xref: /linux/drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c (revision e7d759f31ca295d589f7420719c311870bb3166f)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6 
7 #include <linux/dma-resv.h>
8 #include <linux/highmem.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11 
12 #include <drm/drm_auth.h>
13 #include <drm/drm_syncobj.h>
14 
15 #include "display/intel_frontbuffer.h"
16 
17 #include "gem/i915_gem_ioctls.h"
18 #include "gt/intel_context.h"
19 #include "gt/intel_gpu_commands.h"
20 #include "gt/intel_gt.h"
21 #include "gt/intel_gt_buffer_pool.h"
22 #include "gt/intel_gt_pm.h"
23 #include "gt/intel_ring.h"
24 
25 #include "pxp/intel_pxp.h"
26 
27 #include "i915_cmd_parser.h"
28 #include "i915_drv.h"
29 #include "i915_file_private.h"
30 #include "i915_gem_clflush.h"
31 #include "i915_gem_context.h"
32 #include "i915_gem_evict.h"
33 #include "i915_gem_ioctls.h"
34 #include "i915_reg.h"
35 #include "i915_trace.h"
36 #include "i915_user_extensions.h"
37 
38 struct eb_vma {
39 	struct i915_vma *vma;
40 	unsigned int flags;
41 
42 	/** This vma's place in the execbuf reservation list */
43 	struct drm_i915_gem_exec_object2 *exec;
44 	struct list_head bind_link;
45 	struct list_head reloc_link;
46 
47 	struct hlist_node node;
48 	u32 handle;
49 };
50 
51 enum {
52 	FORCE_CPU_RELOC = 1,
53 	FORCE_GTT_RELOC,
54 	FORCE_GPU_RELOC,
55 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
56 };
57 
58 /* __EXEC_OBJECT_ flags > BIT(29) defined in i915_vma.h */
59 #define __EXEC_OBJECT_HAS_PIN		BIT(29)
60 #define __EXEC_OBJECT_HAS_FENCE		BIT(28)
61 #define __EXEC_OBJECT_USERPTR_INIT	BIT(27)
62 #define __EXEC_OBJECT_NEEDS_MAP		BIT(26)
63 #define __EXEC_OBJECT_NEEDS_BIAS	BIT(25)
64 #define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 25) /* all of the above + */
65 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
66 
67 #define __EXEC_HAS_RELOC	BIT(31)
68 #define __EXEC_ENGINE_PINNED	BIT(30)
69 #define __EXEC_USERPTR_USED	BIT(29)
70 #define __EXEC_INTERNAL_FLAGS	(~0u << 29)
71 #define UPDATE			PIN_OFFSET_FIXED
72 
73 #define BATCH_OFFSET_BIAS (256*1024)
74 
75 #define __I915_EXEC_ILLEGAL_FLAGS \
76 	(__I915_EXEC_UNKNOWN_FLAGS | \
77 	 I915_EXEC_CONSTANTS_MASK  | \
78 	 I915_EXEC_RESOURCE_STREAMER)
79 
80 /* Catch emission of unexpected errors for CI! */
81 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
82 #undef EINVAL
83 #define EINVAL ({ \
84 	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
85 	22; \
86 })
87 #endif
88 
89 /**
90  * DOC: User command execution
91  *
92  * Userspace submits commands to be executed on the GPU as an instruction
93  * stream within a GEM object we call a batchbuffer. This instructions may
94  * refer to other GEM objects containing auxiliary state such as kernels,
95  * samplers, render targets and even secondary batchbuffers. Userspace does
96  * not know where in the GPU memory these objects reside and so before the
97  * batchbuffer is passed to the GPU for execution, those addresses in the
98  * batchbuffer and auxiliary objects are updated. This is known as relocation,
99  * or patching. To try and avoid having to relocate each object on the next
100  * execution, userspace is told the location of those objects in this pass,
101  * but this remains just a hint as the kernel may choose a new location for
102  * any object in the future.
