1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2008-2015 Intel Corporation 4 */ 5 6 #include <linux/oom.h> 7 #include <linux/sched/mm.h> 8 #include <linux/shmem_fs.h> 9 #include <linux/slab.h> 10 #include <linux/swap.h> 11 #include <linux/pci.h> 12 #include <linux/dma-buf.h> 13 #include <linux/vmalloc.h> 14 15 #include "gt/intel_gt_requests.h" 16 #include "gt/intel_gt.h" 17 18 #include "i915_trace.h" 19 20 static bool swap_available(void) 21 { 22 return get_nr_swap_pages() > 0; 23 } 24 25 static bool can_release_pages(struct drm_i915_gem_object *obj) 26 { 27 /* Consider only shrinkable objects. */ 28 if (!i915_gem_object_is_shrinkable(obj)) 29 return false; 30 31 /* 32 * We can only return physical pages to the system if we can either 33 * discard the contents (because the user has marked them as being 34 * purgeable) or if we can move their contents out to swap. 35 */ 36 return swap_available() || obj->mm.madv == I915_MADV_DONTNEED; 37 } 38 39 static bool drop_pages(struct drm_i915_gem_object *obj, 40 unsigned long shrink, bool trylock_vm) 41 { 42 unsigned long flags; 43 44 flags = 0; 45 if (shrink & I915_SHRINK_ACTIVE) 46 flags |= I915_GEM_OBJECT_UNBIND_ACTIVE; 47 if (!(shrink & I915_SHRINK_BOUND)) 48 flags |= I915_GEM_OBJECT_UNBIND_TEST; 49 if (trylock_vm) 50 flags |= I915_GEM_OBJECT_UNBIND_VM_TRYLOCK; 51 52 if (i915_gem_object_unbind(obj, flags) == 0) 53 return true; 54 55 return false; 56 } 57 58 static int try_to_writeback(struct drm_i915_gem_object *obj, unsigned int flags) 59 { 60 if (obj->ops->shrink) { 61 unsigned int shrink_flags = 0; 62 63 if (!(flags & I915_SHRINK_ACTIVE)) 64 shrink_flags |= I915_GEM_OBJECT_SHRINK_NO_GPU_WAIT; 65 66 if (flags & I915_SHRINK_WRITEBACK) 67 shrink_flags |= I915_GEM_OBJECT_SHRINK_WRITEBACK; 68 69 return obj->ops->shrink(obj, shrink_flags); 70 } 71 72 return 0; 73 } 74 75 /** 76 * i915_gem_shrink - Shrink buffer object caches 77 * @ww: i915 gem ww acquire ctx, or NULL 78 * @i915: i915 device 79 * @target: amount of memory to make available, in pages 80 * @nr_scanned: optional output for number of pages scanned (incremental) 81 * @shrink: control flags for selecting cache types 82 * 83 * This function is the main interface to the shrinker. It will try to release 84 * up to @target pages of main memory backing storage from buffer objects. 85 * Selection of the specific caches can be done with @flags. This is e.g. useful 86 * when purgeable objects should be removed from caches preferentially. 87 * 88 * Note that it's not guaranteed that released amount is actually available as 89 * free system memory - the pages might still be in-used to due to other reasons 90 * (like cpu mmaps) or the mm core has reused them before we could grab them. 91 * Therefore code that needs to explicitly shrink buffer objects caches (e.g. to 92 * avoid deadlocks in memory reclaim) must fall back to i915_gem_shrink_all(). 93 * 94 * Also note that any kind of pinning (both per-vma address space pins and 95 * backing storage pins at the buffer object level) result in the shrinker code 96 * having to skip the object. 97 * 98 * Returns: 99 * The number of pages of backing storage actually released. 100 */ 101 unsigned long 102 i915_gem_shrink(struct i915_gem_ww_ctx *ww, 103 struct drm_i915_private *i915, 104 unsigned long target, 105 unsigned long *nr_scanned, 106 unsigned int shrink) 107 { 108 const struct { 109 struct list_head *list; 110 unsigned int bit; 111 } phases[] = { 112 { &i915->mm.purge_list, ~0u }, 113 { 114 &i915->mm.shrink_list, 115 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND 116 }, 117 { NULL, 0 }, 118 }, *phase; 119 intel_wakeref_t wakeref = NULL; 120 unsigned long count = 0; 121 unsigned long scanned = 0; 122 int err = 0, i = 0; 123 struct intel_gt *gt; 124 125 /* CHV + VTD workaround use stop_machine(); need to trylock vm->mutex */ 126 bool trylock_vm = !ww && intel_vm_no_concurrent_access_wa(i915); 127 128 trace_i915_gem_shrink(i915, target, shrink); 129 130 /* 131 * Unbinding of objects will require HW access; Let us not wake the 132 * device just to recover a little memory. If absolutely necessary, 133 * we will force the wake during oom-notifier. 