE), will also 469 * make the object visible to the shrinker after allocating the system memory 470 * pages. 471 * @obj: The GEM object. 472 * 473 * This is typically used for special kernel internal objects that can't be 474 * easily processed by the shrinker, like if they are perma-pinned. 475 */ 476 void i915_gem_object_make_unshrinkable(struct drm_i915_gem_object *obj) 477 { 478 struct drm_i915_private *i915 = obj_to_i915(obj); 479 unsigned long flags; 480 481 /* 482 * We can only be called while the pages are pinned or when 483 * the pages are released. If pinned, we should only be called 484 * from a single caller under controlled conditions; and on release 485 * only one caller may release us. Neither the two may cross. 486 */ 487 if (atomic_add_unless(&obj->mm.shrink_pin, 1, 0)) 488 return; 489 490 spin_lock_irqsave(&i915->mm.obj_lock, flags); 491 if (!atomic_fetch_inc(&obj->mm.shrink_pin) && 492 !list_empty(&obj->mm.link)) { 493 list_del_init(&obj->mm.link); 494 i915->mm.shrink_count--; 495 i915->mm.shrink_memory -= obj->base.size; 496 } 497 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 498 } 499 500 static void ___i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj, 501 struct list_head *head) 502 { 503 struct drm_i915_private *i915 = obj_to_i915(obj); 504 unsigned long flags; 505 506 if (!i915_gem_object_is_shrinkable(obj)) 507 return; 508 509 if (atomic_add_unless(&obj->mm.shrink_pin, -1, 1)) 510 return; 511 512 spin_lock_irqsave(&i915->mm.obj_lock, flags); 513 GEM_BUG_ON(!kref_read(&obj->base.refcount)); 514 if (atomic_dec_and_test(&obj->mm.shrink_pin)) { 515 GEM_BUG_ON(!list_empty(&obj->mm.link)); 516 517 list_add_tail(&obj->mm.link, head); 518 i915->mm.shrink_count++; 519 i915->mm.shrink_memory += obj->base.size; 520 521 } 522 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 523 } 524 525 /** 526 * __i915_gem_object_make_shrinkable - Move the object to the tail of the 527 * shrinkable list. Objects on this list might be swapped out. Used with 528 * WILLNEED objects. 529 * @obj: The GEM object. 530 * 531 * DO NOT USE. This is intended to be called on very special objects that don't 532 * yet have mm.pages, but are guaranteed to have potentially reclaimable pages 533 * underneath. 534 */ 535 void __i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj) 536 { 537 ___i915_gem_object_make_shrinkable(obj, 538 &obj_to_i915(obj)->mm.shrink_list); 539 } 540 541 /** 542 * __i915_gem_object_make_purgeable - Move the object to the tail of the 543 * purgeable list. Objects on this list might be swapped out. Used with 544 * DONTNEED objects. 545 * @obj: The GEM object. 546 * 547 * DO NOT USE. This is intended to be called on very special objects that don't 548 * yet have mm.pages, but are guaranteed to have potentially reclaimable pages 549 * underneath. 550 */ 551 void __i915_gem_object_make_purgeable(struct drm_i915_gem_object *obj) 552 { 553 ___i915_gem_object_make_shrinkable(obj, 554 &obj_to_i915(obj)->mm.purge_list); 555 } 556 557 /** 558 * i915_gem_object_make_shrinkable - Move the object to the tail of the 559 * shrinkable list. Objects on this list might be swapped out. Used with 560 * WILLNEED objects. 561 * @obj: The GEM object. 562 * 563 * MUST only be called on objects which have backing pages. 564 * 565 * MUST be balanced with previous call to i915_gem_object_make_unshrinkable(). 566 */ 567 void i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj) 568 { 569 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 570 __i915_gem_object_make_shrinkable(obj); 571 } 572 573 /** 574 * i915_gem_object_make_purgeable - Move the object to the tail of the purgeable 575 * list. Used with DONTNEED objects. Unlike with shrinkable objects, the 576 * shrinker will attempt to discard the backing pages, instead of trying to swap 577 * them out. 578 * @obj: The GEM object. 579 * 580 * MUST only be called on objects which have backing pages. 581 * 582 * MUST be balanced with previous call to i915_gem_object_make_unshrinkable(). 583 */ 584 void i915_gem_object_make_purgeable(struct drm_i915_gem_object *obj) 585 { 586 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 587 __i915_gem_object_make_purgeable(obj); 588 } 589