xref: /linux/drivers/gpu/drm/i915/gem/i915_gem_pages.c (revision be969b7cfbcfa8a835a528f1dc467f0975c6d883)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2014-2016 Intel Corporation
5  */
6 
7 #include "i915_drv.h"
8 #include "i915_gem_object.h"
9 #include "i915_scatterlist.h"
10 #include "i915_gem_lmem.h"
11 #include "i915_gem_mman.h"
12 
13 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
14 				 struct sg_table *pages,
15 				 unsigned int sg_page_sizes)
16 {
17 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
18 	unsigned long supported = INTEL_INFO(i915)->page_sizes;
19 	int i;
20 
21 	lockdep_assert_held(&obj->mm.lock);
22 
23 	if (i915_gem_object_is_volatile(obj))
24 		obj->mm.madv = I915_MADV_DONTNEED;
25 
26 	/* Make the pages coherent with the GPU (flushing any swapin). */
27 	if (obj->cache_dirty) {
28 		obj->write_domain = 0;
29 		if (i915_gem_object_has_struct_page(obj))
30 			drm_clflush_sg(pages);
31 		obj->cache_dirty = false;
32 	}
33 
34 	obj->mm.get_page.sg_pos = pages->sgl;
35 	obj->mm.get_page.sg_idx = 0;
36 	obj->mm.get_dma_page.sg_pos = pages->sgl;
37 	obj->mm.get_dma_page.sg_idx = 0;
38 
39 	obj->mm.pages = pages;
40 
41 	if (i915_gem_object_is_tiled(obj) &&
42 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
43 		GEM_BUG_ON(obj->mm.quirked);
44 		__i915_gem_object_pin_pages(obj);
45 		obj->mm.quirked = true;
46 	}
47 
48 	GEM_BUG_ON(!sg_page_sizes);
49 	obj->mm.page_sizes.phys = sg_page_sizes;
50 
51 	/*
52 	 * Calculate the supported page-sizes which fit into the given
53 	 * sg_page_sizes. This will give us the page-sizes which we may be able
54 	 * to use opportunistically when later inserting into the GTT. For
55 	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
56 	 * 64K or 4K pages, although in practice this will depend on a number of
57 	 * other factors.
58 	 */
59 	obj->mm.page_sizes.sg = 0;
60 	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
61 		if (obj->mm.page_sizes.phys & ~0u << i)
62 			obj->mm.page_sizes.sg |= BIT(i);
63 	}
64 	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
65 
66 	if (i915_gem_object_is_shrinkable(obj)) {
67 		struct list_head *list;
68 		unsigned long flags;
69 
70 		spin_lock_irqsave(&i915->mm.obj_lock, flags);
71 
72 		i915->mm.shrink_count++;
73 		i915->mm.shrink_memory += obj->base.size;
74 
75 		if (obj->mm.madv != I915_MADV_WILLNEED)
76 			list = &i915->mm.purge_list;
77 		else
78 			list = &i915->mm.shrink_list;
79 		list_add_tail(&obj->mm.link, list);
80 
81 		atomic_set(&obj->mm.shrink_pin, 0);
82 		spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
83 	}
84 }
85 
86 int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
87 {
88 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
89 	int err;
90 
91 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
92 		drm_dbg(&i915->drm,
93 			"Attempting to obtain a purgeable object\n");
94 		return -EFAULT;
95 	}
96 
97 	err = obj->ops->get_pages(obj);
98 	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
99 
100 	return err;
101 }
102 
103 /* Ensure that the associated pages are gathered from the backing storage
104  * and pinned into our object. i915_gem_object_pin_pages() may be called
105  * multiple times before they are released by a single call to
106  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
107  * either as a result of memory pressure (reaping pages under the shrinker)
108  * or as the object is itself released.