134 */ 135 if (shrink & I915_SHRINK_BOUND) { 136 wakeref = intel_runtime_pm_get_if_in_use(&i915->runtime_pm); 137 if (!wakeref) 138 shrink &= ~I915_SHRINK_BOUND; 139 } 140 141 /* 142 * When shrinking the active list, we should also consider active 143 * contexts. Active contexts are pinned until they are retired, and 144 * so can not be simply unbound to retire and unpin their pages. To 145 * shrink the contexts, we must wait until the gpu is idle and 146 * completed its switch to the kernel context. In short, we do 147 * not have a good mechanism for idling a specific context, but 148 * what we can do is give them a kick so that we do not keep idle 149 * contexts around longer than is necessary. 150 */ 151 if (shrink & I915_SHRINK_ACTIVE) { 152 for_each_gt(gt, i915, i) 153 /* Retire requests to unpin all idle contexts */ 154 intel_gt_retire_requests(gt); 155 } 156 157 /* 158 * As we may completely rewrite the (un)bound list whilst unbinding 159 * (due to retiring requests) we have to strictly process only 160 * one element of the list at the time, and recheck the list 161 * on every iteration. 162 * 163 * In particular, we must hold a reference whilst removing the 164 * object as we may end up waiting for and/or retiring the objects. 165 * This might release the final reference (held by the active list) 166 * and result in the object being freed from under us. This is 167 * similar to the precautions the eviction code must take whilst 168 * removing objects. 169 * 170 * Also note that although these lists do not hold a reference to 171 * the object we can safely grab one here: The final object 172 * unreferencing and the bound_list are both protected by the 173 * dev->struct_mutex and so we won't ever be able to observe an 174 * object on the bound_list with a reference count equals 0. 175 */ 176 for (phase = phases; phase->list; phase++) { 177 struct list_head still_in_list; 178 struct drm_i915_gem_object *obj; 179 unsigned long flags; 180 181 if ((shrink & phase->bit) == 0) 182 continue; 183 184 INIT_LIST_HEAD(&still_in_list); 185 186 /* 187 * We serialize our access to unreferenced objects through 188 * the use of the struct_mutex. While the objects are not 189 * yet freed (due to RCU then a workqueue) we still want 190 * to be able to shrink their pages, so they remain on 191 * the unbound/bound list until actually freed. 192 */ 193 spin_lock_irqsave(&i915->mm.obj_lock, flags); 194 while (count < target && 195 (obj = list_first_entry_or_null(phase->list, 196 typeof(*obj), 197 mm.link))) { 198 list_move_tail(&obj->mm.link, &still_in_list); 199 200 if (shrink & I915_SHRINK_VMAPS && 201 !is_vmalloc_addr(obj->mm.mapping)) 202 continue; 203 204 if (!(shrink & I915_SHRINK_ACTIVE) && 205 i915_gem_object_is_framebuffer(obj)) 206 continue; 207 208 if (!can_release_pages(obj)) 209 continue; 210 211 if (!kref_get_unless_zero(&obj->base.refcount)) 212 continue; 213 214 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 215 216 /* May arrive from get_pages on another bo */ 217 if (!ww) { 218 if (!i915_gem_object_trylock(obj, NULL)) 219 goto skip; 220 } else { 221 err = i915_gem_object_lock(obj, ww); 222 if (err) 223 goto skip; 224 } 225 226 if (drop_pages(obj, shrink, trylock_vm) && 227 !