103  *
104  * At the level of talking to the hardware, submitting a batchbuffer for the
105  * GPU to execute is to add content to a buffer from which the HW
106  * command streamer is reading.
107  *
108  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
109  *    Execlists, this command is not placed on the same buffer as the
110  *    remaining items.
111  *
112  * 2. Add a command to invalidate caches to the buffer.
113  *
114  * 3. Add a batchbuffer start command to the buffer; the start command is
115  *    essentially a token together with the GPU address of the batchbuffer
116  *    to be executed.
117  *
118  * 4. Add a pipeline flush to the buffer.
119  *
120  * 5. Add a memory write command to the buffer to record when the GPU
121  *    is done executing the batchbuffer. The memory write writes the
122  *    global sequence number of the request, ``i915_request::global_seqno``;
123  *    the i915 driver uses the current value in the register to determine
124  *    if the GPU has completed the batchbuffer.
125  *
126  * 6. Add a user interrupt command to the buffer. This command instructs
127  *    the GPU to issue an interrupt when the command, pipeline flush and
128  *    memory write are completed.
129  *
130  * 7. Inform the hardware of the additional commands added to the buffer
131  *    (by updating the tail pointer).
132  *
133  * Processing an execbuf ioctl is conceptually split up into a few phases.
134  *
135  * 1. Validation - Ensure all the pointers, handles and flags are valid.
136  * 2. Reservation - Assign GPU address space for every object
137  * 3. Relocation - Update any addresses to point to the final locations
138  * 4. Serialisation - Order the request with respect to its dependencies
139  * 5. Construction - Construct a request to execute the batchbuffer
140  * 6. Submission (at some point in the future execution)
141  *
142  * Reserving resources for the execbuf is the most complicated phase. We
143  * neither want to have to migrate the object in the address space, nor do
144  * we want to have to update any relocations pointing to this object. Ideally,
145  * we want to leave the object where it is and for all the existing relocations
146  * to match. If the object is given a new address, or if userspace thinks the
147  * object is elsewhere, we have to parse all the relocation entries and update
148  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
149  * all the target addresses in all of its objects match the value in the
150  * relocation entries and that they all match the presumed offsets given by the
151  * list of execbuffer objects. Using this knowledge, we know that if we haven't
152  * moved any buffers, all the relocation entries are valid and we can skip
153  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
154  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
155  *
156  *      The addresses written in the objects must match the corresponding
157  *      reloc.presumed_offset which in turn must match the corresponding
158  *      execobject.offset.
159  *
160  *      Any render targets written to in the batch must be flagged with
161  *      EXEC_OBJECT_WRITE.
162  *
163  *      To avoid stalling, execobject.offset should match the current
164  *      address of that object within the active context.
165  *
166  * The reservation is done is multiple phases. First we try and keep any
167  * object already bound in its current location - so as long as meets the
168  * constraints imposed by the new execbuffer. Any object left unbound after the
169  * first pass is then fitted into any available idle space. If an object does
170  * not fit, all objects are removed from the reservation and the process rerun
171  * after sorting the objects into a priority order (more difficult to fit
172  * objects are tried first). Failing that, the entire VM is cleared and we try
173  * to fit the execbuf once last time before concluding that it simply will not
174  * fit.
175  *
176  * A small complication to all of this is that we allow userspace not only to
177  * specify an alignment and a size for the object in the address space, but
178  * we also allow userspace to specify the exact offset. This objects are
179  * simpler to place (the location is known a priori) all we have to do is make
180  * sure the space is available.
