1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2017 Intel Corporation 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 22 * IN THE SOFTWARE. 23 * 24 */ 25 26 #include <linux/highmem.h> 27 #include <linux/sched/mm.h> 28 29 #include <drm/drm_cache.h> 30 31 #include "display/intel_frontbuffer.h" 32 #include "pxp/intel_pxp.h" 33 34 #include "i915_drv.h" 35 #include "i915_file_private.h" 36 #include "i915_gem_clflush.h" 37 #include "i915_gem_context.h" 38 #include "i915_gem_dmabuf.h" 39 #include "i915_gem_mman.h" 40 #include "i915_gem_object.h" 41 #include "i915_gem_object_frontbuffer.h" 42 #include "i915_gem_ttm.h" 43 #include "i915_memcpy.h" 44 #include "i915_trace.h" 45 46 static struct kmem_cache *slab_objects; 47 48 static const struct drm_gem_object_funcs i915_gem_object_funcs; 49 50 unsigned int i915_gem_get_pat_index(struct drm_i915_private *i915, 51 enum i915_cache_level level) 52 { 53 if (drm_WARN_ON(&i915->drm, level >= I915_MAX_CACHE_LEVEL)) 54 return 0; 55 56 return INTEL_INFO(i915)->cachelevel_to_pat[level]; 57 } 58 59 bool i915_gem_object_has_cache_level(const struct drm_i915_gem_object *obj, 60 enum i915_cache_level lvl) 61 { 62 /* 63 * In case the pat_index is set by user space, this kernel mode 64 * driver should leave the coherency to be managed by user space, 65 * simply return true here. 66 */ 67 if (obj->pat_set_by_user) 68 return true; 69 70 /* 71 * Otherwise the pat_index should have been converted from cache_level 72 * so that the following comparison is valid. 73 */ 74 return obj->pat_index == i915_gem_get_pat_index(obj_to_i915(obj), lvl); 75 } 76 77 struct drm_i915_gem_object *i915_gem_object_alloc(void) 78 { 79 struct drm_i915_gem_object *obj; 80 81 obj = kmem_cache_zalloc(slab_objects, GFP_KERNEL); 82 if (!obj) 83 return NULL; 84 obj->base.funcs = &i915_gem_object_funcs; 85 86 return obj; 87 } 88 89 void i915_gem_object_free(struct drm_i915_gem_object *obj) 90 { 91 return kmem_cache_free(slab_objects, obj); 92 } 93 94 void i915_gem_object_init(struct drm_i915_gem_object *obj, 95 const struct drm_i915_gem_object_ops *ops, 96 struct lock_class_key *key, unsigned flags) 97 { 98 /* 99 * A gem object is embedded both in a struct ttm_buffer_object :/ and 100 * in a drm_i915_gem_object. Make sure they are aliased. 101 */ 102 BUILD_BUG_ON(offsetof(typeof(*obj), base) != 103 offsetof(typeof(*obj), __do_not_access.base)); 104 105 spin_lock_init(&obj->vma.lock); 106 INIT_LIST_HEAD(&obj->vma.list); 107 108 INIT_LIST_HEAD(&obj->mm.link); 109 110 #ifdef CONFIG_PROC_FS 111 INIT_LIST_HEAD(&obj->client_link); 112 #endif 113 114 INIT_LIST_HEAD(&obj->lut_list); 115 spin_lock_init(&obj->lut_lock); 116 117 spin_lock_init(&obj->mmo.lock); 118 obj->mmo.offsets = RB_ROOT; 119 120 init_rcu_head(&obj->rcu); 121 122 obj->ops = ops; 123 GEM_BUG_ON(flags & ~I915_BO_ALLOC_FLAGS); 124 obj->flags = flags; 125 126 obj->mm.madv = I915_MADV_WILLNEED; 127 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN); 128 mutex_init(&obj->mm.get_page.lock); 129 INIT_RADIX_TREE(&obj->mm.get_dma_page.radix, GFP_KERNEL | __GFP_NOWARN); 130 mutex_init(&obj->mm.get_dma_page.lock); 131 } 132 133 /** 134 * __i915_gem_object_fini - Clean up a GEM object initialization 135 * @obj: The gem object to cleanup 136 * 137 * This function cleans up gem object fields that are set up by 138 * drm_gem_private_object_init() and i915_gem_object_init(). 139 * It's primarily intended as a helper for backends that need to 140 * clean up the gem object in separate steps. 