109  */
110 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
111 {
112 	int err;
113 
114 	err = mutex_lock_interruptible_nested(&obj->mm.lock, I915_MM_GET_PAGES);
115 	if (err)
116 		return err;
117 
118 	if (unlikely(!i915_gem_object_has_pages(obj))) {
119 		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
120 
121 		err = ____i915_gem_object_get_pages(obj);
122 		if (err)
123 			goto unlock;
124 
125 		smp_mb__before_atomic();
126 	}
127 	atomic_inc(&obj->mm.pages_pin_count);
128 
129 unlock:
130 	mutex_unlock(&obj->mm.lock);
131 	return err;
132 }
133 
134 /* Immediately discard the backing storage */
135 void i915_gem_object_truncate(struct drm_i915_gem_object *obj)
136 {
137 	drm_gem_free_mmap_offset(&obj->base);
138 	if (obj->ops->truncate)
139 		obj->ops->truncate(obj);
140 }
141 
142 /* Try to discard unwanted pages */
143 void i915_gem_object_writeback(struct drm_i915_gem_object *obj)
144 {
145 	lockdep_assert_held(&obj->mm.lock);
146 	GEM_BUG_ON(i915_gem_object_has_pages(obj));
147 
148 	if (obj->ops->writeback)
149 		obj->ops->writeback(obj);
150 }
151 
152 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
153 {
154 	struct radix_tree_iter iter;
155 	void __rcu **slot;
156 
157 	rcu_read_lock();
158 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
159 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
160 	radix_tree_for_each_slot(slot, &obj->mm.get_dma_page.radix, &iter, 0)
161 		radix_tree_delete(&obj->mm.get_dma_page.radix, iter.index);
162 	rcu_read_unlock();
163 }
164 
165 static void unmap_object(struct drm_i915_gem_object *obj, void *ptr)
166 {
167 	if (is_vmalloc_addr(ptr))
168 		vunmap(ptr);
169 }
170 
171 struct sg_table *
172 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
173 {
174 	struct sg_table *pages;
175 
176 	pages = fetch_and_zero(&obj->mm.pages);
177 	if (IS_ERR_OR_NULL(pages))
178 		return pages;
179 
180 	if (i915_gem_object_is_volatile(obj))
181 		obj->mm.madv = I915_MADV_WILLNEED;
182 
183 	i915_gem_object_make_unshrinkable(obj);
184 
185 	if (obj->mm.mapping) {
186 		unmap_object(obj, page_mask_bits(obj->mm.mapping));
187 		obj->mm.mapping = NULL;
188 	}
189 
190 	__i915_gem_object_reset_page_iter(obj);
191 	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
192 
193 	return pages;
194 }
195 
196 int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
197 {
198 	struct sg_table *pages;
199 	int err;
200 
201 	if (i915_gem_object_has_pinned_pages(obj))
202 		return -EBUSY;
203 
204 	/* May be called by shrinker from within get_pages() (on another bo) */
205 	mutex_lock(&obj->mm.lock);
206 	if (unlikely(atomic_read(&obj->mm.pages_pin_count))) {
207 		err = -EBUSY;
208 		goto unlock;
209 	}
210 
211 	i915_gem_object_release_mmap_offset(obj);
212 
213 	/*
214 	 * ->put_pages might need to allocate memory for the bit17 swizzle
215 	 * array, hence protect them from being reaped by removing them from gtt
216 	 * lists early.
217 	 */
218 	pages = __i915_gem_object_unset_pages(obj);
219 
220 	/*
221 	 * XXX Temporary hijinx to avoid updating all backends to handle
222 	 * NULL pages. In the future, when we have more asynchronous
223 	 * get_pages backends we should be better able to handle the
224 	 * cancellation of the async task in a more uniform manner.
