1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2016 Intel Corporation 4 */ 5 6 #include <linux/pagevec.h> 7 #include <linux/shmem_fs.h> 8 #include <linux/swap.h> 9 10 #include <drm/drm_cache.h> 11 12 #include "gem/i915_gem_region.h" 13 #include "i915_drv.h" 14 #include "i915_gem_object.h" 15 #include "i915_gem_tiling.h" 16 #include "i915_gemfs.h" 17 #include "i915_scatterlist.h" 18 #include "i915_trace.h" 19 20 /* 21 * Move folios to appropriate lru and release the batch, decrementing the 22 * ref count of those folios. 23 */ 24 static void check_release_folio_batch(struct folio_batch *fbatch) 25 { 26 check_move_unevictable_folios(fbatch); 27 __folio_batch_release(fbatch); 28 cond_resched(); 29 } 30 31 void shmem_sg_free_table(struct sg_table *st, struct address_space *mapping, 32 bool dirty, bool backup) 33 { 34 struct sgt_iter sgt_iter; 35 struct folio_batch fbatch; 36 struct folio *last = NULL; 37 struct page *page; 38 39 mapping_clear_unevictable(mapping); 40 41 folio_batch_init(&fbatch); 42 for_each_sgt_page(page, sgt_iter, st) { 43 struct folio *folio = page_folio(page); 44 45 if (folio == last) 46 continue; 47 last = folio; 48 if (dirty) 49 folio_mark_dirty(folio); 50 if (backup) 51 folio_mark_accessed(folio); 52 53 if (!folio_batch_add(&fbatch, folio)) 54 check_release_folio_batch(&fbatch); 55 } 56 if (fbatch.nr) 57 check_release_folio_batch(&fbatch); 58 59 sg_free_table(st); 60 } 61 62 int shmem_sg_alloc_table(struct drm_i915_private *i915, struct sg_table *st, 63 size_t size, struct intel_memory_region *mr, 64 struct address_space *mapping, 65 unsigned int max_segment) 66 { 67 unsigned int page_count; /* restricted by sg_alloc_table */ 68 unsigned long i; 69 struct scatterlist *sg; 70 unsigned long next_pfn = 0; /* suppress gcc warning */ 71 gfp_t noreclaim; 72 int ret; 73 74 if (overflows_type(size / PAGE_SIZE, page_count)) 75 return -E2BIG; 76 77 page_count = size / PAGE_SIZE; 78 /* 79 * If there's no chance of allocating enough pages for the whole 80 * object, bail early. 81 */ 82 if (size > resource_size(&mr->region)) 83 return -ENOMEM; 84 85 if (sg_alloc_table(st, page_count, GFP_KERNEL | __GFP_NOWARN)) 86 return -ENOMEM; 87 88 /* 89 * Get the list of pages out of our struct file. They'll be pinned 90 * at this point until we release them. 91 * 92 * Fail silently without starting the shrinker 93 */ 94 mapping_set_unevictable(mapping); 95 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM); 96 noreclaim |= __GFP_NORETRY | __GFP_NOWARN; 97 98 sg = st->sgl; 99 st->nents = 0; 100 for (i = 0; i < page_count; i++) { 101 struct folio *folio; 102 unsigned long nr_pages; 103 const unsigned int shrink[] = { 104 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND, 105 0, 106 }, *s = shrink; 107 gfp_t gfp = noreclaim; 108 109 do { 110 cond_resched(); 111 folio = shmem_read_folio_gfp(mapping, i, gfp); 112 if (!IS_ERR(folio)) 113 break; 114 115 if (!*s) { 116 ret = PTR_ERR(folio); 117 goto err_sg; 118 } 119 120 i915_gem_shrink(NULL, i915, 2 * page_count, NULL, *s++); 121 122 /* 123 * We've tried hard to allocate the memory by reaping 124 * our own buffer, now let the real VM do its job and 125 * go down in flames if truly OOM. 126 * 127 * However, since graphics tend to be disposable, 128 * defer the oom here by reporting the ENOMEM back 129 * to userspace. 130 */ 131 if (!