141 */ 142 void __i915_gem_object_fini(struct drm_i915_gem_object *obj) 143 { 144 mutex_destroy(&obj->mm.get_page.lock); 145 mutex_destroy(&obj->mm.get_dma_page.lock); 146 dma_resv_fini(&obj->base._resv); 147 } 148 149 /** 150 * i915_gem_object_set_cache_coherency - Mark up the object's coherency levels 151 * for a given cache_level 152 * @obj: #drm_i915_gem_object 153 * @cache_level: cache level 154 */ 155 void i915_gem_object_set_cache_coherency(struct drm_i915_gem_object *obj, 156 unsigned int cache_level) 157 { 158 struct drm_i915_private *i915 = to_i915(obj->base.dev); 159 160 obj->pat_index = i915_gem_get_pat_index(i915, cache_level); 161 162 if (cache_level != I915_CACHE_NONE) 163 obj->cache_coherent = (I915_BO_CACHE_COHERENT_FOR_READ | 164 I915_BO_CACHE_COHERENT_FOR_WRITE); 165 else if (HAS_LLC(i915)) 166 obj->cache_coherent = I915_BO_CACHE_COHERENT_FOR_READ; 167 else 168 obj->cache_coherent = 0; 169 170 obj->cache_dirty = 171 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE) && 172 !IS_DGFX(i915); 173 } 174 175 /** 176 * i915_gem_object_set_pat_index - set PAT index to be used in PTE encode 177 * @obj: #drm_i915_gem_object 178 * @pat_index: PAT index 179 * 180 * This is a clone of i915_gem_object_set_cache_coherency taking pat index 181 * instead of cache_level as its second argument. 182 */ 183 void i915_gem_object_set_pat_index(struct drm_i915_gem_object *obj, 184 unsigned int pat_index) 185 { 186 struct drm_i915_private *i915 = to_i915(obj->base.dev); 187 188 if (obj->pat_index == pat_index) 189 return; 190 191 obj->pat_index = pat_index; 192 193 if (pat_index != i915_gem_get_pat_index(i915, I915_CACHE_NONE)) 194 obj->cache_coherent = (I915_BO_CACHE_COHERENT_FOR_READ | 195 I915_BO_CACHE_COHERENT_FOR_WRITE); 196 else if (HAS_LLC(i915)) 197 obj->cache_coherent = I915_BO_CACHE_COHERENT_FOR_READ; 198 else 199 obj->cache_coherent = 0; 200 201 obj->cache_dirty = 202 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE) && 203 !IS_DGFX(i915); 204 } 205 206 bool i915_gem_object_can_bypass_llc(struct drm_i915_gem_object *obj) 207 { 208 struct drm_i915_private *i915 = to_i915(obj->base.dev); 209 210 /* 211 * This is purely from a security perspective, so we simply don't care 212 * about non-userspace objects being able to bypass the LLC. 213 */ 214 if (!(obj->flags & I915_BO_ALLOC_USER)) 215 return false; 216 217 /* 218 * Always flush cache for UMD objects at creation time. 219 */ 220 if (obj->pat_set_by_user) 221 return true; 222 223 /* 224 * EHL and JSL add the 'Bypass LLC' MOCS entry, which should make it 225 * possible for userspace to bypass the GTT caching bits set by the 226 * kernel, as per the given object cache_level. This is troublesome 227 * since the heavy flush we apply when first gathering the pages is 228 * skipped if the kernel thinks the object is coherent with the GPU. As 229 * a result it might be possible to bypass the cache and read the 230 * contents of the page directly, which could be stale data. If it's 231 * just a case of userspace shooting themselves in the foot then so be 232 * it, but since i915 takes the stance of always zeroing memory before 233 * handing it to userspace, we need to prevent this. 234 */ 235 return (IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)); 236 } 237 238 static void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file) 239 { 240 struct drm_i915_gem_object *obj = to_intel_bo(gem); 241 struct drm_i915_file_private *fpriv = file->driver_priv; 242 struct i915_lut_handle bookmark = {}; 243 struct i915_mmap_offset *mmo, *mn; 244 struct i915_lut_handle *lut, *ln; 245 LIST_HEAD(close); 246 247 spin_lock(&obj->lut_lock); 248 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) { 249 struct i915_gem_context *ctx = lut->ctx; 250 251 if (ctx && ctx->file_priv == fpriv) { 252 i915_gem_context_get(ctx); 253 list_move(&lut->obj_link, &close); 254 } 255 256 /* Break long locks, and carefully continue on from this spot */ 257 if (&ln->obj_link != &obj->lut_list) { 258 list_add_tail(&bookmark.obj_link, &ln->obj_link); 259 if (cond_resched_lock(&obj->lut_lock)) 260 list_safe_reset_next(&bookmark, ln, obj_link); 261 __list_del_entry(&bookmark.obj_link); 262 } 263 } 264 