1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2014-2016 Intel Corporation 5 */ 6 7 #include <linux/pagevec.h> 8 #include <linux/shmem_fs.h> 9 #include <linux/swap.h> 10 11 #include <drm/drm_cache.h> 12 13 #include "gem/i915_gem_region.h" 14 #include "i915_drv.h" 15 #include "i915_gem_object.h" 16 #include "i915_gem_tiling.h" 17 #include "i915_gemfs.h" 18 #include "i915_scatterlist.h" 19 #include "i915_trace.h" 20 21 /* 22 * Move folios to appropriate lru and release the batch, decrementing the 23 * ref count of those folios. 24 */ 25 static void check_release_folio_batch(struct folio_batch *fbatch) 26 { 27 check_move_unevictable_folios(fbatch); 28 __folio_batch_release(fbatch); 29 cond_resched(); 30 } 31 32 void shmem_sg_free_table(struct sg_table *st, struct address_space *mapping, 33 bool dirty, bool backup) 34 { 35 struct sgt_iter sgt_iter; 36 struct folio_batch fbatch; 37 struct folio *last = NULL; 38 struct page *page; 39 40 mapping_clear_unevictable(mapping); 41 42 folio_batch_init(&fbatch); 43 for_each_sgt_page(page, sgt_iter, st) { 44 struct folio *folio = page_folio(page); 45 46 if (folio == last) 47 continue; 48 last = folio; 49 if (dirty) 50 folio_mark_dirty(folio); 51 if (backup) 52 folio_mark_accessed(folio); 53 54 if (!folio_batch_add(&fbatch, folio)) 55 check_release_folio_batch(&fbatch); 56 } 57 if (fbatch.nr) 58 check_release_folio_batch(&fbatch); 59 60 sg_free_table(st); 61 } 62 63 int shmem_sg_alloc_table(struct drm_i915_private *i915, struct sg_table *st, 64 size_t size, struct intel_memory_region *mr, 65 struct address_space *mapping, 66 unsigned int max_segment) 67 { 68 unsigned int page_count; /* restricted by sg_alloc_table */ 69 unsigned long i; 70 struct scatterlist *sg; 71 unsigned long next_pfn = 0; /* suppress gcc warning */ 72 gfp_t noreclaim; 73 int ret; 74 75 if (overflows_type(size / PAGE_SIZE, page_count)) 76 return -E2BIG; 77 78 page_count = size / PAGE_SIZE; 79 /* 80 * If there's no chance of allocating enough pages for the whole 81 * object, bail early. 82 */ 83 if (size > resource_size(&mr->region)) 84 return -ENOMEM; 85 86 if (sg_alloc_table(st, page_count, GFP_KERNEL | __GFP_NOWARN)) 87 return -ENOMEM; 88 89 /* 90 * Get the list of pages out of our struct file. They'll be pinned 91 * at this point until we release them. 92 * 93 * Fail silently without starting the shrinker 94 */ 95 mapping_set_unevictable(mapping); 96 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM); 97 noreclaim |= __GFP_NORETRY | __GFP_NOWARN; 98 99 sg = st->sgl; 100 st->nents = 0; 101 for (i = 0; i < page_count; i++) { 102 struct folio *folio; 103 unsigned long nr_pages; 104 const unsigned int shrink[] = { 105 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND, 106 0, 107 }, *s = shrink; 108 gfp_t gfp = noreclaim; 109 110 do { 111 cond_resched(); 112 folio = shmem_read_folio_gfp(mapping, i, gfp); 113 if (!IS_ERR(folio)) 114 break; 115 116 if (!*s) { 117 ret = PTR_ERR(folio); 118 goto err_sg; 119 } 120 121 i915_gem_shrink(NULL, i915, 2 * page_count, NULL, *s++); 122 123 /* 124 * We've tried hard to allocate the memory by reaping 125 * our own buffer, now let the real VM do its job and 126 * go down in flames if truly OOM. 127 * 128 * However, since graphics tend to be disposable, 129 * defer the oom here by reporting the ENOMEM back 130 * to userspace. 131 */ 132 if (!