1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008-2015 Intel Corporation 5 */ 6 7 #include <linux/oom.h> 8 #include <linux/sched/mm.h> 9 #include <linux/shmem_fs.h> 10 #include <linux/slab.h> 11 #include <linux/swap.h> 12 #include <linux/pci.h> 13 #include <linux/dma-buf.h> 14 #include <linux/vmalloc.h> 15 16 #include "gt/intel_gt_requests.h" 17 18 #include "dma_resv_utils.h" 19 #include "i915_trace.h" 20 21 static bool swap_available(void) 22 { 23 return get_nr_swap_pages() > 0; 24 } 25 26 static bool can_release_pages(struct drm_i915_gem_object *obj) 27 { 28 /* Consider only shrinkable ojects. */ 29 if (!i915_gem_object_is_shrinkable(obj)) 30 return false; 31 32 /* 33 * We can only return physical pages to the system if we can either 34 * discard the contents (because the user has marked them as being 35 * purgeable) or if we can move their contents out to swap. 36 */ 37 return swap_available() || obj->mm.madv == I915_MADV_DONTNEED; 38 } 39 40 static bool unsafe_drop_pages(struct drm_i915_gem_object *obj, 41 unsigned long shrink) 42 { 43 unsigned long flags; 44 45 flags = 0; 46 if (shrink & I915_SHRINK_ACTIVE) 47 flags = I915_GEM_OBJECT_UNBIND_ACTIVE; 48 if (!(shrink & I915_SHRINK_BOUND)) 49 flags = I915_GEM_OBJECT_UNBIND_TEST; 50 51 if (i915_gem_object_unbind(obj, flags) == 0) 52 return true; 53 54 return false; 55 } 56 57 static void try_to_writeback(struct drm_i915_gem_object *obj, 58 unsigned int flags) 59 { 60 switch (obj->mm.madv) { 61 case I915_MADV_DONTNEED: 62 i915_gem_object_truncate(obj); 63 case __I915_MADV_PURGED: 64 return; 65 } 66 67 if (flags & I915_SHRINK_WRITEBACK) 68 i915_gem_object_writeback(obj); 69 } 70 71 /** 72 * i915_gem_shrink - Shrink buffer object caches 73 * @ww: i915 gem ww acquire ctx, or NULL 74 * @i915: i915 device 75 * @target: amount of memory to make available, in pages 76 * @nr_scanned: optional output for number of pages scanned (incremental) 77 * @shrink: control flags for selecting cache types 78 * 79 * This function is the main interface to the shrinker. It will try to release 80 * up to @target pages of main memory backing storage from buffer objects. 81 * Selection of the specific caches can be done with @flags. This is e.g. useful 82 * when purgeable objects should be removed from caches preferentially. 83 * 84 * Note that it's not guaranteed that released amount is actually available as 85 * free system memory - the pages might still be in-used to due to other reasons 86 * (like cpu mmaps) or the mm core has reused them before we could grab them. 87 * Therefore code that needs to explicitly shrink buffer objects caches (e.g. to 88 * avoid deadlocks in memory reclaim) must fall back to i915_gem_shrink_all(). 89 * 90 * Also note that any kind of pinning (both per-vma address space pins and 91 * backing storage pins at the buffer object level) result in the shrinker code 92 * having to skip the object. 93 * 94 * Returns: 95 * The number of pages of backing storage actually released. 96 */ 97 unsigned long 98 i915_gem_shrink(struct i915_gem_ww_ctx *ww, 99 struct drm_i915_private *i915, 100 unsigned long target, 101 unsigned long *nr_scanned, 102 unsigned int shrink) 103 { 104 const struct { 105 struct list_head *list; 106 unsigned int bit; 107 } phases[] = { 108 { &i915->mm.purge_list, ~0u }, 109 { 110 &i915->mm.shrink_list, 111 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND 112 }, 113 { NULL, 0 }, 114 }, *phase; 115 intel_wakeref_t wakeref = 0; 116 unsigned long count = 0; 117 unsigned long scanned = 0; 118 int err; 119 120 trace_i915_gem_shrink(i915, target, shrink); 121 122 /* 123 * Unbinding of objects will require HW access; Let us not wake the 124 * device just to recover a little memory. If absolutely necessary, 125 * we will force the wake during oom-notifier. 