spin_unlock(&obj->lut_lock); 265 266 spin_lock(&obj->mmo.lock); 267 rbtree_postorder_for_each_entry_safe(mmo, mn, &obj->mmo.offsets, offset) 268 drm_vma_node_revoke(&mmo->vma_node, file); 269 spin_unlock(&obj->mmo.lock); 270 271 list_for_each_entry_safe(lut, ln, &close, obj_link) { 272 struct i915_gem_context *ctx = lut->ctx; 273 struct i915_vma *vma; 274 275 /* 276 * We allow the process to have multiple handles to the same 277 * vma, in the same fd namespace, by virtue of flink/open. 278 */ 279 280 mutex_lock(&ctx->lut_mutex); 281 vma = radix_tree_delete(&ctx->handles_vma, lut->handle); 282 if (vma) { 283 GEM_BUG_ON(vma->obj != obj); 284 GEM_BUG_ON(!atomic_read(&vma->open_count)); 285 i915_vma_close(vma); 286 } 287 mutex_unlock(&ctx->lut_mutex); 288 289 i915_gem_context_put(lut->ctx); 290 i915_lut_handle_free(lut); 291 i915_gem_object_put(obj); 292 } 293 } 294 295 void __i915_gem_free_object_rcu(struct rcu_head *head) 296 { 297 struct drm_i915_gem_object *obj = 298 container_of(head, typeof(*obj), rcu); 299 struct drm_i915_private *i915 = to_i915(obj->base.dev); 300 301 /* We need to keep this alive for RCU read access from fdinfo. */ 302 if (obj->mm.n_placements > 1) 303 kfree(obj->mm.placements); 304 305 i915_gem_object_free(obj); 306 307 GEM_BUG_ON(!atomic_read(&i915->mm.free_count)); 308 atomic_dec(&i915->mm.free_count); 309 } 310 311 static void __i915_gem_object_free_mmaps(struct drm_i915_gem_object *obj) 312 { 313 /* Skip serialisation and waking the device if known to be not used. */ 314 315 if (obj->userfault_count && !IS_DGFX(to_i915(obj->base.dev))) 316 i915_gem_object_release_mmap_gtt(obj); 317 318 if (!RB_EMPTY_ROOT(&obj->mmo.offsets)) { 319 struct i915_mmap_offset *mmo, *mn; 320 321 i915_gem_object_release_mmap_offset(obj); 322 323 rbtree_postorder_for_each_entry_safe(mmo, mn, 324 &obj->mmo.offsets, 325 offset) { 326 drm_vma_offset_remove(obj->base.dev->vma_offset_manager, 327 &mmo->vma_node); 328 kfree(mmo); 329 } 330 obj->mmo.offsets = RB_ROOT; 331 } 332 } 333 334 /** 335 * __i915_gem_object_pages_fini - Clean up pages use of a gem object 336 * @obj: The gem object to clean up 337 * 338 * This function cleans up usage of the object mm.pages member. It 339 * is intended for backends that need to clean up a gem object in 340 * separate steps and needs to be called when the object is idle before 341 * the object's backing memory is freed. 342 */ 343 void __i915_gem_object_pages_fini(struct drm_i915_gem_object *obj) 344 { 345 assert_object_held_shared(obj); 346 347 if (!list_empty(&obj->vma.list)) { 348 struct i915_vma *vma; 349 350 spin_lock(&obj->vma.lock); 351 while ((vma = list_first_entry_or_null(&obj->vma.list, 352 struct i915_vma, 353 obj_link))) { 354 GEM_BUG_ON(vma->obj != obj); 355 spin_unlock(&obj->vma.lock); 356 357 i915_vma_destroy(vma); 358 359 spin_lock(&obj->vma.lock); 360 } 361 spin_unlock(&obj->vma.lock); 362 } 363 364 __i915_gem_object_free_mmaps(obj); 365 366 atomic_set(&obj->mm.pages_pin_count, 0); 367 368 /* 369 * dma_buf_unmap_attachment() requires reservation to be 370 * locked. The imported GEM shouldn't share reservation lock 371 * and ttm_bo_cleanup_memtype_use() shouldn't be invoked for 372 * dma-buf, so it's safe to take the lock. 373 */ 374 if (obj->base.import_attach) 375 i915_gem_object_lock(obj, NULL); 376 377 __i915_gem_object_put_pages(obj); 378 379 if (obj->base.import_attach) 380 i915_gem_object_unlock(obj); 381 382 GEM_BUG_ON(i915_gem_object_has_pages(obj)); 383 } 384 385 void __i915_gem_free_object(struct drm_i915_gem_object *obj) 386 { 387 trace_i915_gem_object_destroy(obj); 388 389 GEM_BUG_ON(!list_empty(&obj->lut_list)); 390 391 bitmap_free(obj->bit_17); 392 393 if (obj->base.import_attach) 394 drm_prime_gem_destroy(&obj->base, NULL); 395 396 drm_gem_free_mmap_offset(&obj->base); 397 398 if (obj->ops->release) 399 obj->ops->release(obj); 400 401 