__i915_gem_object_put_pages(obj) && 228 !try_to_writeback(obj, shrink)) 229 count += obj->base.size >> PAGE_SHIFT; 230 231 if (!ww) 232 i915_gem_object_unlock(obj); 233 234 scanned += obj->base.size >> PAGE_SHIFT; 235 skip: 236 i915_gem_object_put(obj); 237 238 spin_lock_irqsave(&i915->mm.obj_lock, flags); 239 if (err) 240 break; 241 } 242 list_splice_tail(&still_in_list, phase->list); 243 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 244 if (err) 245 break; 246 } 247 248 if (shrink & I915_SHRINK_BOUND) 249 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 250 251 if (err) 252 return err; 253 254 if (nr_scanned) 255 *nr_scanned += scanned; 256 return count; 257 } 258 259 /** 260 * i915_gem_shrink_all - Shrink buffer object caches completely 261 * @i915: i915 device 262 * 263 * This is a simple wrapper around i915_gem_shrink() to aggressively shrink all 264 * caches completely. It also first waits for and retires all outstanding 265 * requests to also be able to release backing storage for active objects. 266 * 267 * This should only be used in code to intentionally quiescent the gpu or as a 268 * last-ditch effort when memory seems to have run out. 269 * 270 * Returns: 271 * The number of pages of backing storage actually released. 272 */ 273 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915) 274 { 275 intel_wakeref_t wakeref; 276 unsigned long freed = 0; 277 278 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 279 freed = i915_gem_shrink(NULL, i915, -1UL, NULL, 280 I915_SHRINK_BOUND | 281 I915_SHRINK_UNBOUND); 282 } 283 284 return freed; 285 } 286 287 static unsigned long 288 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc) 289 { 290 struct drm_i915_private *i915 = shrinker->private_data; 291 unsigned long num_objects; 292 unsigned long count; 293 294 count = READ_ONCE(i915->mm.shrink_memory) >> PAGE_SHIFT; 295 num_objects = READ_ONCE(i915->mm.shrink_count); 296 297 /* 298 * Update our preferred vmscan batch size for the next pass. 299 * Our rough guess for an effective batch size is roughly 2 300 * available GEM objects worth of pages. That is we don't want 301 * the shrinker to fire, until it is worth the cost of freeing an 302 * entire GEM object. 303 */ 304 if (num_objects) { 305 unsigned long avg = 2 * count / num_objects; 306 307 i915->mm.shrinker->batch = 308 max((i915->mm.shrinker->batch + avg) >> 1, 309 128ul /* default SHRINK_BATCH */); 310 } 311 312 return count; 313 } 314 315 static unsigned long 316 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc) 317 { 318 struct drm_i915_private *i915 = shrinker->private_data; 319 unsigned long freed; 320 321 sc->nr_scanned = 0; 322 323 freed = i915_gem_shrink(NULL, i915, 324 sc->nr_to_scan, 325 &sc->nr_scanned, 326 I915_SHRINK_BOUND | 327 I915_SHRINK_UNBOUND); 328 if (sc->nr_scanned < sc->nr_to_scan && current_is_kswapd()) { 329 intel_wakeref_t wakeref; 330 331 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 332 freed += i915_gem_shrink(NULL, i915, 333 sc->nr_to_scan - sc->nr_scanned, 334 &sc->nr_scanned, 335 I915_SHRINK_ACTIVE | 336 I915_SHRINK_BOUND | 337 I915_SHRINK_UNBOUND | 338 I915_SHRINK_WRITEBACK); 339 } 340 } 341 342 return sc->nr_scanned ? freed : SHRINK_STOP; 343 } 344 345 static int 346 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr) 347 { 348 struct drm_i915_private *i915 = 349 container_of(nb, struct drm_i915_private, mm.oom_notifier); 350 struct drm_i915_gem_object *obj; 351 unsigned long unevictable, available, freed_pages; 352 intel_wakeref_t wakeref; 353 unsigned long flags; 354 355 freed_pages = 0; 356 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 357 freed_pages += i915_gem_shrink(NULL, i915, -1UL, NULL, 358 I915_SHRINK_BOUND | 359 I915_SHRINK_UNBOUND | 360 I915_SHRINK_WRITEBACK); 361 362 /* Because we may be allocating inside our own driver, we cannot 363 * assert that there are no objects with pinned pages that are not 364 * being pointed to by hardware. 