1 /* 2 * Copyright © 2017 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/highmem.h> 26 #include <linux/sched/mm.h> 27 28 #include <drm/drm_cache.h> 29 30 #include "display/intel_frontbuffer.h" 31 #include "pxp/intel_pxp.h" 32 33 #include "i915_drv.h" 34 #include "i915_file_private.h" 35 #include "i915_gem_clflush.h" 36 #include "i915_gem_context.h" 37 #include "i915_gem_dmabuf.h" 38 #include "i915_gem_mman.h" 39 #include "i915_gem_object.h" 40 #include "i915_gem_object_frontbuffer.h" 41 #include "i915_gem_ttm.h" 42 #include "i915_memcpy.h" 43 #include "i915_trace.h" 44 45 static struct kmem_cache *slab_objects; 46 47 static const struct drm_gem_object_funcs i915_gem_object_funcs; 48 49 unsigned int i915_gem_get_pat_index(struct drm_i915_private *i915, 50 enum i915_cache_level level) 51 { 52 if (drm_WARN_ON(&i915->drm, level >= I915_MAX_CACHE_LEVEL)) 53 return 0; 54 55 return INTEL_INFO(i915)->cachelevel_to_pat[level]; 56 } 57 58 bool i915_gem_object_has_cache_level(const struct drm_i915_gem_object *obj, 59 enum i915_cache_level lvl) 60 { 61 /* 62 * In case the pat_index is set by user space, this kernel mode 63 * driver should leave the coherency to be managed by user space, 64 * simply return true here. 65 */ 66 if (obj->pat_set_by_user) 67 return true; 68 69 /* 70 * Otherwise the pat_index should have been converted from cache_level 71 * so that the following comparison is valid. 72 */ 73 return obj->pat_index == i915_gem_get_pat_index(obj_to_i915(obj), lvl); 74 } 75 76 struct drm_i915_gem_object *i915_gem_object_alloc(void) 77 { 78 struct drm_i915_gem_object *obj; 79 80 obj = kmem_cache_zalloc(slab_objects, GFP_KERNEL); 81 if (!obj) 82 return NULL; 83 obj->base.funcs = &i915_gem_object_funcs; 84 85 return obj; 86 } 87 88 void i915_gem_object_free(struct drm_i915_gem_object *obj) 89 { 90 return kmem_cache_free(slab_objects, obj); 91 } 92 93 void i915_gem_object_init(struct drm_i915_gem_object *obj, 94 const struct drm_i915_gem_object_ops *ops, 95 struct lock_class_key *key, unsigned flags) 96 { 97 /* 98 * A gem object is embedded both in a struct ttm_buffer_object :/ and 99 * in a drm_i915_gem_object. Make sure they are aliased. 100 */ 101 BUILD_BUG_ON(offsetof(typeof(*obj), base) != 102 offsetof(typeof(*obj), __do_not_access.base)); 103 104 spin_lock_init(&obj->vma.lock); 105 INIT_LIST_HEAD(&obj->vma.list); 106 107 INIT_LIST_HEAD(&obj->mm.link); 108 109 #ifdef CONFIG_PROC_FS 110 INIT_LIST_HEAD(&obj->client_link); 111 #endif 112 113 INIT_LIST_HEAD(&obj->lut_list); 114 spin_lock_init(&obj->lut_lock); 115 116 spin_lock_init(&obj->mmo.lock); 117 obj->mmo.offsets = RB_ROOT; 118 119 init_rcu_head(&obj->rcu); 120 121 obj->ops = ops; 122 GEM_BUG_ON(flags & ~I915_BO_ALLOC_FLAGS); 123 obj->flags = flags; 124 125 obj->mm.madv = I915_MADV_WILLNEED; 126 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN); 127 mutex_init(&obj->mm.get_page.lock); 128 INIT_RADIX_TREE(&obj->mm.get_dma_page.radix, GFP_KERNEL | __GFP_NOWARN); 129 mutex_init(&obj->mm.get_dma_page.lock); 130 } 131 132 /** 133 * __i915_gem_object_fini - Clean up a GEM object initialization 134 * @obj: The gem object to cleanup 135 * 136 * This function cleans up gem object fields that are set up by 137 * drm_gem_private_object_init() and i915_gem_object_init(). 138 * It's primarily intended as a helper for backends that need to 139 * clean up the gem object in separate steps. 