if (obj->shares_resv_from) 402 i915_vm_resv_put(obj->shares_resv_from); 403 404 __i915_gem_object_fini(obj); 405 } 406 407 static void __i915_gem_free_objects(struct drm_i915_private *i915, 408 struct llist_node *freed) 409 { 410 struct drm_i915_gem_object *obj, *on; 411 412 llist_for_each_entry_safe(obj, on, freed, freed) { 413 might_sleep(); 414 if (obj->ops->delayed_free) { 415 obj->ops->delayed_free(obj); 416 continue; 417 } 418 419 __i915_gem_object_pages_fini(obj); 420 __i915_gem_free_object(obj); 421 422 /* But keep the pointer alive for RCU-protected lookups */ 423 call_rcu(&obj->rcu, __i915_gem_free_object_rcu); 424 cond_resched(); 425 } 426 } 427 428 void i915_gem_flush_free_objects(struct drm_i915_private *i915) 429 { 430 struct llist_node *freed = llist_del_all(&i915->mm.free_list); 431 432 if (unlikely(freed)) 433 __i915_gem_free_objects(i915, freed); 434 } 435 436 static void __i915_gem_free_work(struct work_struct *work) 437 { 438 struct drm_i915_private *i915 = 439 container_of(work, struct drm_i915_private, mm.free_work); 440 441 i915_gem_flush_free_objects(i915); 442 } 443 444 static void i915_gem_free_object(struct drm_gem_object *gem_obj) 445 { 446 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 447 struct drm_i915_private *i915 = to_i915(obj->base.dev); 448 449 GEM_BUG_ON(i915_gem_object_is_framebuffer(obj)); 450 451 i915_drm_client_remove_object(obj); 452 453 /* 454 * Before we free the object, make sure any pure RCU-only 455 * read-side critical sections are complete, e.g. 456 * i915_gem_busy_ioctl(). For the corresponding synchronized 457 * lookup see i915_gem_object_lookup_rcu(). 458 */ 459 atomic_inc(&i915->mm.free_count); 460 461 /* 462 * Since we require blocking on struct_mutex to unbind the freed 463 * object from the GPU before releasing resources back to the 464 * system, we can not do that directly from the RCU callback (which may 465 * be a softirq context), but must instead then defer that work onto a 466 * kthread. We use the RCU callback rather than move the freed object 467 * directly onto the work queue so that we can mix between using the 468 * worker and performing frees directly from subsequent allocations for 469 * crude but effective memory throttling. 470 */ 471 472 if (llist_add(&obj->freed, &i915->mm.free_list)) 473 queue_work(i915->wq, &i915->mm.free_work); 474 } 475 476 void __i915_gem_object_flush_frontbuffer(struct drm_i915_gem_object *obj, 477 enum fb_op_origin origin) 478 { 479 struct intel_frontbuffer *front; 480 481 front = i915_gem_object_get_frontbuffer(obj); 482 if (front) { 483 intel_frontbuffer_flush(front, origin); 484 intel_frontbuffer_put(front); 485 } 486 } 487 488 void __i915_gem_object_invalidate_frontbuffer(struct drm_i915_gem_object *obj, 489 enum fb_op_origin origin) 490 { 491 struct intel_frontbuffer *front; 492 493 front = i915_gem_object_get_frontbuffer(obj); 494 if (front) { 495 intel_frontbuffer_invalidate(front, origin); 496 intel_frontbuffer_put(front); 497 } 498 } 499 500 static void 501 i915_gem_object_read_from_page_kmap(struct drm_i915_gem_object *obj, u64 offset, void *dst, int size) 502 { 503 pgoff_t idx = offset >> PAGE_SHIFT; 504 void *src_ptr; 505 506 src_ptr = kmap_local_page(i915_gem_object_get_page(obj, idx)) 507 + offset_in_page(offset); 508 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)) 509 drm_clflush_virt_range(src_ptr, size); 510 memcpy(dst, src_ptr, size); 511 512 kunmap_local(src_ptr); 513 } 514 515 static void 516 i915_gem_object_read_from_page_iomap(struct drm_i915_gem_object *obj, u64 offset, void *dst, int size) 517 { 518 pgoff_t idx = offset >> PAGE_SHIFT; 519 dma_addr_t dma = i915_gem_object_get_dma_address(obj, idx); 520 void __iomem *src_map; 521 void __iomem *src_ptr; 522 523 src_map = io_mapping_map_wc(&obj->mm.region->iomap, 524 dma - obj->mm.region->region.start, 525 