225 	 */
226 	if (!pages && !i915_gem_object_needs_async_cancel(obj))
227 		pages = ERR_PTR(-EINVAL);
228 
229 	if (!IS_ERR(pages))
230 		obj->ops->put_pages(obj, pages);
231 
232 	err = 0;
233 unlock:
234 	mutex_unlock(&obj->mm.lock);
235 
236 	return err;
237 }
238 
239 /* The 'mapping' part of i915_gem_object_pin_map() below */
240 static void *i915_gem_object_map_page(struct drm_i915_gem_object *obj,
241 		enum i915_map_type type)
242 {
243 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT, i;
244 	struct page *stack[32], **pages = stack, *page;
245 	struct sgt_iter iter;
246 	pgprot_t pgprot;
247 	void *vaddr;
248 
249 	switch (type) {
250 	default:
251 		MISSING_CASE(type);
252 		fallthrough;	/* to use PAGE_KERNEL anyway */
253 	case I915_MAP_WB:
254 		/*
255 		 * On 32b, highmem using a finite set of indirect PTE (i.e.
256 		 * vmap) to provide virtual mappings of the high pages.
257 		 * As these are finite, map_new_virtual() must wait for some
258 		 * other kmap() to finish when it runs out. If we map a large
259 		 * number of objects, there is no method for it to tell us
260 		 * to release the mappings, and we deadlock.
261 		 *
262 		 * However, if we make an explicit vmap of the page, that
263 		 * uses a larger vmalloc arena, and also has the ability
264 		 * to tell us to release unwanted mappings. Most importantly,
265 		 * it will fail and propagate an error instead of waiting
266 		 * forever.
267 		 *
268 		 * So if the page is beyond the 32b boundary, make an explicit
269 		 * vmap.
270 		 */
271 		if (n_pages == 1 && !PageHighMem(sg_page(obj->mm.pages->sgl)))
272 			return page_address(sg_page(obj->mm.pages->sgl));
273 		pgprot = PAGE_KERNEL;
274 		break;
275 	case I915_MAP_WC:
276 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
277 		break;
278 	}
279 
280 	if (n_pages > ARRAY_SIZE(stack)) {
281 		/* Too big for stack -- allocate temporary array instead */
282 		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
283 		if (!pages)
284 			return NULL;
285 	}
286 
287 	i = 0;
288 	for_each_sgt_page(page, iter, obj->mm.pages)
289 		pages[i++] = page;
290 	vaddr = vmap(pages, n_pages, 0, pgprot);
291 	if (pages != stack)
292 		kvfree(pages);
293 	return vaddr;
294 }
295 
296 static void *i915_gem_object_map_pfn(struct drm_i915_gem_object *obj,
297 		enum i915_map_type type)
298 {
299 	resource_size_t iomap = obj->mm.region->iomap.base -
300 		obj->mm.region->region.start;
301 	unsigned long n_pfn = obj->base.size >> PAGE_SHIFT;
302 	unsigned long stack[32], *pfns = stack, i;
303 	struct sgt_iter iter;
304 	dma_addr_t addr;
305 	void *vaddr;
306 
307 	if (type != I915_MAP_WC)
308 		return NULL;
309 
310 	if (n_pfn > ARRAY_SIZE(stack)) {
311 		/* Too big for stack -- allocate temporary array instead */
312 		pfns = kvmalloc_array(n_pfn, sizeof(*pfns), GFP_KERNEL);
313 		if (!pfns)
314 			return NULL;
315 	}
316 
317 	i = 0;
318 	for_each_sgt_daddr(addr, iter, obj->mm.pages)
319 		pfns[i++] = (iomap + addr) >> PAGE_SHIFT;
320 	vaddr = vmap_pfn(pfns, n_pfn, pgprot_writecombine(PAGE_KERNEL_IO));
321 	if (pfns != stack)
322 		kvfree(pfns);
323 	return vaddr;
324 }
325 
326 /* get, pin, and map the pages of the object into kernel space */
327 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
328 			      enum i915_map_type type)
329 {
330 	enum i915_map_type has_type;
331 	unsigned int flags;
332 	bool pinned;
333 	void *ptr;
334 	int err;
335 
336 	flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE | I915_GEM_OBJECT_HAS_IOMEM;
337 	if (!i915_gem_object_type_has(obj, flags))
338 		return ERR_PTR(-ENXIO);
339 
340 	err = mutex_lock_interruptible_nested(&obj->mm.lock, I915_MM_GET_PAGES);