126 */ 127 if (shrink & I915_SHRINK_BOUND) { 128 wakeref = intel_runtime_pm_get_if_in_use(&i915->runtime_pm); 129 if (!wakeref) 130 shrink &= ~I915_SHRINK_BOUND; 131 } 132 133 /* 134 * When shrinking the active list, we should also consider active 135 * contexts. Active contexts are pinned until they are retired, and 136 * so can not be simply unbound to retire and unpin their pages. To 137 * shrink the contexts, we must wait until the gpu is idle and 138 * completed its switch to the kernel context. In short, we do 139 * not have a good mechanism for idling a specific context, but 140 * what we can do is give them a kick so that we do not keep idle 141 * contexts around longer than is necessary. 142 */ 143 if (shrink & I915_SHRINK_ACTIVE) 144 /* Retire requests to unpin all idle contexts */ 145 intel_gt_retire_requests(&i915->gt); 146 147 /* 148 * As we may completely rewrite the (un)bound list whilst unbinding 149 * (due to retiring requests) we have to strictly process only 150 * one element of the list at the time, and recheck the list 151 * on every iteration. 152 * 153 * In particular, we must hold a reference whilst removing the 154 * object as we may end up waiting for and/or retiring the objects. 155 * This might release the final reference (held by the active list) 156 * and result in the object being freed from under us. This is 157 * similar to the precautions the eviction code must take whilst 158 * removing objects. 159 * 160 * Also note that although these lists do not hold a reference to 161 * the object we can safely grab one here: The final object 162 * unreferencing and the bound_list are both protected by the 163 * dev->struct_mutex and so we won't ever be able to observe an 164 * object on the bound_list with a reference count equals 0. 165 */ 166 for (phase = phases; phase->list; phase++) { 167 struct list_head still_in_list; 168 struct drm_i915_gem_object *obj; 169 unsigned long flags; 170 171 if ((shrink & phase->bit) == 0) 172 continue; 173 174 INIT_LIST_HEAD(&still_in_list); 175 176 /* 177 * We serialize our access to unreferenced objects through 178 * the use of the struct_mutex. While the objects are not 179 * yet freed (due to RCU then a workqueue) we still want 180 * to be able to shrink their pages, so they remain on 181 * the unbound/bound list until actually freed. 182 */ 183 spin_lock_irqsave(&i915->mm.obj_lock, flags); 184 while (count < target && 185 (obj = list_first_entry_or_null(phase->list, 186 typeof(*obj), 187 mm.link))) { 188 list_move_tail(&obj->mm.link, &still_in_list); 189 190 if (shrink & I915_SHRINK_VMAPS && 191 !is_vmalloc_addr(obj->mm.mapping)) 192 continue; 193 194 if (!(shrink & I915_SHRINK_ACTIVE) && 195 i915_gem_object_is_framebuffer(obj)) 196 continue; 197 198 if (!can_release_pages(obj)) 199 continue; 200 201 if (!kref_get_unless_zero(&obj->base.refcount)) 202 continue; 203 204 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 205 206 err = 0; 207 if (unsafe_drop_pages(obj, shrink)) { 208 /* May arrive from get_pages on another bo */ 209 if (!ww) { 210 if (!i915_gem_object_trylock(obj)) 211 goto skip; 212 } else { 213 err = i915_gem_object_lock(obj, ww); 214 if (err) 215 goto skip; 216 } 217 218 if (!__i915_gem_object_put_pages(obj)) { 219 try_to_writeback(obj, shrink); 220 count += obj->base.size >> PAGE_SHIFT; 221 } 222 if (!ww) 223 i915_gem_object_unlock(obj); 224 } 225 226 dma_resv_prune(obj->base.resv); 227 228 scanned += obj->base.size >> PAGE_SHIFT; 229 skip: 230 i915_gem_object_put(obj); 231 232 spin_lock_irqsave(&i915->mm.obj_lock, flags); 233 if (err) 234 break; 235 } 236 list_splice_tail(&still_in_list, phase->list); 237 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 238 if (err) 239 return err; 240 } 241 242 if (shrink & I915_SHRINK_BOUND) 243 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 244 245 if (nr_scanned) 246 *nr_scanned += scanned; 247 return count; 248 } 249 250 /** 251 * i915_gem_shrink_all - Shrink buffer object caches completely 252 * @i915: i915 device 253 * 254 * This is a simple wraper around i915_gem_shrink() to aggressively shrink all 255 * caches completely. It also first waits for and retires all outstanding 256 * requests to also be able to release backing storage for active objects. 