PAGE_SIZE); 526 527 src_ptr = src_map + offset_in_page(offset); 528 if (!i915_memcpy_from_wc(dst, (void __force *)src_ptr, size)) 529 memcpy_fromio(dst, src_ptr, size); 530 531 io_mapping_unmap(src_map); 532 } 533 534 static bool object_has_mappable_iomem(struct drm_i915_gem_object *obj) 535 { 536 GEM_BUG_ON(!i915_gem_object_has_iomem(obj)); 537 538 if (IS_DGFX(to_i915(obj->base.dev))) 539 return i915_ttm_resource_mappable(i915_gem_to_ttm(obj)->resource); 540 541 return true; 542 } 543 544 /** 545 * i915_gem_object_read_from_page - read data from the page of a GEM object 546 * @obj: GEM object to read from 547 * @offset: offset within the object 548 * @dst: buffer to store the read data 549 * @size: size to read 550 * 551 * Reads data from @obj at the specified offset. The requested region to read 552 * from can't cross a page boundary. The caller must ensure that @obj pages 553 * are pinned and that @obj is synced wrt. any related writes. 554 * 555 * Return: %0 on success or -ENODEV if the type of @obj's backing store is 556 * unsupported. 557 */ 558 int i915_gem_object_read_from_page(struct drm_i915_gem_object *obj, u64 offset, void *dst, int size) 559 { 560 GEM_BUG_ON(overflows_type(offset >> PAGE_SHIFT, pgoff_t)); 561 GEM_BUG_ON(offset >= obj->base.size); 562 GEM_BUG_ON(offset_in_page(offset) > PAGE_SIZE - size); 563 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 564 565 if (i915_gem_object_has_struct_page(obj)) 566 i915_gem_object_read_from_page_kmap(obj, offset, dst, size); 567 else if (i915_gem_object_has_iomem(obj) && object_has_mappable_iomem(obj)) 568 i915_gem_object_read_from_page_iomap(obj, offset, dst, size); 569 else 570 return -ENODEV; 571 572 return 0; 573 } 574 575 /** 576 * i915_gem_object_evictable - Whether object is likely evictable after unbind. 577 * @obj: The object to check 578 * 579 * This function checks whether the object is likely unvictable after unbind. 580 * If the object is not locked when checking, the result is only advisory. 581 * If the object is locked when checking, and the function returns true, 582 * then an eviction should indeed be possible. But since unlocked vma 583 * unpinning and unbinding is currently possible, the object can actually 584 * become evictable even if this function returns false. 585 * 586 * Return: true if the object may be evictable. False otherwise. 587 */ 588 bool i915_gem_object_evictable(struct drm_i915_gem_object *obj) 589 { 590 struct i915_vma *vma; 591 int pin_count = atomic_read(&obj->mm.pages_pin_count); 592 593 if (!pin_count) 594 return true; 595 596 spin_lock(&obj->vma.lock); 597 list_for_each_entry(vma, &obj->vma.list, obj_link) { 598 if (i915_vma_is_pinned(vma)) { 599 spin_unlock(&obj->vma.lock); 600 return false; 601 } 602 if (atomic_read(&vma->pages_count)) 603 pin_count--; 604 } 605 spin_unlock(&obj->vma.lock); 606 GEM_WARN_ON(pin_count < 0); 607 608 return pin_count == 0; 609 } 610 611 /** 612 * i915_gem_object_migratable - Whether the object is migratable out of the 613 * current region. 614 * @obj: Pointer to the object. 615 * 616 * Return: Whether the object is allowed to be resident in other 617 * regions than the current while pages are present. 618 */ 619 bool i915_gem_object_migratable(struct drm_i915_gem_object *obj) 620 { 621 struct intel_memory_region *mr = READ_ONCE(obj->mm.region); 622 623 if (!mr) 624 return false; 625 626 return obj->mm.n_placements > 1; 627 } 628 629 /** 630 * i915_gem_object_has_struct_page - Whether the object is page-backed 631 * @obj: The object to query. 632 * 633 * This function should only be called while the object is locked or pinned, 634 * otherwise the page backing may change under the caller. 635 * 636 * Return: True if page-backed, false otherwise. 