*s) { 133 /* reclaim and warn, but no oom */ 134 gfp = mapping_gfp_mask(mapping); 135 136 /* 137 * Our bo are always dirty and so we require 138 * kswapd to reclaim our pages (direct reclaim 139 * does not effectively begin pageout of our 140 * buffers on its own). However, direct reclaim 141 * only waits for kswapd when under allocation 142 * congestion. So as a result __GFP_RECLAIM is 143 * unreliable and fails to actually reclaim our 144 * dirty pages -- unless you try over and over 145 * again with !__GFP_NORETRY. However, we still 146 * want to fail this allocation rather than 147 * trigger the out-of-memory killer and for 148 * this we want __GFP_RETRY_MAYFAIL. 149 */ 150 gfp |= __GFP_RETRY_MAYFAIL | __GFP_NOWARN; 151 } 152 } while (1); 153 154 nr_pages = min_t(unsigned long, 155 folio_nr_pages(folio), page_count - i); 156 if (!i || 157 sg->length >= max_segment || 158 folio_pfn(folio) != next_pfn) { 159 if (i) 160 sg = sg_next(sg); 161 162 st->nents++; 163 sg_set_folio(sg, folio, nr_pages * PAGE_SIZE, 0); 164 } else { 165 /* XXX: could overflow? */ 166 sg->length += nr_pages * PAGE_SIZE; 167 } 168 next_pfn = folio_pfn(folio) + nr_pages; 169 i += nr_pages - 1; 170 171 /* Check that the i965g/gm workaround works. */ 172 GEM_BUG_ON(gfp & __GFP_DMA32 && next_pfn >= 0x00100000UL); 173 } 174 if (sg) /* loop terminated early; short sg table */ 175 sg_mark_end(sg); 176 177 /* Trim unused sg entries to avoid wasting memory. */ 178 i915_sg_trim(st); 179 180 return 0; 181 err_sg: 182 sg_mark_end(sg); 183 if (sg != st->sgl) { 184 shmem_sg_free_table(st, mapping, false, false); 185 } else { 186 mapping_clear_unevictable(mapping); 187 sg_free_table(st); 188 } 189 190 /* 191 * shmemfs first checks if there is enough memory to allocate the page 192 * and reports ENOSPC should there be insufficient, along with the usual 193 * ENOMEM for a genuine allocation failure. 194 * 195 * We use ENOSPC in our driver to mean that we have run out of aperture 196 * space and so want to translate the error from shmemfs back to our 197 * usual understanding of ENOMEM. 198 */ 199 if (ret == -ENOSPC) 200 ret = -ENOMEM; 201 202 return ret; 203 } 204 205 static int shmem_get_pages(struct drm_i915_gem_object *obj) 206 { 207 struct drm_i915_private *i915 = to_i915(obj->base.dev); 208 struct intel_memory_region *mem = obj->mm.region; 209 struct address_space *mapping = obj->base.filp->f_mapping; 210 unsigned int max_segment = i915_sg_segment_size(i915->drm.dev); 211 struct sg_table *st; 212 int ret; 213 214 /* 215 * Assert that the object is not currently in any GPU domain. As it 216 * wasn't in the GTT, there shouldn't be any way it could have been in 217 * a GPU cache 218 */ 219 GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS); 220 GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS); 221 222 rebuild_st: 223 st = kmalloc(sizeof(*st), GFP_KERNEL | __GFP_NOWARN); 224 if (!st) 225 return -ENOMEM; 226 227 ret = shmem_sg_alloc_table(i915, st, obj->base.size, mem, mapping, 228 max_segment); 229 if (ret) 230 goto err_st; 231 232 ret = i915_gem_gtt_prepare_pages(obj, st); 233 if (ret) { 234 /* 235 * DMA remapping failed? One possible cause is that 236 * it could not reserve enough large entries, asking 237 * for PAGE_SIZE chunks instead may be helpful. 