365 */ 366 available = unevictable = 0; 367 spin_lock_irqsave(&i915->mm.obj_lock, flags); 368 list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) { 369 if (!can_release_pages(obj)) 370 unevictable += obj->base.size >> PAGE_SHIFT; 371 else 372 available += obj->base.size >> PAGE_SHIFT; 373 } 374 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 375 376 if (freed_pages || available) 377 pr_info("Purging GPU memory, %lu pages freed, " 378 "%lu pages still pinned, %lu pages left available.\n", 379 freed_pages, unevictable, available); 380 381 *(unsigned long *)ptr += freed_pages; 382 return NOTIFY_DONE; 383 } 384 385 static int 386 i915_gem_shrinker_vmap(struct notifier_block *nb, unsigned long event, void *ptr) 387 { 388 struct drm_i915_private *i915 = 389 container_of(nb, struct drm_i915_private, mm.vmap_notifier); 390 struct i915_vma *vma, *next; 391 unsigned long freed_pages = 0; 392 intel_wakeref_t wakeref; 393 struct intel_gt *gt; 394 int i; 395 396 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 397 freed_pages += i915_gem_shrink(NULL, i915, -1UL, NULL, 398 I915_SHRINK_BOUND | 399 I915_SHRINK_UNBOUND | 400 I915_SHRINK_VMAPS); 401 402 /* We also want to clear any cached iomaps as they wrap vmap */ 403 for_each_gt(gt, i915, i) { 404 mutex_lock(>->ggtt->vm.mutex); 405 list_for_each_entry_safe(vma, next, 406 >->ggtt->vm.bound_list, vm_link) { 407 unsigned long count = i915_vma_size(vma) >> PAGE_SHIFT; 408 struct drm_i915_gem_object *obj = vma->obj; 409 410 if (!vma->iomap || i915_vma_is_active(vma)) 411 continue; 412 413 if (!i915_gem_object_trylock(obj, NULL)) 414 continue; 415 416 if (__i915_vma_unbind(vma) == 0) 417 freed_pages += count; 418 419 i915_gem_object_unlock(obj); 420 } 421 mutex_unlock(>->ggtt->vm.mutex); 422 } 423 424 *(unsigned long *)ptr += freed_pages; 425 return NOTIFY_DONE; 426 } 427 428 void i915_gem_driver_register__shrinker(struct drm_i915_private *i915) 429 { 430 i915->mm.shrinker = shrinker_alloc(0, "drm-i915_gem"); 431 if (!i915->mm.shrinker) { 432 drm_WARN_ON(&i915->drm, 1); 433 } else { 434 i915->mm.shrinker->scan_objects = i915_gem_shrinker_scan; 435 i915->mm.shrinker->count_objects = i915_gem_shrinker_count; 436 i915->mm.shrinker->batch = 4096; 437 i915->mm.shrinker->private_data = i915; 438 439 shrinker_register(i915->mm.shrinker); 440 } 441 442 i915->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom; 443 drm_WARN_ON(&i915->drm, register_oom_notifier(&i915->mm.oom_notifier)); 444 445 i915->mm.vmap_notifier.notifier_call = i915_gem_shrinker_vmap; 446 drm_WARN_ON(&i915->drm, 447 register_vmap_purge_notifier(&i915->mm.vmap_notifier)); 448 } 449 450 void i915_gem_driver_unregister__shrinker(struct drm_i915_private *i915) 451 { 452 drm_WARN_ON(&i915->drm, 453 unregister_vmap_purge_notifier(&i915->mm.vmap_notifier)); 454 drm_WARN_ON(&i915->drm, 455 unregister_oom_notifier(&i915->mm.oom_notifier)); 456 shrinker_free(i915->mm.shrinker); 457 } 458 459 void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915, 460 struct mutex *mutex) 461 { 462 if (!IS_ENABLED(CONFIG_LOCKDEP)) 463 return; 464 465 fs_reclaim_acquire(GFP_KERNEL); 466 467 mutex_acquire(&mutex->dep_map, 0, 0, _RET_IP_); 468 mutex_release(&mutex->dep_map, _RET_IP_); 469 470 fs_reclaim_release(GFP_KERNEL); 471 } 472 473 /** 474 * i915_gem_object_make_unshrinkable - Hide the object from the shrinker. By 475 * default all object types that support shrinking(see IS_SHRINKABLE), will also 476 * make the object visible to the shrinker after allocating the system memory 477 * pages. 478 * @obj: The GEM object. 479 * 480 * This is typically used for special kernel internal objects that can't be 481 * easily processed by the shrinker, like if they are perma-pinned. 