637 */ 638 bool i915_gem_object_has_struct_page(const struct drm_i915_gem_object *obj) 639 { 640 #ifdef CONFIG_LOCKDEP 641 if (IS_DGFX(to_i915(obj->base.dev)) && 642 i915_gem_object_evictable((void __force *)obj)) 643 assert_object_held_shared(obj); 644 #endif 645 return obj->mem_flags & I915_BO_FLAG_STRUCT_PAGE; 646 } 647 648 /** 649 * i915_gem_object_has_iomem - Whether the object is iomem-backed 650 * @obj: The object to query. 651 * 652 * This function should only be called while the object is locked or pinned, 653 * otherwise the iomem backing may change under the caller. 654 * 655 * Return: True if iomem-backed, false otherwise. 656 */ 657 bool i915_gem_object_has_iomem(const struct drm_i915_gem_object *obj) 658 { 659 #ifdef CONFIG_LOCKDEP 660 if (IS_DGFX(to_i915(obj->base.dev)) && 661 i915_gem_object_evictable((void __force *)obj)) 662 assert_object_held_shared(obj); 663 #endif 664 return obj->mem_flags & I915_BO_FLAG_IOMEM; 665 } 666 667 /** 668 * i915_gem_object_can_migrate - Whether an object likely can be migrated 669 * 670 * @obj: The object to migrate 671 * @id: The region intended to migrate to 672 * 673 * Check whether the object backend supports migration to the 674 * given region. Note that pinning may affect the ability to migrate as 675 * returned by this function. 676 * 677 * This function is primarily intended as a helper for checking the 678 * possibility to migrate objects and might be slightly less permissive 679 * than i915_gem_object_migrate() when it comes to objects with the 680 * I915_BO_ALLOC_USER flag set. 681 * 682 * Return: true if migration is possible, false otherwise. 683 */ 684 bool i915_gem_object_can_migrate(struct drm_i915_gem_object *obj, 685 enum intel_region_id id) 686 { 687 struct drm_i915_private *i915 = to_i915(obj->base.dev); 688 unsigned int num_allowed = obj->mm.n_placements; 689 struct intel_memory_region *mr; 690 unsigned int i; 691 692 GEM_BUG_ON(id >= INTEL_REGION_UNKNOWN); 693 GEM_BUG_ON(obj->mm.madv != I915_MADV_WILLNEED); 694 695 mr = i915->mm.regions[id]; 696 if (!mr) 697 return false; 698 699 if (!IS_ALIGNED(obj->base.size, mr->min_page_size)) 700 return false; 701 702 if (obj->mm.region == mr) 703 return true; 704 705 if (!i915_gem_object_evictable(obj)) 706 return false; 707 708 if (!obj->ops->migrate) 709 return false; 710 711 if (!(obj->flags & I915_BO_ALLOC_USER)) 712 return true; 713 714 if (num_allowed == 0) 715 return false; 716 717 for (i = 0; i < num_allowed; ++i) { 718 if (mr == obj->mm.placements[i]) 719 return true; 720 } 721 722 return false; 723 } 724 725 /** 726 * i915_gem_object_migrate - Migrate an object to the desired region id 727 * @obj: The object to migrate. 728 * @ww: An optional struct i915_gem_ww_ctx. If NULL, the backend may 729 * not be successful in evicting other objects to make room for this object. 730 * @id: The region id to migrate to. 731 * 732 * Attempt to migrate the object to the desired memory region. The 733 * object backend must support migration and the object may not be 734 * pinned, (explicitly pinned pages or pinned vmas). The object must 735 * be locked. 736 * On successful completion, the object will have pages pointing to 737 * memory in the new region, but an async migration task may not have 738 * completed yet, and to accomplish that, i915_gem_object_wait_migration() 739 * must be called. 740 * 741 * Note: the @ww parameter is not used yet, but included to make sure 742 * callers put some effort into obtaining a valid ww ctx if one is 743 * available. 744 * 745 * Return: 0 on success. Negative error code on failure. In particular may 746 * return -ENXIO on lack of region space, -EDEADLK for deadlock avoidance 747 * if @ww is set, -EINTR or -ERESTARTSYS if signal pending, and 748 * -EBUSY if the object is pinned. 749 */ 750 int i915_gem_object_migrate(struct drm_i915_gem_object *obj, 751 struct i915_gem_ww_ctx *ww, 752 enum intel_region_id id) 753 { 754 return __i915_gem_object_migrate(obj, ww, id, obj->flags); 755 } 756 757 /** 758 * __i915_gem_object_migrate - Migrate an object to the desired region id, with 759 * control of the extra flags 760 * @obj: The object to migrate. 