341 	if (err)
342 		return ERR_PTR(err);
343 
344 	pinned = !(type & I915_MAP_OVERRIDE);
345 	type &= ~I915_MAP_OVERRIDE;
346 
347 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
348 		if (unlikely(!i915_gem_object_has_pages(obj))) {
349 			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
350 
351 			err = ____i915_gem_object_get_pages(obj);
352 			if (err)
353 				goto err_unlock;
354 
355 			smp_mb__before_atomic();
356 		}
357 		atomic_inc(&obj->mm.pages_pin_count);
358 		pinned = false;
359 	}
360 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
361 
362 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
363 	if (ptr && has_type != type) {
364 		if (pinned) {
365 			err = -EBUSY;
366 			goto err_unpin;
367 		}
368 
369 		unmap_object(obj, ptr);
370 
371 		ptr = obj->mm.mapping = NULL;
372 	}
373 
374 	if (!ptr) {
375 		if (GEM_WARN_ON(type == I915_MAP_WC &&
376 				!static_cpu_has(X86_FEATURE_PAT)))
377 			ptr = NULL;
378 		else if (i915_gem_object_has_struct_page(obj))
379 			ptr = i915_gem_object_map_page(obj, type);
380 		else
381 			ptr = i915_gem_object_map_pfn(obj, type);
382 		if (!ptr) {
383 			err = -ENOMEM;
384 			goto err_unpin;
385 		}
386 
387 		obj->mm.mapping = page_pack_bits(ptr, type);
388 	}
389 
390 out_unlock:
391 	mutex_unlock(&obj->mm.lock);
392 	return ptr;
393 
394 err_unpin:
395 	atomic_dec(&obj->mm.pages_pin_count);
396 err_unlock:
397 	ptr = ERR_PTR(err);
398 	goto out_unlock;
399 }
400 
401 void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj,
402 				 unsigned long offset,
403 				 unsigned long size)
404 {
405 	enum i915_map_type has_type;
406 	void *ptr;
407 
408 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
409 	GEM_BUG_ON(range_overflows_t(typeof(obj->base.size),
410 				     offset, size, obj->base.size));
411 
412 	wmb(); /* let all previous writes be visible to coherent partners */
413 	obj->mm.dirty = true;
414 
415 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)
416 		return;
417 
418 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
419 	if (has_type == I915_MAP_WC)
420 		return;
421 
422 	drm_clflush_virt_range(ptr + offset, size);
423 	if (size == obj->base.size) {
424 		obj->write_domain &= ~I915_GEM_DOMAIN_CPU;
425 		obj->cache_dirty = false;
426 	}
427 }
428 
429 void __i915_gem_object_release_map(struct drm_i915_gem_object *obj)
430 {
431 	GEM_BUG_ON(!obj->mm.mapping);
432 
433 	/*
434 	 * We allow removing the mapping from underneath pinned pages!
435 	 *
436 	 * Furthermore, since this is an unsafe operation reserved only
437 	 * for construction time manipulation, we ignore locking prudence.
438 	 */
439 	unmap_object(obj, page_mask_bits(fetch_and_zero(&obj->mm.mapping)));
440 
441 	i915_gem_object_unpin_map(obj);
442 }
443 
444 struct scatterlist *
445 __i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
446 			 struct i915_gem_object_page_iter *iter,
447 			 unsigned int n,
448 			 unsigned int *offset)
449 {
450 	const bool dma = iter == &obj->mm.get_dma_page;
451 	struct scatterlist *sg;
452 	unsigned int idx, count;
453 
454 	might_sleep();
455 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
456 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
457 
458 	/* As we iterate forward through the sg, we record each entry in a
459 	 * radixtree for quick repeated (backwards) lookups. If we have seen
460 	 * this index previously, we will have an entry for it.
461 	 *
462 	 * Initial lookup is O(N), but this is amortized to O(1) for
463 	 * sequential page access (where each new request is consecutive
464 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
465 	 * i.e. O(1) with a large constant!