*s) { 132 /* reclaim and warn, but no oom */ 133 gfp = mapping_gfp_mask(mapping); 134 135 /* 136 * Our bo are always dirty and so we require 137 * kswapd to reclaim our pages (direct reclaim 138 * does not effectively begin pageout of our 139 * buffers on its own). However, direct reclaim 140 * only waits for kswapd when under allocation 141 * congestion. So as a result __GFP_RECLAIM is 142 * unreliable and fails to actually reclaim our 143 * dirty pages -- unless you try over and over 144 * again with !__GFP_NORETRY. However, we still 145 * want to fail this allocation rather than 146 * trigger the out-of-memory killer and for 147 * this we want __GFP_RETRY_MAYFAIL. 148 */ 149 gfp |= __GFP_RETRY_MAYFAIL | __GFP_NOWARN; 150 } 151 } while (1); 152 153 nr_pages = min_t(unsigned long, 154 folio_nr_pages(folio), page_count - i); 155 if (!i || 156 sg->length >= max_segment || 157 folio_pfn(folio) != next_pfn) { 158 if (i) 159 sg = sg_next(sg); 160 161 st->nents++; 162 sg_set_folio(sg, folio, nr_pages * PAGE_SIZE, 0); 163 } else { 164 /* XXX: could overflow? */ 165 sg->length += nr_pages * PAGE_SIZE; 166 } 167 next_pfn = folio_pfn(folio) + nr_pages; 168 i += nr_pages - 1; 169 170 /* Check that the i965g/gm workaround works. */ 171 GEM_BUG_ON(gfp & __GFP_DMA32 && next_pfn >= 0x00100000UL); 172 } 173 if (sg) /* loop terminated early; short sg table */ 174 sg_mark_end(sg); 175 176 /* Trim unused sg entries to avoid wasting memory. */ 177 i915_sg_trim(st); 178 179 return 0; 180 err_sg: 181 sg_mark_end(sg); 182 if (sg != st->sgl) { 183 shmem_sg_free_table(st, mapping, false, false); 184 } else { 185 mapping_clear_unevictable(mapping); 186 sg_free_table(st); 187 } 188 189 /* 190 * shmemfs first checks if there is enough memory to allocate the page 191 * and reports ENOSPC should there be insufficient, along with the usual 192 * ENOMEM for a genuine allocation failure. 193 * 194 * We use ENOSPC in our driver to mean that we have run out of aperture 195 * space and so want to translate the error from shmemfs back to our 196 * usual understanding of ENOMEM. 197 */ 198 if (ret == -ENOSPC) 199 ret = -ENOMEM; 200 201 return ret; 202 } 203 204 static int shmem_get_pages(struct drm_i915_gem_object *obj) 205 { 206 struct drm_i915_private *i915 = to_i915(obj->base.dev); 207 struct intel_memory_region *mem = obj->mm.region; 208 struct address_space *mapping = obj->base.filp->f_mapping; 209 unsigned int max_segment = i915_sg_segment_size(i915->drm.dev); 210 struct sg_table *st; 211 int ret; 212 213 /* 214 * Assert that the object is not currently in any GPU domain. As it 215 * wasn't in the GTT, there shouldn't be any way it could have been in 216 * a GPU cache 217 */ 218 GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS); 219 GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS); 220 221 rebuild_st: 222 st = kmalloc(sizeof(*st), GFP_KERNEL | __GFP_NOWARN); 223 if (!st) 224 return -ENOMEM; 225 226 ret = shmem_sg_alloc_table(i915, st, obj->base.size, mem, mapping, 227 max_segment); 228 if (ret) 229 goto err_st; 230 231 ret = i915_gem_gtt_prepare_pages(obj, st); 232 if (ret) { 233 /* 234 * DMA remapping failed? One possible cause is that 235 * it could not reserve enough large entries, asking 236 * for PAGE_SIZE chunks instead may be helpful. 