238 */ 239 if (max_segment > PAGE_SIZE) { 240 shmem_sg_free_table(st, mapping, false, false); 241 kfree(st); 242 243 max_segment = PAGE_SIZE; 244 goto rebuild_st; 245 } else { 246 dev_warn(i915->drm.dev, 247 "Failed to DMA remap %zu pages\n", 248 obj->base.size >> PAGE_SHIFT); 249 goto err_pages; 250 } 251 } 252 253 if (i915_gem_object_needs_bit17_swizzle(obj)) 254 i915_gem_object_do_bit_17_swizzle(obj, st); 255 256 if (i915_gem_object_can_bypass_llc(obj)) 257 obj->cache_dirty = true; 258 259 __i915_gem_object_set_pages(obj, st); 260 261 return 0; 262 263 err_pages: 264 shmem_sg_free_table(st, mapping, false, false); 265 /* 266 * shmemfs first checks if there is enough memory to allocate the page 267 * and reports ENOSPC should there be insufficient, along with the usual 268 * ENOMEM for a genuine allocation failure. 269 * 270 * We use ENOSPC in our driver to mean that we have run out of aperture 271 * space and so want to translate the error from shmemfs back to our 272 * usual understanding of ENOMEM. 273 */ 274 err_st: 275 if (ret == -ENOSPC) 276 ret = -ENOMEM; 277 278 kfree(st); 279 280 return ret; 281 } 282 283 static int 284 shmem_truncate(struct drm_i915_gem_object *obj) 285 { 286 /* 287 * Our goal here is to return as much of the memory as 288 * is possible back to the system as we are called from OOM. 289 * To do this we must instruct the shmfs to drop all of its 290 * backing pages, *now*. 291 */ 292 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1); 293 obj->mm.madv = __I915_MADV_PURGED; 294 obj->mm.pages = ERR_PTR(-EFAULT); 295 296 return 0; 297 } 298 299 void __shmem_writeback(size_t size, struct address_space *mapping) 300 { 301 struct writeback_control wbc = { 302 .sync_mode = WB_SYNC_NONE, 303 .nr_to_write = SWAP_CLUSTER_MAX, 304 .range_start = 0, 305 .range_end = LLONG_MAX, 306 .for_reclaim = 1, 307 }; 308 unsigned long i; 309 310 /* 311 * Leave mmapings intact (GTT will have been revoked on unbinding, 312 * leaving only CPU mmapings around) and add those pages to the LRU 313 * instead of invoking writeback so they are aged and paged out 314 * as normal. 315 */ 316 317 /* Begin writeback on each dirty page */ 318 for (i = 0; i < size >> PAGE_SHIFT; i++) { 319 struct page *page; 320 321 page = find_lock_page(mapping, i); 322 if (!page) 323 continue; 324 325 if (!page_mapped(page) && clear_page_dirty_for_io(page)) { 326 int ret; 327 328 SetPageReclaim(page); 329 ret = mapping->a_ops->writepage(page, &wbc); 330 if (!PageWriteback(page)) 331 ClearPageReclaim(page); 332 if (!ret) 333 goto put; 334 } 335 unlock_page(page); 336 put: 337 put_page(page); 338 } 339 } 340 341 static void 342 shmem_writeback(struct drm_i915_gem_object *obj) 343 { 344 __shmem_writeback(obj->base.size, obj->base.filp->f_mapping); 345 } 346 347 static int shmem_shrink(struct drm_i915_gem_object *obj, unsigned int flags) 348 { 349 switch (obj->mm.madv) { 350 case I915_MADV_DONTNEED: 351 return i915_gem_object_truncate(obj); 352 case __I915_MADV_PURGED: 353 return 0; 354 } 355 356 if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK) 357 shmem_writeback(obj); 358 359 return 0; 360 } 361 362 void 363 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj, 364 struct sg_table *pages, 365 bool needs_clflush) 366 { 367 struct drm_i915_private *i915 = to_i915(obj->base.dev); 368 369 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED); 370 371 if (obj->mm.madv == I915_MADV_DONTNEED) 372 obj->mm.dirty = false; 373 374 if (needs_clflush && 375 (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 && 376 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)) 377 drm_clflush_sg(pages); 378 379 __start_cpu_write(obj); 380 /* 381 * On non-LLC igfx platforms, force the flush-on-acquire if this is ever 382 * swapped-in. Our async flush path is not trust worthy enough yet(and 383 * happens in the wrong order), and with some tricks it's conceivable 384 * for userspace to change the cache-level to I915_CACHE_NONE after the 385 * pages are swapped-in, and since execbuf binds the object before doing 386 * the async flush, we have a race window. 