466 	 */
467 	if (n < READ_ONCE(iter->sg_idx))
468 		goto lookup;
469 
470 	mutex_lock(&iter->lock);
471 
472 	/* We prefer to reuse the last sg so that repeated lookup of this
473 	 * (or the subsequent) sg are fast - comparing against the last
474 	 * sg is faster than going through the radixtree.
475 	 */
476 
477 	sg = iter->sg_pos;
478 	idx = iter->sg_idx;
479 	count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
480 
481 	while (idx + count <= n) {
482 		void *entry;
483 		unsigned long i;
484 		int ret;
485 
486 		/* If we cannot allocate and insert this entry, or the
487 		 * individual pages from this range, cancel updating the
488 		 * sg_idx so that on this lookup we are forced to linearly
489 		 * scan onwards, but on future lookups we will try the
490 		 * insertion again (in which case we need to be careful of
491 		 * the error return reporting that we have already inserted
492 		 * this index).
493 		 */
494 		ret = radix_tree_insert(&iter->radix, idx, sg);
495 		if (ret && ret != -EEXIST)
496 			goto scan;
497 
498 		entry = xa_mk_value(idx);
499 		for (i = 1; i < count; i++) {
500 			ret = radix_tree_insert(&iter->radix, idx + i, entry);
501 			if (ret && ret != -EEXIST)
502 				goto scan;
503 		}
504 
505 		idx += count;
506 		sg = ____sg_next(sg);
507 		count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
508 	}
509 
510 scan:
511 	iter->sg_pos = sg;
512 	iter->sg_idx = idx;
513 
514 	mutex_unlock(&iter->lock);
515 
516 	if (unlikely(n < idx)) /* insertion completed by another thread */
517 		goto lookup;
518 
519 	/* In case we failed to insert the entry into the radixtree, we need
520 	 * to look beyond the current sg.
521 	 */
522 	while (idx + count <= n) {
523 		idx += count;
524 		sg = ____sg_next(sg);
525 		count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
526 	}
527 
528 	*offset = n - idx;
529 	return sg;
530 
531 lookup:
532 	rcu_read_lock();
533 
534 	sg = radix_tree_lookup(&iter->radix, n);
535 	GEM_BUG_ON(!sg);
536 
537 	/* If this index is in the middle of multi-page sg entry,
538 	 * the radix tree will contain a value entry that points
539 	 * to the start of that range. We will return the pointer to
540 	 * the base page and the offset of this page within the
541 	 * sg entry's range.
542 	 */
543 	*offset = 0;
544 	if (unlikely(xa_is_value(sg))) {
545 		unsigned long base = xa_to_value(sg);
546 
547 		sg = radix_tree_lookup(&iter->radix, base);
548 		GEM_BUG_ON(!sg);
549 
550 		*offset = n - base;
551 	}
552 
553 	rcu_read_unlock();
554 
555 	return sg;
556 }
557 
558 struct page *
559 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
560 {
561 	struct scatterlist *sg;
562 	unsigned int offset;
563 
564 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
565 
566 	sg = i915_gem_object_get_sg(obj, n, &offset);
567 	return nth_page(sg_page(sg), offset);
568 }
569 
570 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
571 struct page *
572 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
573 			       unsigned int n)
574 {
575 	struct page *page;
576 
577 	page = i915_gem_object_get_page(obj, n);
578 	if (!obj->mm.dirty)
579 		set_page_dirty(page);
580 
581 	return page;
582 }
583 
584 dma_addr_t
585 i915_gem_object_get_dma_address_len(struct drm_i915_gem_object *obj,
586 				    unsigned long n,
587 				    unsigned int *len)
588 {
589 	struct scatterlist *sg;
590 	unsigned int offset;
591 
592 	sg = i915_gem_object_get_sg_dma(obj, n, &offset);
593 
594 	if (len)
595 		*len = sg_dma_len(sg) - (offset << PAGE_SHIFT);
596 
597 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
598 }
599 
600 dma_addr_t
601 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
602 				unsigned long n)
603 {
604 	return i915_gem_object_get_dma_address_len(obj, n, NULL);
605 }
606