140 */ 141 void __i915_gem_object_fini(struct drm_i915_gem_object *obj) 142 { 143 mutex_destroy(&obj->mm.get_page.lock); 144 mutex_destroy(&obj->mm.get_dma_page.lock); 145 dma_resv_fini(&obj->base._resv); 146 } 147 148 /** 149 * i915_gem_object_set_cache_coherency - Mark up the object's coherency levels 150 * for a given cache_level 151 * @obj: #drm_i915_gem_object 152 * @cache_level: cache level 153 */ 154 void i915_gem_object_set_cache_coherency(struct drm_i915_gem_object *obj, 155 unsigned int cache_level) 156 { 157 struct drm_i915_private *i915 = to_i915(obj->base.dev); 158 159 obj->pat_index = i915_gem_get_pat_index(i915, cache_level); 160 161 if (cache_level != I915_CACHE_NONE) 162 obj->cache_coherent = (I915_BO_CACHE_COHERENT_FOR_READ | 163 I915_BO_CACHE_COHERENT_FOR_WRITE); 164 else if (HAS_LLC(i915)) 165 obj->cache_coherent = I915_BO_CACHE_COHERENT_FOR_READ; 166 else 167 obj->cache_coherent = 0; 168 169 obj->cache_dirty = 170 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE) && 171 !IS_DGFX(i915); 172 } 173 174 /** 175 * i915_gem_object_set_pat_index - set PAT index to be used in PTE encode 176 * @obj: #drm_i915_gem_object 177 * @pat_index: PAT index 178 * 179 * This is a clone of i915_gem_object_set_cache_coherency taking pat index 180 * instead of cache_level as its second argument. 181 */ 182 void i915_gem_object_set_pat_index(struct drm_i915_gem_object *obj, 183 unsigned int pat_index) 184 { 185 struct drm_i915_private *i915 = to_i915(obj->base.dev); 186 187 if (obj->pat_index == pat_index) 188 return; 189 190 obj->pat_index = pat_index; 191 192 if (pat_index != i915_gem_get_pat_index(i915, I915_CACHE_NONE)) 193 obj->cache_coherent = (I915_BO_CACHE_COHERENT_FOR_READ | 194 I915_BO_CACHE_COHERENT_FOR_WRITE); 195 else if (HAS_LLC(i915)) 196 obj->cache_coherent = I915_BO_CACHE_COHERENT_FOR_READ; 197 else 198 obj->cache_coherent = 0; 199 200 obj->cache_dirty = 201 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE) && 202 !IS_DGFX(i915); 203 } 204 205 bool i915_gem_object_can_bypass_llc(struct drm_i915_gem_object *obj) 206 { 207 struct drm_i915_private *i915 = to_i915(obj->base.dev); 208 209 /* 210 * This is purely from a security perspective, so we simply don't care 211 * about non-userspace objects being able to bypass the LLC. 212 */ 213 if (!(obj->flags & I915_BO_ALLOC_USER)) 214 return false; 215 216 /* 217 * Always flush cache for UMD objects at creation time. 218 */ 219 if (obj->pat_set_by_user) 220 return true; 221 222 /* 223 * EHL and JSL add the 'Bypass LLC' MOCS entry, which should make it 224 * possible for userspace to bypass the GTT caching bits set by the 225 * kernel, as per the given object cache_level. This is troublesome 226 * since the heavy flush we apply when first gathering the pages is 227 * skipped if the kernel thinks the object is coherent with the GPU. As 228 * a result it might be possible to bypass the cache and read the 229 * contents of the page directly, which could be stale data. If it's 230 * just a case of userspace shooting themselves in the foot then so be 231 * it, but since i915 takes the stance of always zeroing memory before 232 * handing it to userspace, we need to prevent this. 233 */ 234 return (IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)); 235 } 236 237 static void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file) 238 { 239 struct drm_i915_gem_object *obj = to_intel_bo(gem); 240 struct drm_i915_file_private *fpriv = file->driver_priv; 241 struct i915_lut_handle bookmark = {}; 242 struct i915_mmap_offset *mmo, *mn; 243 struct i915_lut_handle *lut, *ln; 244 LIST_HEAD(close); 245 246 spin_lock(&obj->lut_lock); 247 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) { 248 struct i915_gem_context *ctx = lut->ctx; 249 250 if (ctx && ctx->file_priv == fpriv) { 251 i915_gem_context_get(ctx); 252 list_move(&lut->obj_link, &close); 253 } 254 255 /* Break long locks, and carefully continue on from this spot */ 256 if (&ln->obj_link != &obj->lut_list) { 257 list_add_tail(&bookmark.obj_link, &ln->obj_link); 258 if (cond_resched_lock(&obj->lut_lock)) 259 list_safe_reset_next(&bookmark, ln, obj_link); 