237 */ 238 if (max_segment > PAGE_SIZE) { 239 shmem_sg_free_table(st, mapping, false, false); 240 kfree(st); 241 242 max_segment = PAGE_SIZE; 243 goto rebuild_st; 244 } else { 245 dev_warn(i915->drm.dev, 246 "Failed to DMA remap %zu pages\n", 247 obj->base.size >> PAGE_SHIFT); 248 goto err_pages; 249 } 250 } 251 252 if (i915_gem_object_needs_bit17_swizzle(obj)) 253 i915_gem_object_do_bit_17_swizzle(obj, st); 254 255 if (i915_gem_object_can_bypass_llc(obj)) 256 obj->cache_dirty = true; 257 258 __i915_gem_object_set_pages(obj, st); 259 260 return 0; 261 262 err_pages: 263 shmem_sg_free_table(st, mapping, false, false); 264 /* 265 * shmemfs first checks if there is enough memory to allocate the page 266 * and reports ENOSPC should there be insufficient, along with the usual 267 * ENOMEM for a genuine allocation failure. 268 * 269 * We use ENOSPC in our driver to mean that we have run out of aperture 270 * space and so want to translate the error from shmemfs back to our 271 * usual understanding of ENOMEM. 272 */ 273 err_st: 274 if (ret == -ENOSPC) 275 ret = -ENOMEM; 276 277 kfree(st); 278 279 return ret; 280 } 281 282 static int 283 shmem_truncate(struct drm_i915_gem_object *obj) 284 { 285 /* 286 * Our goal here is to return as much of the memory as 287 * is possible back to the system as we are called from OOM. 288 * To do this we must instruct the shmfs to drop all of its 289 * backing pages, *now*. 290 */ 291 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1); 292 obj->mm.madv = __I915_MADV_PURGED; 293 obj->mm.pages = ERR_PTR(-EFAULT); 294 295 return 0; 296 } 297 298 void __shmem_writeback(size_t size, struct address_space *mapping) 299 { 300 struct writeback_control wbc = { 301 .sync_mode = WB_SYNC_NONE, 302 .nr_to_write = SWAP_CLUSTER_MAX, 303 .range_start = 0, 304 .range_end = LLONG_MAX, 305 .for_reclaim = 1, 306 }; 307 unsigned long i; 308 309 /* 310 * Leave mmapings intact (GTT will have been revoked on unbinding, 311 * leaving only CPU mmapings around) and add those pages to the LRU 312 * instead of invoking writeback so they are aged and paged out 313 * as normal. 314 */ 315 316 /* Begin writeback on each dirty page */ 317 for (i = 0; i < size >> PAGE_SHIFT; i++) { 318 struct page *page; 319 320 page = find_lock_page(mapping, i); 321 if (!page) 322 continue; 323 324 if (!page_mapped(page) && clear_page_dirty_for_io(page)) { 325 int ret; 326 327 SetPageReclaim(page); 328 ret = mapping->a_ops->writepage(page, &wbc); 329 if (!PageWriteback(page)) 330 ClearPageReclaim(page); 331 if (!ret) 332 goto put; 333 } 334 unlock_page(page); 335 put: 336 put_page(page); 337 } 338 } 339 340 static void 341 shmem_writeback(struct drm_i915_gem_object *obj) 342 { 343 __shmem_writeback(obj->base.size, obj->base.filp->f_mapping); 344 } 345 346 static int shmem_shrink(struct drm_i915_gem_object *obj, unsigned int flags) 347 { 348 switch (obj->mm.madv) { 349 case I915_MADV_DONTNEED: 350 return i915_gem_object_truncate(obj); 351 case __I915_MADV_PURGED: 352 return 0; 353 } 354 355 if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK) 356 shmem_writeback(obj); 357 358 return 0; 359 } 360 361 void 362 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj, 363 struct sg_table *pages, 364 bool needs_clflush) 365 { 366 struct drm_i915_private *i915 = to_i915(obj->base.dev); 367 368 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED); 369 370 if (obj->mm.madv == I915_MADV_DONTNEED) 371 obj->mm.dirty = false; 372 373 if (needs_clflush && 374 (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 && 375 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)) 376 drm_clflush_sg(pages); 377 378 __start_cpu_write(obj); 379 /* 380 * On non-LLC igfx platforms, force the flush-on-acquire if this is ever 381 * swapped-in. Our async flush path is not trust worthy enough yet(and 382 * happens in the wrong order), and with some tricks it's conceivable 383 * for userspace to change the cache-level to I915_CACHE_NONE after the 384 * pages are swapped-in, and since execbuf binds the object before doing 385 * the async flush, we have a race window. 