387 */ 388 if (!HAS_LLC(i915) && !IS_DGFX(i915)) 389 obj->cache_dirty = true; 390 } 391 392 void i915_gem_object_put_pages_shmem(struct drm_i915_gem_object *obj, struct sg_table *pages) 393 { 394 __i915_gem_object_release_shmem(obj, pages, true); 395 396 i915_gem_gtt_finish_pages(obj, pages); 397 398 if (i915_gem_object_needs_bit17_swizzle(obj)) 399 i915_gem_object_save_bit_17_swizzle(obj, pages); 400 401 shmem_sg_free_table(pages, file_inode(obj->base.filp)->i_mapping, 402 obj->mm.dirty, obj->mm.madv == I915_MADV_WILLNEED); 403 kfree(pages); 404 obj->mm.dirty = false; 405 } 406 407 static void 408 shmem_put_pages(struct drm_i915_gem_object *obj, struct sg_table *pages) 409 { 410 if (likely(i915_gem_object_has_struct_page(obj))) 411 i915_gem_object_put_pages_shmem(obj, pages); 412 else 413 i915_gem_object_put_pages_phys(obj, pages); 414 } 415 416 static int 417 shmem_pwrite(struct drm_i915_gem_object *obj, 418 const struct drm_i915_gem_pwrite *arg) 419 { 420 struct address_space *mapping = obj->base.filp->f_mapping; 421 const struct address_space_operations *aops = mapping->a_ops; 422 char __user *user_data = u64_to_user_ptr(arg->data_ptr); 423 u64 remain; 424 loff_t pos; 425 unsigned int pg; 426 427 /* Caller already validated user args */ 428 GEM_BUG_ON(!access_ok(user_data, arg->size)); 429 430 if (!i915_gem_object_has_struct_page(obj)) 431 return i915_gem_object_pwrite_phys(obj, arg); 432 433 /* 434 * Before we instantiate/pin the backing store for our use, we 435 * can prepopulate the shmemfs filp efficiently using a write into 436 * the pagecache. We avoid the penalty of instantiating all the 437 * pages, important if the user is just writing to a few and never 438 * uses the object on the GPU, and using a direct write into shmemfs 439 * allows it to avoid the cost of retrieving a page (either swapin 440 * or clearing-before-use) before it is overwritten. 441 */ 442 if (i915_gem_object_has_pages(obj)) 443 return -ENODEV; 444 445 if (obj->mm.madv != I915_MADV_WILLNEED) 446 return -EFAULT; 447 448 /* 449 * Before the pages are instantiated the object is treated as being 450 * in the CPU domain. The pages will be clflushed as required before 451 * use, and we can freely write into the pages directly. If userspace 452 * races pwrite with any other operation; corruption will ensue - 453 * that is userspace's prerogative! 454 */ 455 456 remain = arg->size; 457 pos = arg->offset; 458 pg = offset_in_page(pos); 459 460 do { 461 unsigned int len, unwritten; 462 struct folio *folio; 463 void *data, *vaddr; 464 int err; 465 char __maybe_unused c; 466 467 len = PAGE_SIZE - pg; 468 if (len > remain) 469 len = remain; 470 471 /* Prefault the user page to reduce potential recursion */ 472 err = __get_user(c, user_data); 473 if (err) 474 return err; 475 476 err = __get_user(c, user_data + len - 1); 477 if (err) 478 return err; 479 480 err = aops->write_begin(obj->base.filp, mapping, pos, len, 481 &folio, &data); 482 if (err < 0) 483 return err; 484 485 vaddr = kmap_local_folio(folio, offset_in_folio(folio, pos)); 486 pagefault_disable(); 487 unwritten = __copy_from_user_inatomic(vaddr, user_data, len); 488 pagefault_enable(); 489 kunmap_local(vaddr); 490 491 err = aops->write_end(obj->base.filp, mapping, pos, len, 