260 __list_del_entry(&bookmark.obj_link); 261 } 262 } 263 spin_unlock(&obj->lut_lock); 264 265 spin_lock(&obj->mmo.lock); 266 rbtree_postorder_for_each_entry_safe(mmo, mn, &obj->mmo.offsets, offset) 267 drm_vma_node_revoke(&mmo->vma_node, file); 268 spin_unlock(&obj->mmo.lock); 269 270 list_for_each_entry_safe(lut, ln, &close, obj_link) { 271 struct i915_gem_context *ctx = lut->ctx; 272 struct i915_vma *vma; 273 274 /* 275 * We allow the process to have multiple handles to the same 276 * vma, in the same fd namespace, by virtue of flink/open. 277 */ 278 279 mutex_lock(&ctx->lut_mutex); 280 vma = radix_tree_delete(&ctx->handles_vma, lut->handle); 281 if (vma) { 282 GEM_BUG_ON(vma->obj != obj); 283 GEM_BUG_ON(!atomic_read(&vma->open_count)); 284 i915_vma_close(vma); 285 } 286 mutex_unlock(&ctx->lut_mutex); 287 288 i915_gem_context_put(lut->ctx); 289 i915_lut_handle_free(lut); 290 i915_gem_object_put(obj); 291 } 292 } 293 294 void __i915_gem_free_object_rcu(struct rcu_head *head) 295 { 296 struct drm_i915_gem_object *obj = 297 container_of(head, typeof(*obj), rcu); 298 struct drm_i915_private *i915 = to_i915(obj->base.dev); 299 300 /* We need to keep this alive for RCU read access from fdinfo. */ 301 if (obj->mm.n_placements > 1) 302 kfree(obj->mm.placements); 303 304 i915_gem_object_free(obj); 305 306 GEM_BUG_ON(!atomic_read(&i915->mm.free_count)); 307 atomic_dec(&i915->mm.free_count); 308 } 309 310 static void __i915_gem_object_free_mmaps(struct drm_i915_gem_object *obj) 311 { 312 /* Skip serialisation and waking the device if known to be not used. */ 313 314 if (obj->userfault_count && !IS_DGFX(to_i915(obj->base.dev))) 315 i915_gem_object_release_mmap_gtt(obj); 316 317 if (!RB_EMPTY_ROOT(&obj->mmo.offsets)) { 318 struct i915_mmap_offset *mmo, *mn; 319 320 i915_gem_object_release_mmap_offset(obj); 321 322 rbtree_postorder_for_each_entry_safe(mmo, mn, 323 &obj->mmo.offsets, 324 offset) { 325 drm_vma_offset_remove(obj->base.dev->vma_offset_manager, 326 &mmo->vma_node); 327 kfree(mmo); 328 } 329 obj->mmo.offsets = RB_ROOT; 330 } 331 } 332 333 /** 334 * __i915_gem_object_pages_fini - Clean up pages use of a gem object 335 * @obj: The gem object to clean up 336 * 337 * This function cleans up usage of the object mm.pages member. It 338 * is intended for backends that need to clean up a gem object in 339 * separate steps and needs to be called when the object is idle before 340 * the object's backing memory is freed. 341 */ 342 void __i915_gem_object_pages_fini(struct drm_i915_gem_object *obj) 343 { 344 assert_object_held_shared(obj); 345 346 if (!list_empty(&obj->vma.list)) { 347 struct i915_vma *vma; 348 349 spin_lock(&obj->vma.lock); 350 while ((vma = list_first_entry_or_null(&obj->vma.list, 351 struct i915_vma, 352 obj_link))) { 353 GEM_BUG_ON(vma->obj != obj); 354 spin_unlock(&obj->vma.lock); 355 356 i915_vma_destroy(vma); 357 358 spin_lock(&obj->vma.lock); 359 } 360 spin_unlock(&obj->vma.lock); 361 } 362 363 __i915_gem_object_free_mmaps(obj); 364 365 atomic_set(&obj->mm.pages_pin_count, 0); 366 367 /* 368 * dma_buf_unmap_attachment() requires reservation to be 369 * locked. The imported GEM shouldn't share reservation lock 370 * and ttm_bo_cleanup_memtype_use() shouldn't be invoked for 371 * dma-buf, so it's safe to take the lock. 372 */ 373 if (obj->base.import_attach) 374 i915_gem_object_lock(obj, NULL); 375 376 __i915_gem_object_put_pages(obj); 377 378 if (obj->base.import_attach) 379 i915_gem_object_unlock(obj); 380 381 GEM_BUG_ON(i915_gem_object_has_pages(obj)); 382 } 383 384 void __i915_gem_free_object(struct drm_i915_gem_object *obj) 385 { 386 trace_i915_gem_object_destroy(obj); 387 388 GEM_BUG_ON(!list_empty(&obj->lut_list)); 389 390 bitmap_free(obj->bit_17); 391 392 