386 */ 387 if (!HAS_LLC(i915) && !IS_DGFX(i915)) 388 obj->cache_dirty = true; 389 } 390 391 void i915_gem_object_put_pages_shmem(struct drm_i915_gem_object *obj, struct sg_table *pages) 392 { 393 __i915_gem_object_release_shmem(obj, pages, true); 394 395 i915_gem_gtt_finish_pages(obj, pages); 396 397 if (i915_gem_object_needs_bit17_swizzle(obj)) 398 i915_gem_object_save_bit_17_swizzle(obj, pages); 399 400 shmem_sg_free_table(pages, file_inode(obj->base.filp)->i_mapping, 401 obj->mm.dirty, obj->mm.madv == I915_MADV_WILLNEED); 402 kfree(pages); 403 obj->mm.dirty = false; 404 } 405 406 static void 407 shmem_put_pages(struct drm_i915_gem_object *obj, struct sg_table *pages) 408 { 409 if (likely(i915_gem_object_has_struct_page(obj))) 410 i915_gem_object_put_pages_shmem(obj, pages); 411 else 412 i915_gem_object_put_pages_phys(obj, pages); 413 } 414 415 static int 416 shmem_pwrite(struct drm_i915_gem_object *obj, 417 const struct drm_i915_gem_pwrite *arg) 418 { 419 struct address_space *mapping = obj->base.filp->f_mapping; 420 const struct address_space_operations *aops = mapping->a_ops; 421 char __user *user_data = u64_to_user_ptr(arg->data_ptr); 422 u64 remain; 423 loff_t pos; 424 unsigned int pg; 425 426 /* Caller already validated user args */ 427 GEM_BUG_ON(!access_ok(user_data, arg->size)); 428 429 if (!i915_gem_object_has_struct_page(obj)) 430 return i915_gem_object_pwrite_phys(obj, arg); 431 432 /* 433 * Before we instantiate/pin the backing store for our use, we 434 * can prepopulate the shmemfs filp efficiently using a write into 435 * the pagecache. We avoid the penalty of instantiating all the 436 * pages, important if the user is just writing to a few and never 437 * uses the object on the GPU, and using a direct write into shmemfs 438 * allows it to avoid the cost of retrieving a page (either swapin 439 * or clearing-before-use) before it is overwritten. 440 */ 441 if (i915_gem_object_has_pages(obj)) 442 return -ENODEV; 443 444 if (obj->mm.madv != I915_MADV_WILLNEED) 445 return -EFAULT; 446 447 /* 448 * Before the pages are instantiated the object is treated as being 449 * in the CPU domain. The pages will be clflushed as required before 450 * use, and we can freely write into the pages directly. If userspace 451 * races pwrite with any other operation; corruption will ensue - 452 * that is userspace's prerogative! 453 */ 454 455 remain = arg->size; 456 pos = arg->offset; 457 pg = offset_in_page(pos); 458 459 do { 460 unsigned int len, unwritten; 461 struct folio *folio; 462 void *data, *vaddr; 463 int err; 464 char __maybe_unused c; 465 466 len = PAGE_SIZE - pg; 467 if (len > remain) 468 len = remain; 469 470 /* Prefault the user page to reduce potential recursion */ 471 err = __get_user(c, user_data); 472 if (err) 473 return err; 474 475 err = __get_user(c, user_data + len - 1); 476 if (err) 477 return err; 478 479 err = aops->write_begin(obj->base.filp, mapping, pos, len, 480 &folio, &data); 481 if (err < 0) 482 return err; 483 484 vaddr = kmap_local_folio(folio, offset_in_folio(folio, pos)); 485 pagefault_disable(); 486 unwritten = __copy_from_user_inatomic(vaddr, user_data, len); 487 pagefault_enable(); 488 kunmap_local(vaddr); 489 490 err = aops->write_end(obj->base.filp, mapping, pos, len, 