257 * 258 * This should only be used in code to intentionally quiescent the gpu or as a 259 * last-ditch effort when memory seems to have run out. 260 * 261 * Returns: 262 * The number of pages of backing storage actually released. 263 */ 264 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915) 265 { 266 intel_wakeref_t wakeref; 267 unsigned long freed = 0; 268 269 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 270 freed = i915_gem_shrink(NULL, i915, -1UL, NULL, 271 I915_SHRINK_BOUND | 272 I915_SHRINK_UNBOUND); 273 } 274 275 return freed; 276 } 277 278 static unsigned long 279 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc) 280 { 281 struct drm_i915_private *i915 = 282 container_of(shrinker, struct drm_i915_private, mm.shrinker); 283 unsigned long num_objects; 284 unsigned long count; 285 286 count = READ_ONCE(i915->mm.shrink_memory) >> PAGE_SHIFT; 287 num_objects = READ_ONCE(i915->mm.shrink_count); 288 289 /* 290 * Update our preferred vmscan batch size for the next pass. 291 * Our rough guess for an effective batch size is roughly 2 292 * available GEM objects worth of pages. That is we don't want 293 * the shrinker to fire, until it is worth the cost of freeing an 294 * entire GEM object. 295 */ 296 if (num_objects) { 297 unsigned long avg = 2 * count / num_objects; 298 299 i915->mm.shrinker.batch = 300 max((i915->mm.shrinker.batch + avg) >> 1, 301 128ul /* default SHRINK_BATCH */); 302 } 303 304 return count; 305 } 306 307 static unsigned long 308 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc) 309 { 310 struct drm_i915_private *i915 = 311 container_of(shrinker, struct drm_i915_private, mm.shrinker); 312 unsigned long freed; 313 314 sc->nr_scanned = 0; 315 316 freed = i915_gem_shrink(NULL, i915, 317 sc->nr_to_scan, 318 &sc->nr_scanned, 319 I915_SHRINK_BOUND | 320 I915_SHRINK_UNBOUND); 321 if (sc->nr_scanned < sc->nr_to_scan && current_is_kswapd()) { 322 intel_wakeref_t wakeref; 323 324 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 325 freed += i915_gem_shrink(NULL, i915, 326 sc->nr_to_scan - sc->nr_scanned, 327 &sc->nr_scanned, 328 I915_SHRINK_ACTIVE | 329 I915_SHRINK_BOUND | 330 I915_SHRINK_UNBOUND | 331 I915_SHRINK_WRITEBACK); 332 } 333 } 334 335 return sc->nr_scanned ? freed : SHRINK_STOP; 336 } 337 338 static int 339 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr) 340 { 341 struct drm_i915_private *i915 = 342 container_of(nb, struct drm_i915_private, mm.oom_notifier); 343 struct drm_i915_gem_object *obj; 344 unsigned long unevictable, available, freed_pages; 345 intel_wakeref_t wakeref; 346 unsigned long flags; 347 348 freed_pages = 0; 349 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 350 freed_pages += i915_gem_shrink(NULL, i915, -1UL, NULL, 351 I915_SHRINK_BOUND | 352 I915_SHRINK_UNBOUND | 353 I915_SHRINK_WRITEBACK); 354 355 /* Because we may be allocating inside our own driver, we cannot 356 * assert that there are no objects with pinned pages that are not 357 * being pointed to by hardware. 358 */ 359 available = unevictable = 0; 360 spin_lock_irqsave(&i915->mm.obj_lock, flags); 361 list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) { 362 if (!can_release_pages(obj)) 363 unevictable += obj->base.size >> PAGE_SHIFT; 364 else 365 available += obj->base.size >> PAGE_SHIFT; 366 } 367 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 368 369 if (freed_pages || available) 370 pr_info("Purging GPU memory, %lu pages freed, " 371 "%lu pages still pinned, %lu pages left available.