761 * @ww: An optional struct i915_gem_ww_ctx. If NULL, the backend may 762 * not be successful in evicting other objects to make room for this object. 763 * @id: The region id to migrate to. 764 * @flags: The object flags. Normally just obj->flags. 765 * 766 * Attempt to migrate the object to the desired memory region. The 767 * object backend must support migration and the object may not be 768 * pinned, (explicitly pinned pages or pinned vmas). The object must 769 * be locked. 770 * On successful completion, the object will have pages pointing to 771 * memory in the new region, but an async migration task may not have 772 * completed yet, and to accomplish that, i915_gem_object_wait_migration() 773 * must be called. 774 * 775 * Note: the @ww parameter is not used yet, but included to make sure 776 * callers put some effort into obtaining a valid ww ctx if one is 777 * available. 778 * 779 * Return: 0 on success. Negative error code on failure. In particular may 780 * return -ENXIO on lack of region space, -EDEADLK for deadlock avoidance 781 * if @ww is set, -EINTR or -ERESTARTSYS if signal pending, and 782 * -EBUSY if the object is pinned. 783 */ 784 int __i915_gem_object_migrate(struct drm_i915_gem_object *obj, 785 struct i915_gem_ww_ctx *ww, 786 enum intel_region_id id, 787 unsigned int flags) 788 { 789 struct drm_i915_private *i915 = to_i915(obj->base.dev); 790 struct intel_memory_region *mr; 791 792 GEM_BUG_ON(id >= INTEL_REGION_UNKNOWN); 793 GEM_BUG_ON(obj->mm.madv != I915_MADV_WILLNEED); 794 assert_object_held(obj); 795 796 mr = i915->mm.regions[id]; 797 GEM_BUG_ON(!mr); 798 799 if (!i915_gem_object_can_migrate(obj, id)) 800 return -EINVAL; 801 802 if (!obj->ops->migrate) { 803 if (GEM_WARN_ON(obj->mm.region != mr)) 804 return -EINVAL; 805 return 0; 806 } 807 808 return obj->ops->migrate(obj, mr, flags); 809 } 810 811 /** 812 * i915_gem_object_placement_possible - Check whether the object can be 813 * placed at certain memory type 814 * @obj: Pointer to the object 815 * @type: The memory type to check 816 * 817 * Return: True if the object can be placed in @type. False otherwise. 818 */ 819 bool i915_gem_object_placement_possible(struct drm_i915_gem_object *obj, 820 enum intel_memory_type type) 821 { 822 unsigned int i; 823 824 if (!obj->mm.n_placements) { 825 switch (type) { 826 case INTEL_MEMORY_LOCAL: 827 return i915_gem_object_has_iomem(obj); 828 case INTEL_MEMORY_SYSTEM: 829 return i915_gem_object_has_pages(obj); 830 default: 831 /* Ignore stolen for now */ 832 GEM_BUG_ON(1); 833 return false; 834 } 835 } 836 837 for (i = 0; i < obj->mm.n_placements; i++) { 838 if (obj->mm.placements[i]->type == type) 839 return true; 840 } 841 842 return false; 843 } 844 845 /** 846 * i915_gem_object_needs_ccs_pages - Check whether the object requires extra 847 * pages when placed in system-memory, in order to save and later restore the 848 * flat-CCS aux state when the object is moved between local-memory and 849 * system-memory 850 * @obj: Pointer to the object 851 * 852 * Return: True if the object needs extra ccs pages. False otherwise. 853 */ 854 bool i915_gem_object_needs_ccs_pages(struct drm_i915_gem_object *obj) 855 { 856 bool lmem_placement = false; 857 int i; 858 859 if (!HAS_FLAT_CCS(to_i915(obj->base.dev))) 860 return false; 861 862 if (obj->flags & I915_BO_ALLOC_CCS_AUX) 863 return true; 864 865 for (i = 0; i < obj->mm.n_placements; i++) { 866 /* Compression is not allowed for the objects with smem placement */ 867 if (obj->mm.placements[i]->type == INTEL_MEMORY_SYSTEM) 868 return false; 869 if (!lmem_placement && 870 obj->mm.placements[i]->type == INTEL_MEMORY_LOCAL) 871 lmem_placement = true; 872 } 873 874 return lmem_placement; 875 } 876 877 static int i915_gem_vmap_object(struct drm_gem_object *gem_obj, 878 struct iosys_map *map) 879 { 880 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 881 void *vaddr; 882 883 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB); 884 if (IS_ERR(vaddr)) 885 return PTR_ERR(vaddr); 886 887 iosys_map_set_vaddr(map, vaddr); 888 889 return 0; 890 } 891 892 static void i915_gem_vunmap_object(struct drm_gem_object *gem_obj, 893 struct iosys_map *map) 894 { 895 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 896 897 i915_gem_object_flush_map(obj); 898 i915_gem_object_unpin_map(obj); 899 } 900 901 void i915_gem_init__objects(struct drm_i915_private *i915) 902 { 903 INIT_WORK(&i915->mm.free_work, __i915_gem_free_work); 904 } 905 906 void i915_objects_module_exit(void) 907 { 908 kmem_cache_destroy(slab_objects); 909 } 910 911 int __init i915_objects_module_init(void) 912 { 913 slab_objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN); 914 if (!slab_objects) 915 return -ENOMEM; 916 917 return 0; 918 } 919 920 static const struct drm_gem_object_funcs i915_gem_object_funcs = { 921 .free = i915_gem_free_object, 922 .close = i915_gem_close_object, 923 .export = i915_gem_prime_export, 924 .vmap = i915_gem_vmap_object, 925 .vunmap = i915_gem_vunmap_object, 926 }; 927 928 /** 929 * i915_gem_object_get_moving_fence - Get the object's moving fence if any 930 * @obj: The object whose moving fence to get. 931 * @fence: The resulting fence 932 * 933 * A non-signaled moving fence means that there is an async operation 934 * pending on the object that needs to be waited on before setting up 935 * any GPU- or CPU PTEs to the object's pages. 936 * 937 * Return: Negative error code or 0 for success. 938 */ 939 int i915_gem_object_get_moving_fence(struct drm_i915_gem_object *obj, 940 struct dma_fence **fence) 941 { 942 return dma_resv_get_singleton(obj->base.resv, DMA_RESV_USAGE_KERNEL, 943 fence); 944 } 945 946 /** 947 * i915_gem_object_wait_moving_fence - Wait for the object's moving fence if any 948 * @obj: The object whose moving fence to wait for. 949 * @intr: Whether to wait interruptible. 950 * 951 * If the moving fence signaled without an error, it is detached from the 952 * object and put. 953 * 954 * Return: 0 if successful, -ERESTARTSYS if the wait was interrupted, 955 * negative error code if the async operation represented by the 956 * moving fence failed. 957 */ 958 int i915_gem_object_wait_moving_fence(struct drm_i915_gem_object *obj, 959 bool intr) 960 { 961 long ret; 962 963 assert_object_held(obj); 964 965 ret = dma_resv_wait_timeout(obj->base. resv, DMA_RESV_USAGE_KERNEL, 966 intr, MAX_SCHEDULE_TIMEOUT); 967 if (!ret) 968 ret = -ETIME; 969 else if (ret > 0 && i915_gem_object_has_unknown_state(obj)) 970 ret = -EIO; 971 972 return ret < 0 ? ret : 0; 973 } 974 975 /* 976 * i915_gem_object_has_unknown_state - Return true if the object backing pages are 977 * in an unknown_state. This means that userspace must NEVER be allowed to touch 978 * the pages, with either the GPU or CPU. 979 * 980 * ONLY valid to be called after ensuring that all kernel fences have signalled 981 * (in particular the fence for moving/clearing the object). 982 */ 983 bool i915_gem_object_has_unknown_state(struct drm_i915_gem_object *obj) 984 { 985 /* 986 * The below barrier pairs with the dma_fence_signal() in 987 * __memcpy_work(). We should only sample the unknown_state after all 988 * the kernel fences have signalled. 989 */ 990 smp_rmb(); 991 return obj->mm.unknown_state; 992 } 993 994 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 995 #include "selftests/huge_gem_object.c" 996 #include "selftests/huge_pages.c" 997 #include "selftests/i915_gem_migrate.c" 998 #include "selftests/i915_gem_object.c" 999 #include "selftests/i915_gem_coherency.c" 1000 #endif 1001