if (obj->base.import_attach) 393 drm_prime_gem_destroy(&obj->base, NULL); 394 395 drm_gem_free_mmap_offset(&obj->base); 396 397 if (obj->ops->release) 398 obj->ops->release(obj); 399 400 if (obj->shares_resv_from) 401 i915_vm_resv_put(obj->shares_resv_from); 402 403 __i915_gem_object_fini(obj); 404 } 405 406 static void __i915_gem_free_objects(struct drm_i915_private *i915, 407 struct llist_node *freed) 408 { 409 struct drm_i915_gem_object *obj, *on; 410 411 llist_for_each_entry_safe(obj, on, freed, freed) { 412 might_sleep(); 413 if (obj->ops->delayed_free) { 414 obj->ops->delayed_free(obj); 415 continue; 416 } 417 418 __i915_gem_object_pages_fini(obj); 419 __i915_gem_free_object(obj); 420 421 /* But keep the pointer alive for RCU-protected lookups */ 422 call_rcu(&obj->rcu, __i915_gem_free_object_rcu); 423 cond_resched(); 424 } 425 } 426 427 void i915_gem_flush_free_objects(struct drm_i915_private *i915) 428 { 429 struct llist_node *freed = llist_del_all(&i915->mm.free_list); 430 431 if (unlikely(freed)) 432 __i915_gem_free_objects(i915, freed); 433 } 434 435 static void __i915_gem_free_work(struct work_struct *work) 436 { 437 struct drm_i915_private *i915 = 438 container_of(work, struct drm_i915_private, mm.free_work); 439 440 i915_gem_flush_free_objects(i915); 441 } 442 443 static void i915_gem_free_object(struct drm_gem_object *gem_obj) 444 { 445 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 446 struct drm_i915_private *i915 = to_i915(obj->base.dev); 447 448 GEM_BUG_ON(i915_gem_object_is_framebuffer(obj)); 449 450 i915_drm_client_remove_object(obj); 451 452 /* 453 * Before we free the object, make sure any pure RCU-only 454 * read-side critical sections are complete, e.g. 455 * i915_gem_busy_ioctl(). For the corresponding synchronized 456 * lookup see i915_gem_object_lookup_rcu(). 457 */ 458 atomic_inc(&i915->mm.free_count); 459 460 /* 461 * Since we require blocking on struct_mutex to unbind the freed 462 * object from the GPU before releasing resources back to the 463 * system, we can not do that directly from the RCU callback (which may 464 * be a softirq context), but must instead then defer that work onto a 465 * kthread. We use the RCU callback rather than move the freed object 466 * directly onto the work queue so that we can mix between using the 467 * worker and performing frees directly from subsequent allocations for 468 * crude but effective memory throttling. 469 */ 470 471 if (llist_add(&obj->freed, &i915->mm.free_list)) 472 queue_work(i915->wq, &i915->mm.free_work); 473 } 474 475 void __i915_gem_object_flush_frontbuffer(struct drm_i915_gem_object *obj, 476 enum fb_op_origin origin) 477 { 478 struct intel_frontbuffer *front; 479 480 front = i915_gem_object_get_frontbuffer(obj); 481 if (front) { 482 intel_frontbuffer_flush(front, origin); 483 intel_frontbuffer_put(front); 484 } 485 } 486 487 void __i915_gem_object_invalidate_frontbuffer(struct drm_i915_gem_object *obj, 488 enum fb_op_origin origin) 489 { 490 struct intel_frontbuffer *front; 491 492 front = i915_gem_object_get_frontbuffer(obj); 493 if (front) { 494 intel_frontbuffer_invalidate(front, origin); 495 intel_frontbuffer_put(front); 496 } 497 } 498 499 static void 500 i915_gem_object_read_from_page_kmap(struct drm_i915_gem_object *obj, u64 offset, void *dst, int size) 501 { 502 pgoff_t idx = offset >> PAGE_SHIFT; 503 void *src_ptr; 504 505 src_ptr = kmap_local_page(i915_gem_object_get_page(obj, idx)) 506 + offset_in_page(offset); 507 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)) 508 drm_clflush_virt_range(src_ptr, size); 509 memcpy(dst, src_ptr, size); 510 511 kunmap_local(src_ptr); 512 } 513 514 static void 515 i915_gem_object_read_from_page_iomap(struct drm_i915_gem_object *obj, u64 offset, void *dst, int size) 516 { 517 pgoff_t idx = offset >> PAGE_SHIFT; 518 dma_addr_t dma = i915_gem_object_get_dma_address(obj, idx); 519 void __iomem *src_map; 520 void __iomem *src_ptr; 521 522 src_map = io_mapping_map_wc(&obj->mm.region->iomap, 523 dma - obj->mm.region->region.start, 524 PAGE_SIZE); 525 526 src_ptr = src_map + offset_in_page(offset); 527 if (!i915_memcpy_from_wc(dst, (void __force *)src_ptr, size)) 528 memcpy_fromio(dst, src_ptr, size); 529 530 io_mapping_unmap(src_map); 531 } 532 533 static bool object_has_mappable_iomem(struct drm_i915_gem_object *obj) 534 { 535 GEM_BUG_ON(!i915_gem_object_has_iomem(obj)); 536 537 if (IS_DGFX(to_i915(obj->base.dev))) 538 return i915_ttm_resource_mappable(i915_gem_to_ttm(obj)->resource); 539 540 return true; 541 } 542 543 /** 544 * i915_gem_object_read_from_page - read data from the page of a GEM object 545 * @obj: GEM object to read from 546 * @offset: offset within the object 547 * @dst: buffer to store the read data 548 * @size: size to read 549 * 550 * Reads data from @obj at the specified offset. The requested region to read 551 * from can't cross a page boundary. The caller must ensure that @obj pages 552 * are pinned and that @obj is synced wrt. any related writes. 553 * 554 * Return: %0 on success or -ENODEV if the type of @obj's backing store is 555 * unsupported. 556 */ 557 int i915_gem_object_read_from_page(struct drm_i915_gem_object *obj, u64 offset, void *dst, int size) 558 { 559 GEM_BUG_ON(overflows_type(offset >> PAGE_SHIFT, pgoff_t)); 560 GEM_BUG_ON(offset >= obj->base.size); 561 GEM_BUG_ON(offset_in_page(offset) > PAGE_SIZE - size); 562 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 563 564 if (i915_gem_object_has_struct_page(obj)) 565 i915_gem_object_read_from_page_kmap(obj, offset, dst, size); 566 else if (i915_gem_object_has_iomem(obj) && object_has_mappable_iomem(obj)) 567 i915_gem_object_read_from_page_iomap(obj, offset, dst, size); 568 else 569 return -ENODEV; 570 571 return 0; 572 } 573 574 /** 575 * i915_gem_object_evictable - Whether object is likely evictable after unbind. 576 * @obj: The object to check 577 * 578 * This function checks whether the object is likely unvictable after unbind. 579 * If the object is not locked when checking, the result is only advisory. 580 * If the object is locked when checking, and the function returns true, 581 * then an eviction should indeed be possible. But since unlocked vma 582 * unpinning and unbinding is currently possible, the object can actually 583 * become evictable even if this function returns false. 584 * 585 * Return: true if the object may be evictable. False otherwise. 586 */ 587 bool i915_gem_object_evictable(struct drm_i915_gem_object *obj) 588 { 589 struct i915_vma *vma; 590 int pin_count = atomic_read(&obj->mm.pages_pin_count); 591 592 if (!pin_count) 593 return true; 594 595 spin_lock(&obj->vma.lock); 596 list_for_each_entry(vma, &obj->vma.list, obj_link) { 597 if (i915_vma_is_pinned(vma)) { 598 spin_unlock(&obj->vma.lock); 599 return false; 600 } 601 if (atomic_read(&vma->pages_count)) 602 pin_count--; 603 } 604 spin_unlock(&obj->vma.lock); 605 GEM_WARN_ON(pin_count < 0); 606 607 return pin_count == 0; 608 } 609 610 /** 611 * i915_gem_object_migratable - Whether the object is migratable out of the 612 * current region. 613 * @obj: Pointer to the object. 614 * 615 * Return: Whether the object is allowed to be resident in other 616 * regions than the current while pages are present. 617 */ 618 bool i915_gem_object_migratable(struct drm_i915_gem_object *obj) 619 { 620 struct intel_memory_region *mr = READ_ONCE(obj->mm.region); 621 622 if (!mr) 623 return false; 624 625 return obj->mm.n_placements > 1; 626 } 627 628 /** 629 * i915_gem_object_has_struct_page - Whether the object is page-backed 630 * @obj: The object to query. 