491 len - unwritten, folio, data); 492 if (err < 0) 493 return err; 494 495 /* We don't handle -EFAULT, leave it to the caller to check */ 496 if (unwritten) 497 return -ENODEV; 498 499 remain -= len; 500 user_data += len; 501 pos += len; 502 pg = 0; 503 } while (remain); 504 505 return 0; 506 } 507 508 static int 509 shmem_pread(struct drm_i915_gem_object *obj, 510 const struct drm_i915_gem_pread *arg) 511 { 512 if (!i915_gem_object_has_struct_page(obj)) 513 return i915_gem_object_pread_phys(obj, arg); 514 515 return -ENODEV; 516 } 517 518 static void shmem_release(struct drm_i915_gem_object *obj) 519 { 520 if (i915_gem_object_has_struct_page(obj)) 521 i915_gem_object_release_memory_region(obj); 522 523 fput(obj->base.filp); 524 } 525 526 const struct drm_i915_gem_object_ops i915_gem_shmem_ops = { 527 .name = "i915_gem_object_shmem", 528 .flags = I915_GEM_OBJECT_IS_SHRINKABLE, 529 530 .get_pages = shmem_get_pages, 531 .put_pages = shmem_put_pages, 532 .truncate = shmem_truncate, 533 .shrink = shmem_shrink, 534 535 .pwrite = shmem_pwrite, 536 .pread = shmem_pread, 537 538 .release = shmem_release, 539 }; 540 541 static int __create_shmem(struct drm_i915_private *i915, 542 struct drm_gem_object *obj, 543 resource_size_t size) 544 { 545 unsigned long flags = VM_NORESERVE; 546 struct file *filp; 547 548 drm_gem_private_object_init(&i915->drm, obj, size); 549 550 /* XXX: The __shmem_file_setup() function returns -EINVAL if size is 551 * greater than MAX_LFS_FILESIZE. 552 * To handle the same error as other code that returns -E2BIG when 553 * the size is too large, we add a code that returns -E2BIG when the 554 * size is larger than the size that can be handled. 555 * If BITS_PER_LONG is 32, size > MAX_LFS_FILESIZE is always false, 556 * so we only needs to check when BITS_PER_LONG is 64. 557 * If BITS_PER_LONG is 32, E2BIG checks are processed when 558 * i915_gem_object_size_2big() is called before init_object() callback 559 * is called. 560 */ 561 if (BITS_PER_LONG == 64 && size > MAX_LFS_FILESIZE) 562 return -E2BIG; 563 564 if (i915->mm.gemfs) 565 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size, 566 flags); 567 else 568 filp = shmem_file_setup("i915", size, flags); 569 if (IS_ERR(filp)) 570 return PTR_ERR(filp); 571 572 obj->filp = filp; 573 return 0; 574 } 575 576 static int shmem_object_init(struct intel_memory_region *mem, 577 struct drm_i915_gem_object *obj, 578 resource_size_t offset, 579 resource_size_t size, 580 resource_size_t page_size, 581 unsigned int flags) 582 { 583 static struct lock_class_key lock_class; 584 struct drm_i915_private *i915 = mem->i915; 585 struct address_space *mapping; 586 unsigned int cache_level; 587 gfp_t mask; 588 int ret; 589 590 ret = __create_shmem(i915, &obj->base, size); 591 if (ret) 592 return ret; 593 594 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 595 if (IS_I965GM(i915) || IS_I965G(i915)) { 596 /* 965gm cannot relocate objects above 4GiB. */ 597 mask &= ~__GFP_HIGHMEM; 598 mask |= __GFP_DMA32; 599 } 600 601 mapping = obj->base.filp->f_mapping; 602 mapping_set_gfp_mask(mapping, mask); 603 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM)); 604 605 i915_gem_object_init(obj, &i915_gem_shmem_ops, &lock_class, flags); 606 obj->mem_flags |= I915_BO_FLAG_STRUCT_PAGE; 607 obj->write_domain = I915_GEM_DOMAIN_CPU; 608 obj->read_domains = I915_GEM_DOMAIN_CPU; 609 610 /* 611 * MTL doesn't snoop CPU cache by default for GPU access (namely 612 * 1-way coherency). However some