\n", 372 freed_pages, unevictable, available); 373 374 *(unsigned long *)ptr += freed_pages; 375 return NOTIFY_DONE; 376 } 377 378 static int 379 i915_gem_shrinker_vmap(struct notifier_block *nb, unsigned long event, void *ptr) 380 { 381 struct drm_i915_private *i915 = 382 container_of(nb, struct drm_i915_private, mm.vmap_notifier); 383 struct i915_vma *vma, *next; 384 unsigned long freed_pages = 0; 385 intel_wakeref_t wakeref; 386 387 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 388 freed_pages += i915_gem_shrink(NULL, i915, -1UL, NULL, 389 I915_SHRINK_BOUND | 390 I915_SHRINK_UNBOUND | 391 I915_SHRINK_VMAPS); 392 393 /* We also want to clear any cached iomaps as they wrap vmap */ 394 mutex_lock(&i915->ggtt.vm.mutex); 395 list_for_each_entry_safe(vma, next, 396 &i915->ggtt.vm.bound_list, vm_link) { 397 unsigned long count = vma->node.size >> PAGE_SHIFT; 398 399 if (!vma->iomap || i915_vma_is_active(vma)) 400 continue; 401 402 if (__i915_vma_unbind(vma) == 0) 403 freed_pages += count; 404 } 405 mutex_unlock(&i915->ggtt.vm.mutex); 406 407 *(unsigned long *)ptr += freed_pages; 408 return NOTIFY_DONE; 409 } 410 411 void i915_gem_driver_register__shrinker(struct drm_i915_private *i915) 412 { 413 i915->mm.shrinker.scan_objects = i915_gem_shrinker_scan; 414 i915->mm.shrinker.count_objects = i915_gem_shrinker_count; 415 i915->mm.shrinker.seeks = DEFAULT_SEEKS; 416 i915->mm.shrinker.batch = 4096; 417 drm_WARN_ON(&i915->drm, register_shrinker(&i915->mm.shrinker)); 418 419 i915->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom; 420 drm_WARN_ON(&i915->drm, register_oom_notifier(&i915->mm.oom_notifier)); 421 422 i915->mm.vmap_notifier.notifier_call = i915_gem_shrinker_vmap; 423 drm_WARN_ON(&i915->drm, 424 register_vmap_purge_notifier(&i915->mm.vmap_notifier)); 425 } 426 427 void i915_gem_driver_unregister__shrinker(struct drm_i915_private *i915) 428 { 429 drm_WARN_ON(&i915->drm, 430 unregister_vmap_purge_notifier(&i915->mm.vmap_notifier)); 431 drm_WARN_ON(&i915->drm, 432 unregister_oom_notifier(&i915->mm.oom_notifier)); 433 unregister_shrinker(&i915->mm.shrinker); 434 } 435 436 void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915, 437 struct mutex *mutex) 438 { 439 if (!IS_ENABLED(CONFIG_LOCKDEP)) 440 return; 441 442 fs_reclaim_acquire(GFP_KERNEL); 443 444 mutex_acquire(&mutex->dep_map, 0, 0, _RET_IP_); 445 mutex_release(&mutex->dep_map, _RET_IP_); 446 447 fs_reclaim_release(GFP_KERNEL); 448 } 449 450 #define obj_to_i915(obj__) to_i915((obj__)->base.dev) 451 452 void i915_gem_object_make_unshrinkable(struct drm_i915_gem_object *obj) 453 { 454 struct drm_i915_private *i915 = obj_to_i915(obj); 455 unsigned long flags; 456 457 /* 458 * We can only be called while the pages are pinned or when 459 * the pages are released. If pinned, we should only be called 460 * from a single caller under controlled conditions; and on release 461 * only one caller may release us. Neither the two may cross. 462 */ 463 if (atomic_add_unless(&obj->mm.shrink_pin, 1, 0)) 464 return; 465 466 spin_lock_irqsave(&i915->mm.obj_lock, flags); 467 if (!atomic_fetch_inc(&obj->mm.shrink_pin) && 468 !list_empty(&obj->mm.link)) { 469 list_del_init(&obj->mm.link); 470 i915->mm.shrink_count--; 471 i915->mm.shrink_memory -= obj->base.size; 472 } 473 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 474 } 475 476 static void __i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj, 477 struct list_head *head) 478 { 479 struct drm_i915_private *i915 = obj_to_i915(obj); 480 unsigned long flags; 481 482 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 483 if (!i915_gem_object_is_shrinkable(obj)) 484 return; 485 486 if (atomic_add_unless(&obj->mm.shrink_pin, -1, 1)) 487 return; 488 489 spin_lock_irqsave(&i915->mm.obj_lock, flags); 490 GEM_BUG_ON(!kref_read(&obj->base.refcount)); 491 if (atomic_dec_and_test(&obj->mm.shrink_pin)) { 492 GEM_BUG_ON(!list_empty(&obj->mm.link)); 493 494 list_add_tail(&obj->mm.link, head); 495 i915->mm.shrink_count++; 496 i915->mm.shrink_memory += obj->base.size; 497 498 } 499 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 500 } 501 502 void i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj) 503 { 504 __i915_gem_object_make_shrinkable(obj, 505 &obj_to_i915(obj)->mm.shrink_list); 506 } 507 508 void i915_gem_object_make_purgeable(struct drm_i915_gem_object *obj) 509 { 510 __i915_gem_object_make_shrinkable(obj, 511 &obj_to_i915(obj)->mm.purge_list); 512 } 513