631 * 632 * This function should only be called while the object is locked or pinned, 633 * otherwise the page backing may change under the caller. 634 * 635 * Return: True if page-backed, false otherwise. 636 */ 637 bool i915_gem_object_has_struct_page(const struct drm_i915_gem_object *obj) 638 { 639 #ifdef CONFIG_LOCKDEP 640 if (IS_DGFX(to_i915(obj->base.dev)) && 641 i915_gem_object_evictable((void __force *)obj)) 642 assert_object_held_shared(obj); 643 #endif 644 return obj->mem_flags & I915_BO_FLAG_STRUCT_PAGE; 645 } 646 647 /** 648 * i915_gem_object_has_iomem - Whether the object is iomem-backed 649 * @obj: The object to query. 650 * 651 * This function should only be called while the object is locked or pinned, 652 * otherwise the iomem backing may change under the caller. 653 * 654 * Return: True if iomem-backed, false otherwise. 655 */ 656 bool i915_gem_object_has_iomem(const struct drm_i915_gem_object *obj) 657 { 658 #ifdef CONFIG_LOCKDEP 659 if (IS_DGFX(to_i915(obj->base.dev)) && 660 i915_gem_object_evictable((void __force *)obj)) 661 assert_object_held_shared(obj); 662 #endif 663 return obj->mem_flags & I915_BO_FLAG_IOMEM; 664 } 665 666 /** 667 * i915_gem_object_can_migrate - Whether an object likely can be migrated 668 * 669 * @obj: The object to migrate 670 * @id: The region intended to migrate to 671 * 672 * Check whether the object backend supports migration to the 673 * given region. Note that pinning may affect the ability to migrate as 674 * returned by this function. 675 * 676 * This function is primarily intended as a helper for checking the 677 * possibility to migrate objects and might be slightly less permissive 678 * than i915_gem_object_migrate() when it comes to objects with the 679 * I915_BO_ALLOC_USER flag set. 680 * 681 * Return: true if migration is possible, false otherwise. 682 */ 683 bool i915_gem_object_can_migrate(struct drm_i915_gem_object *obj, 684 enum intel_region_id id) 685 { 686 struct drm_i915_private *i915 = to_i915(obj->base.dev); 687 unsigned int num_allowed = obj->mm.n_placements; 688 struct intel_memory_region *mr; 689 unsigned int i; 690 691 GEM_BUG_ON(id >= INTEL_REGION_UNKNOWN); 692 GEM_BUG_ON(obj->mm.madv != I915_MADV_WILLNEED); 693 694 mr = i915->mm.regions[id]; 695 if (!mr) 696 return false; 697 698 if (!IS_ALIGNED(obj->base.size, mr->min_page_size)) 699 return false; 700 701 if (obj->mm.region == mr) 702 return true; 703 704 if (!i915_gem_object_evictable(obj)) 705 return false; 706 707 if (!obj->ops->migrate) 708 return false; 709 710 if (!(obj->flags & I915_BO_ALLOC_USER)) 711 return true; 712 713 if (num_allowed == 0) 714 return false; 715 716 for (i = 0; i < num_allowed; ++i) { 717 if (mr == obj->mm.placements[i]) 718 return true; 719 } 720 721 return false; 722 } 723 724 /** 725 * i915_gem_object_migrate - Migrate an object to the desired region id 726 * @obj: The object to migrate. 727 * @ww: An optional struct i915_gem_ww_ctx. If NULL, the backend may 728 * not be successful in evicting other objects to make room for this object. 729 * @id: The region id to migrate to. 730 * 731 * Attempt to migrate the object to the desired memory region. The 732 * object backend must support migration and the object may not be 733 * pinned, (explicitly pinned pages or pinned vmas). The object must 734 * be locked. 735 * On successful completion, the object will have pages pointing to 736 * memory in the new region, but an async migration task may not have 737 * completed yet, and to accomplish that, i915_gem_object_wait_migration() 738 * must be called. 739 * 740 * Note: the @ww parameter is not used yet, but included to make sure 741 * callers put some effort into obtaining a valid ww ctx if one is 742 * available. 