492 len - unwritten, folio, data); 493 if (err < 0) 494 return err; 495 496 /* We don't handle -EFAULT, leave it to the caller to check */ 497 if (unwritten) 498 return -ENODEV; 499 500 remain -= len; 501 user_data += len; 502 pos += len; 503 pg = 0; 504 } while (remain); 505 506 return 0; 507 } 508 509 static int 510 shmem_pread(struct drm_i915_gem_object *obj, 511 const struct drm_i915_gem_pread *arg) 512 { 513 if (!i915_gem_object_has_struct_page(obj)) 514 return i915_gem_object_pread_phys(obj, arg); 515 516 return -ENODEV; 517 } 518 519 static void shmem_release(struct drm_i915_gem_object *obj) 520 { 521 if (i915_gem_object_has_struct_page(obj)) 522 i915_gem_object_release_memory_region(obj); 523 524 fput(obj->base.filp); 525 } 526 527 const struct drm_i915_gem_object_ops i915_gem_shmem_ops = { 528 .name = "i915_gem_object_shmem", 529 .flags = I915_GEM_OBJECT_IS_SHRINKABLE, 530 531 .get_pages = shmem_get_pages, 532 .put_pages = shmem_put_pages, 533 .truncate = shmem_truncate, 534 .shrink = shmem_shrink, 535 536 .pwrite = shmem_pwrite, 537 .pread = shmem_pread, 538 539 .release = shmem_release, 540 }; 541 542 static int __create_shmem(struct drm_i915_private *i915, 543 struct drm_gem_object *obj, 544 resource_size_t size) 545 { 546 unsigned long flags = VM_NORESERVE; 547 struct file *filp; 548 549 drm_gem_private_object_init(&i915->drm, obj, size); 550 551 /* XXX: The __shmem_file_setup() function returns -EINVAL if size is 552 * greater than MAX_LFS_FILESIZE. 553 * To handle the same error as other code that returns -E2BIG when 554 * the size is too large, we add a code that returns -E2BIG when the 555 * size is larger than the size that can be handled. 556 * If BITS_PER_LONG is 32, size > MAX_LFS_FILESIZE is always false, 557 * so we only needs to check when BITS_PER_LONG is 64. 558 * If BITS_PER_LONG is 32, E2BIG checks are processed when 559 * i915_gem_object_size_2big() is called before init_object() callback 560 * is called. 561 */ 562 if (BITS_PER_LONG == 64 && size > MAX_LFS_FILESIZE) 563 return -E2BIG; 564 565 if (i915->mm.gemfs) 566 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size, 567 flags); 568 else 569 filp = shmem_file_setup("i915", size, flags); 570 if (IS_ERR(filp)) 571 return PTR_ERR(filp); 572 573 obj->filp = filp; 574 return 0; 575 } 576 577 static int shmem_object_init(struct intel_memory_region *mem, 578 struct drm_i915_gem_object *obj, 579 resource_size_t offset, 580 resource_size_t size, 581 resource_size_t page_size, 582 unsigned int flags) 583 { 584 static struct lock_class_key lock_class; 585 struct drm_i915_private *i915 = mem->i915; 586 struct address_space *mapping; 587 unsigned int cache_level; 588 gfp_t mask; 589 int ret; 590 591 ret = __create_shmem(i915, &obj->base, size); 592 if (ret) 593 return ret; 594 595 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 596 if (IS_I965GM(i915) || IS_I965G(i915)) { 597 /* 965gm cannot relocate objects above 4GiB. */ 598 mask &= ~__GFP_HIGHMEM; 599 mask |= __GFP_DMA32; 600 } 601 602 mapping = obj->base.filp->f_mapping; 603 mapping_set_gfp_mask(mapping, mask); 604 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM)); 605 606 i915_gem_object_init(obj, &i915_gem_shmem_ops, &lock_class, flags); 607 obj->mem_flags |= I915_BO_FLAG_STRUCT_PAGE; 608 obj->write_domain = I915_GEM_DOMAIN_CPU; 609 obj->read_domains = I915_GEM_DOMAIN_CPU; 610 611 /* 612 * MTL doesn't snoop CPU cache by default for GPU access (namely 613 * 1-way coherency). However some