UMD's are currently depending on 613 * that. Make 1-way coherent the default setting for MTL. A follow 614 * up patch will extend the GEM_CREATE uAPI to allow UMD's specify 615 * caching mode at BO creation time 616 */ 617 if (HAS_LLC(i915) || (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))) 618 /* On some devices, we can have the GPU use the LLC (the CPU 619 * cache) for about a 10% performance improvement 620 * compared to uncached. Graphics requests other than 621 * display scanout are coherent with the CPU in 622 * accessing this cache. This means in this mode we 623 * don't need to clflush on the CPU side, and on the 624 * GPU side we only need to flush internal caches to 625 * get data visible to the CPU. 626 * 627 * However, we maintain the display planes as UC, and so 628 * need to rebind when first used as such. 629 */ 630 cache_level = I915_CACHE_LLC; 631 else 632 cache_level = I915_CACHE_NONE; 633 634 i915_gem_object_set_cache_coherency(obj, cache_level); 635 636 i915_gem_object_init_memory_region(obj, mem); 637 638 return 0; 639 } 640 641 struct drm_i915_gem_object * 642 i915_gem_object_create_shmem(struct drm_i915_private *i915, 643 resource_size_t size) 644 { 645 return i915_gem_object_create_region(i915->mm.regions[INTEL_REGION_SMEM], 646 size, 0, 0); 647 } 648 649 /* Allocate a new GEM object and fill it with the supplied data */ 650 struct drm_i915_gem_object * 651 i915_gem_object_create_shmem_from_data(struct drm_i915_private *i915, 652 const void *data, resource_size_t size) 653 { 654 struct drm_i915_gem_object *obj; 655 struct file *file; 656 const struct address_space_operations *aops; 657 loff_t pos; 658 int err; 659 660 GEM_WARN_ON(IS_DGFX(i915)); 661 obj = i915_gem_object_create_shmem(i915, round_up(size, PAGE_SIZE)); 662 if (IS_ERR(obj)) 663 return obj; 664 665 GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU); 666 667 file = obj->base.filp; 668 aops = file->f_mapping->a_ops; 669 pos = 0; 670 do { 671 unsigned int len = min_t(typeof(size), size, PAGE_SIZE); 672 struct folio *folio; 673 void *fsdata; 674 675 err = aops->write_begin(file, file->f_mapping, pos, len, 676 &folio, &fsdata); 677 if (err < 0) 678 goto fail; 679 680 memcpy_to_folio(folio, offset_in_folio(folio, pos), data, len); 681 682 err = aops->write_end(file, file->f_mapping, pos, len, len, 683 folio, fsdata); 684 if (err < 0) 685 goto fail; 686 687 size -= len; 688 data += len; 689 pos += len; 690 } while (size); 691 692 return obj; 693 694 fail: 695 i915_gem_object_put(obj); 696 return ERR_PTR(err); 697 } 698 699 static int init_shmem(struct intel_memory_region *mem) 700 { 701 i915_gemfs_init(mem->i915); 702 intel_memory_region_set_name(mem, "system"); 703 704 return 0; /* We have fallback to the kernel mnt if gemfs init failed. */ 705 } 706 707 static int release_shmem(struct intel_memory_region *mem) 708 { 709 i915_gemfs_fini(mem->i915); 710 return 0; 711 } 712 713 static const struct intel_memory_region_ops shmem_region_ops = { 714 .init = init_shmem, 715 .release = release_shmem, 716 .init_object = shmem_object_init, 717 }; 718 719 struct intel_memory_region *i915_gem_shmem_setup(struct drm_i915_private *i915, 720 u16 type, u16 instance) 721 { 722 return intel_memory_region_create(i915, 0, 723 totalram_pages() << PAGE_SHIFT, 724 PAGE_SIZE, 0, 0, 725 type, instance, 726 &shmem_region_ops); 727 } 728 729 bool i915_gem_object_is_shmem(const struct drm_i915_gem_object *obj) 730 { 731 return obj->ops == &i915_gem_shmem_ops; 732 } 733