743 * 744 * Return: 0 on success. Negative error code on failure. In particular may 745 * return -ENXIO on lack of region space, -EDEADLK for deadlock avoidance 746 * if @ww is set, -EINTR or -ERESTARTSYS if signal pending, and 747 * -EBUSY if the object is pinned. 748 */ 749 int i915_gem_object_migrate(struct drm_i915_gem_object *obj, 750 struct i915_gem_ww_ctx *ww, 751 enum intel_region_id id) 752 { 753 return __i915_gem_object_migrate(obj, ww, id, obj->flags); 754 } 755 756 /** 757 * __i915_gem_object_migrate - Migrate an object to the desired region id, with 758 * control of the extra flags 759 * @obj: The object to migrate. 760 * @ww: An optional struct i915_gem_ww_ctx. If NULL, the backend may 761 * not be successful in evicting other objects to make room for this object. 762 * @id: The region id to migrate to. 763 * @flags: The object flags. Normally just obj->flags. 764 * 765 * Attempt to migrate the object to the desired memory region. The 766 * object backend must support migration and the object may not be 767 * pinned, (explicitly pinned pages or pinned vmas). The object must 768 * be locked. 769 * On successful completion, the object will have pages pointing to 770 * memory in the new region, but an async migration task may not have 771 * completed yet, and to accomplish that, i915_gem_object_wait_migration() 772 * must be called. 773 * 774 * Note: the @ww parameter is not used yet, but included to make sure 775 * callers put some effort into obtaining a valid ww ctx if one is 776 * available. 777 * 778 * Return: 0 on success. Negative error code on failure. In particular may 779 * return -ENXIO on lack of region space, -EDEADLK for deadlock avoidance 780 * if @ww is set, -EINTR or -ERESTARTSYS if signal pending, and 781 * -EBUSY if the object is pinned. 782 */ 783 int __i915_gem_object_migrate(struct drm_i915_gem_object *obj, 784 struct i915_gem_ww_ctx *ww, 785 enum intel_region_id id, 786 unsigned int flags) 787 { 788 struct drm_i915_private *i915 = to_i915(obj->base.dev); 789 struct intel_memory_region *mr; 790 791 GEM_BUG_ON(id >= INTEL_REGION_UNKNOWN); 792 GEM_BUG_ON(obj->mm.madv != I915_MADV_WILLNEED); 793 assert_object_held(obj); 794 795 mr = i915->mm.regions[id]; 796 GEM_BUG_ON(!mr); 797 798 if (!i915_gem_object_can_migrate(obj, id)) 799 return -EINVAL; 800 801 if (!obj->ops->migrate) { 802 if (GEM_WARN_ON(obj->mm.region != mr)) 803 return -EINVAL; 804 return 0; 805 } 806 807 return obj->ops->migrate(obj, mr, flags); 808 } 809 810 /** 811 * i915_gem_object_placement_possible - Check whether the object can be 812 * placed at certain memory type 813 * @obj: Pointer to the object 814 * @type: The memory type to check 815 * 816 * Return: True if the object can be placed in @type. False otherwise. 817 */ 818 bool i915_gem_object_placement_possible(struct drm_i915_gem_object *obj, 819 enum intel_memory_type type) 820 { 821 unsigned int i; 822 823 if (!obj->mm.n_placements) { 824 switch (type) { 825 case INTEL_MEMORY_LOCAL: 826 return i915_gem_object_has_iomem(obj); 827 case INTEL_MEMORY_SYSTEM: 828 return i915_gem_object_has_pages(obj); 829 default: 830 /* Ignore stolen for now */ 831 GEM_BUG_ON(1); 832 return false; 833 } 834 } 835 836 for (i = 0; i < obj->mm.n_placements; i++) { 837 if (obj->mm.placements[i]->type == type) 838 return true; 839 } 840 841 return false; 842 } 843 844 /** 845 * i915_gem_object_needs_ccs_pages - Check whether the object requires extra 846 * pages when placed in system-memory, in order to save and later restore the 847 * flat-CCS aux state when the object is moved between local-memory and 848 * system-memory 849 * @obj: Pointer to the object 850 * 851 * Return: True if the object needs extra ccs pages. False otherwise. 