482 */ 483 void i915_gem_object_make_unshrinkable(struct drm_i915_gem_object *obj) 484 { 485 struct drm_i915_private *i915 = obj_to_i915(obj); 486 unsigned long flags; 487 488 /* 489 * We can only be called while the pages are pinned or when 490 * the pages are released. If pinned, we should only be called 491 * from a single caller under controlled conditions; and on release 492 * only one caller may release us. Neither the two may cross. 493 */ 494 if (atomic_add_unless(&obj->mm.shrink_pin, 1, 0)) 495 return; 496 497 spin_lock_irqsave(&i915->mm.obj_lock, flags); 498 if (!atomic_fetch_inc(&obj->mm.shrink_pin) && 499 !list_empty(&obj->mm.link)) { 500 list_del_init(&obj->mm.link); 501 i915->mm.shrink_count--; 502 i915->mm.shrink_memory -= obj->base.size; 503 } 504 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 505 } 506 507 static void ___i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj, 508 struct list_head *head) 509 { 510 struct drm_i915_private *i915 = obj_to_i915(obj); 511 unsigned long flags; 512 513 if (!i915_gem_object_is_shrinkable(obj)) 514 return; 515 516 if (atomic_add_unless(&obj->mm.shrink_pin, -1, 1)) 517 return; 518 519 spin_lock_irqsave(&i915->mm.obj_lock, flags); 520 GEM_BUG_ON(!kref_read(&obj->base.refcount)); 521 if (atomic_dec_and_test(&obj->mm.shrink_pin)) { 522 GEM_BUG_ON(!list_empty(&obj->mm.link)); 523 524 list_add_tail(&obj->mm.link, head); 525 i915->mm.shrink_count++; 526 i915->mm.shrink_memory += obj->base.size; 527 528 } 529 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 530 } 531 532 /** 533 * __i915_gem_object_make_shrinkable - Move the object to the tail of the 534 * shrinkable list. Objects on this list might be swapped out. Used with 535 * WILLNEED objects. 536 * @obj: The GEM object. 537 * 538 * DO NOT USE. This is intended to be called on very special objects that don't 539 * yet have mm.pages, but are guaranteed to have potentially reclaimable pages 540 * underneath. 541 */ 542 void __i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj) 543 { 544 ___i915_gem_object_make_shrinkable(obj, 545 &obj_to_i915(obj)->mm.shrink_list); 546 } 547 548 /** 549 * __i915_gem_object_make_purgeable - Move the object to the tail of the 550 * purgeable list. Objects on this list might be swapped out. Used with 551 * DONTNEED objects. 552 * @obj: The GEM object. 553 * 554 * DO NOT USE. This is intended to be called on very special objects that don't 555 * yet have mm.pages, but are guaranteed to have potentially reclaimable pages 556 * underneath. 557 */ 558 void __i915_gem_object_make_purgeable(struct drm_i915_gem_object *obj) 559 { 560 ___i915_gem_object_make_shrinkable(obj, 561 &obj_to_i915(obj)->mm.purge_list); 562 } 563 564 /** 565 * i915_gem_object_make_shrinkable - Move the object to the tail of the 566 * shrinkable list. Objects on this list might be swapped out. Used with 567 * WILLNEED objects. 568 * @obj: The GEM object. 569 * 570 * MUST only be called on objects which have backing pages. 571 * 572 * MUST be balanced with previous call to i915_gem_object_make_unshrinkable(). 573 */ 574 void i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj) 575 { 576 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 577 __i915_gem_object_make_shrinkable(obj); 578 } 579 580 /** 581 * i915_gem_object_make_purgeable - Move the object to the tail of the purgeable 582 * list. Used with DONTNEED objects. Unlike with shrinkable objects, the 583 * shrinker will attempt to discard the backing pages, instead of trying to swap 584 * them out. 585 * @obj: The GEM object. 586 * 587 * MUST only be called on objects which have backing pages. 588 * 589 * MUST be balanced with previous call to i915_gem_object_make_unshrinkable(). 590 */ 591 void i915_gem_object_make_purgeable(struct drm_i915_gem_object *obj) 592 { 593 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 594 __i915_gem_object_make_purgeable(obj); 595 } 596