UMD's are currently depending on 614 * that. Make 1-way coherent the default setting for MTL. A follow 615 * up patch will extend the GEM_CREATE uAPI to allow UMD's specify 616 * caching mode at BO creation time 617 */ 618 if (HAS_LLC(i915) || (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))) 619 /* On some devices, we can have the GPU use the LLC (the CPU 620 * cache) for about a 10% performance improvement 621 * compared to uncached. Graphics requests other than 622 * display scanout are coherent with the CPU in 623 * accessing this cache. This means in this mode we 624 * don't need to clflush on the CPU side, and on the 625 * GPU side we only need to flush internal caches to 626 * get data visible to the CPU. 627 * 628 * However, we maintain the display planes as UC, and so 629 * need to rebind when first used as such. 630 */ 631 cache_level = I915_CACHE_LLC; 632 else 633 cache_level = I915_CACHE_NONE; 634 635 i915_gem_object_set_cache_coherency(obj, cache_level); 636 637 i915_gem_object_init_memory_region(obj, mem); 638 639 return 0; 640 } 641 642 struct drm_i915_gem_object * 643 i915_gem_object_create_shmem(struct drm_i915_private *i915, 644 resource_size_t size) 645 { 646 return i915_gem_object_create_region(i915->mm.regions[INTEL_REGION_SMEM], 647 size, 0, 0); 648 } 649 650 /* Allocate a new GEM object and fill it with the supplied data */ 651 struct drm_i915_gem_object * 652 i915_gem_object_create_shmem_from_data(struct drm_i915_private *i915, 653 const void *data, resource_size_t size) 654 { 655 struct drm_i915_gem_object *obj; 656 struct file *file; 657 const struct address_space_operations *aops; 658 loff_t pos; 659 int err; 660 661 GEM_WARN_ON(IS_DGFX(i915)); 662 obj = i915_gem_object_create_shmem(i915, round_up(size, PAGE_SIZE)); 663 if (IS_ERR(obj)) 664 return obj; 665 666 GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU); 667 668 file = obj->base.filp; 669 aops = file->f_mapping->a_ops; 670 pos = 0; 671 do { 672 unsigned int len = min_t(typeof(size), size, PAGE_SIZE); 673 struct folio *folio; 674 void *fsdata; 675 676 err = aops->write_begin(file, file->f_mapping, pos, len, 677 &folio, &fsdata); 678 if (err < 0) 679 goto fail; 680 681 memcpy_to_folio(folio, offset_in_folio(folio, pos), data, len); 682 683 err = aops->write_end(file, file->f_mapping, pos, len, len, 684 folio, fsdata); 685 if (err < 0) 686 goto fail; 687 688 size -= len; 689 data += len; 690 pos += len; 691 } while (size); 692 693 return obj; 694 695 fail: 696 i915_gem_object_put(obj); 697 return ERR_PTR(err); 698 } 699 700 static int init_shmem(struct intel_memory_region *mem) 701 { 702 i915_gemfs_init(mem->i915); 703 intel_memory_region_set_name(mem, "system"); 704 705 return 0; /* We have fallback to the kernel mnt if gemfs init failed. */ 706 } 707 708 static int release_shmem(struct intel_memory_region *mem) 709 { 710 i915_gemfs_fini(mem->i915); 711 return 0; 712 } 713 714 static const struct intel_memory_region_ops shmem_region_ops = { 715 .init = init_shmem, 716 .release = release_shmem, 717 .init_object = shmem_object_init, 718 }; 719 720 struct intel_memory_region *i915_gem_shmem_setup(struct drm_i915_private *i915, 721 u16 type, u16 instance) 722 { 723 return intel_memory_region_create(i915, 0, 724 totalram_pages() << PAGE_SHIFT, 725 PAGE_SIZE, 0, 0, 726 type, instance, 727 &shmem_region_ops); 728 } 729 730 bool i915_gem_object_is_shmem(const struct drm_i915_gem_object *obj) 731 { 732 return obj->ops == &i915_gem_shmem_ops; 733 } 734