852 */ 853 bool i915_gem_object_needs_ccs_pages(struct drm_i915_gem_object *obj) 854 { 855 bool lmem_placement = false; 856 int i; 857 858 if (!HAS_FLAT_CCS(to_i915(obj->base.dev))) 859 return false; 860 861 if (obj->flags & I915_BO_ALLOC_CCS_AUX) 862 return true; 863 864 for (i = 0; i < obj->mm.n_placements; i++) { 865 /* Compression is not allowed for the objects with smem placement */ 866 if (obj->mm.placements[i]->type == INTEL_MEMORY_SYSTEM) 867 return false; 868 if (!lmem_placement && 869 obj->mm.placements[i]->type == INTEL_MEMORY_LOCAL) 870 lmem_placement = true; 871 } 872 873 return lmem_placement; 874 } 875 876 void i915_gem_init__objects(struct drm_i915_private *i915) 877 { 878 INIT_WORK(&i915->mm.free_work, __i915_gem_free_work); 879 } 880 881 void i915_objects_module_exit(void) 882 { 883 kmem_cache_destroy(slab_objects); 884 } 885 886 int __init i915_objects_module_init(void) 887 { 888 slab_objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN); 889 if (!slab_objects) 890 return -ENOMEM; 891 892 return 0; 893 } 894 895 static const struct drm_gem_object_funcs i915_gem_object_funcs = { 896 .free = i915_gem_free_object, 897 .close = i915_gem_close_object, 898 .export = i915_gem_prime_export, 899 }; 900 901 /** 902 * i915_gem_object_get_moving_fence - Get the object's moving fence if any 903 * @obj: The object whose moving fence to get. 904 * @fence: The resulting fence 905 * 906 * A non-signaled moving fence means that there is an async operation 907 * pending on the object that needs to be waited on before setting up 908 * any GPU- or CPU PTEs to the object's pages. 909 * 910 * Return: Negative error code or 0 for success. 911 */ 912 int i915_gem_object_get_moving_fence(struct drm_i915_gem_object *obj, 913 struct dma_fence **fence) 914 { 915 return dma_resv_get_singleton(obj->base.resv, DMA_RESV_USAGE_KERNEL, 916 fence); 917 } 918 919 /** 920 * i915_gem_object_wait_moving_fence - Wait for the object's moving fence if any 921 * @obj: The object whose moving fence to wait for. 922 * @intr: Whether to wait interruptible. 923 * 924 * If the moving fence signaled without an error, it is detached from the 925 * object and put. 926 * 927 * Return: 0 if successful, -ERESTARTSYS if the wait was interrupted, 928 * negative error code if the async operation represented by the 929 * moving fence failed. 930 */ 931 int i915_gem_object_wait_moving_fence(struct drm_i915_gem_object *obj, 932 bool intr) 933 { 934 long ret; 935 936 assert_object_held(obj); 937 938 ret = dma_resv_wait_timeout(obj->base. resv, DMA_RESV_USAGE_KERNEL, 939 intr, MAX_SCHEDULE_TIMEOUT); 940 if (!ret) 941 ret = -ETIME; 942 else if (ret > 0 && i915_gem_object_has_unknown_state(obj)) 943 ret = -EIO; 944 945 return ret < 0 ? ret : 0; 946 } 947 948 /* 949 * i915_gem_object_has_unknown_state - Return true if the object backing pages are 950 * in an unknown_state. This means that userspace must NEVER be allowed to touch 951 * the pages, with either the GPU or CPU. 952 * 953 * ONLY valid to be called after ensuring that all kernel fences have signalled 954 * (in particular the fence for moving/clearing the object). 955 */ 956 bool i915_gem_object_has_unknown_state(struct drm_i915_gem_object *obj) 957 { 958 /* 959 * The below barrier pairs with the dma_fence_signal() in 960 * __memcpy_work(). We should only sample the unknown_state after all 961 * the kernel fences have signalled. 962 */ 963 smp_rmb(); 964 return obj->mm.unknown_state; 965 } 966 967 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 968 #include "selftests/huge_gem_object.c" 969 #include "selftests/huge_pages.c" 970 #include "selftests/i915_gem_migrate.c" 971 #include "selftests/i915_gem_object.c" 972 #include "selftests/i915_gem_coherency.c" 973 #endif 974