181  *
182  * Once all the objects are in place, patching up the buried pointers to point
183  * to the final locations is a fairly simple job of walking over the relocation
184  * entry arrays, looking up the right address and rewriting the value into
185  * the object. Simple! ... The relocation entries are stored in user memory
186  * and so to access them we have to copy them into a local buffer. That copy
187  * has to avoid taking any pagefaults as they may lead back to a GEM object
188  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
189  * the relocation into multiple passes. First we try to do everything within an
190  * atomic context (avoid the pagefaults) which requires that we never wait. If
191  * we detect that we may wait, or if we need to fault, then we have to fallback
192  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
193  * bells yet?) Dropping the mutex means that we lose all the state we have
194  * built up so far for the execbuf and we must reset any global data. However,
195  * we do leave the objects pinned in their final locations - which is a
196  * potential issue for concurrent execbufs. Once we have left the mutex, we can
197  * allocate and copy all the relocation entries into a large array at our
198  * leisure, reacquire the mutex, reclaim all the objects and other state and
199  * then proceed to update any incorrect addresses with the objects.
200  *
201  * As we process the relocation entries, we maintain a record of whether the
202  * object is being written to. Using NORELOC, we expect userspace to provide
203  * this information instead. We also check whether we can skip the relocation
204  * by comparing the expected value inside the relocation entry with the target's
205  * final address. If they differ, we have to map the current object and rewrite
206  * the 4 or 8 byte pointer within.
207  *
208  * Serialising an execbuf is quite simple according to the rules of the GEM
209  * ABI. Execution within each context is ordered by the order of submission.
210  * Writes to any GEM object are in order of submission and are exclusive. Reads
211  * from a GEM object are unordered with respect to other reads, but ordered by
212  * writes. A write submitted after a read cannot occur before the read, and
213  * similarly any read submitted after a write cannot occur before the write.
214  * Writes are ordered between engines such that only one write occurs at any
215  * time (completing any reads beforehand) - using semaphores where available
216  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
217  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
218  * reads before starting, and any read (either using set-domain or pread) must
219  * flush all GPU writes before starting. (Note we only employ a barrier before,
220  * we currently rely on userspace not concurrently starting a new execution
221  * whilst reading or writing to an object. This may be an advantage or not
222  * depending on how much you trust userspace not to shoot themselves in the
223  * foot.) Serialisation may just result in the request being inserted into
224  * a DAG awaiting its turn, but most simple is to wait on the CPU until
225  * all dependencies are resolved.
226  *
227  * After all of that, is just a matter of closing the request and handing it to
228  * the hardware (well, leaving it in a queue to be executed). However, we also
229  * offer the ability for batchbuffers to be run with elevated privileges so
230  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
231  * Before any batch is given extra privileges we first must check that it
232  * contains no nefarious instructions, we check that each instruction is from
233  * our whitelist and all registers are also from an allowed list. We first
234  * copy the user's batchbuffer to a shadow (so that the user doesn't have
235  * access to it, either by the CPU or GPU as we scan it) and then parse each
236  * instruction. If everything is ok, we set a flag telling the hardware to run
237  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
238  */
239 
240 struct eb_fence {
241 	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
242 	struct dma_fence *dma_fence;
243 	u64 value;
244 	struct dma_fence_chain *chain_fence;
245 };
246 
247 struct i915_execbuffer {
248 	struct drm_i915_private *i915; /** i915 backpointer */
249 	struct drm_file *file; /** per-file lookup tables and limits */
250 	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
251 	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
252 	struct eb_vma *vma;
253 
254 	struct intel_gt *gt; /* gt for the execbuf */
255 	struct intel_context *context; /* logical state for the request */
256 	struct i915_gem_context *gem_context; /** caller's context */
257 	intel_wakeref_t wakeref;
258 	intel_wakeref_t wakeref_gt0;
259 
260 	/** our requests to build */
261 	struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
262 	/** identity of the batch obj/vma */
263 	struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
264 	struct i915_vma *trampoline; /** trampoline used for chaining */
265 
266 	/** used for excl fence in dma_resv objects when > 1 BB submitted */
267 	struct dma_fence *composite_fence;
268 
269 	/** actual size of execobj[] as we may extend it for the cmdparser */
270 	unsigned int buffer_count;
271 
272 	/* number of batches in execbuf IOCTL */
273 	unsigned int num_batches;
274 
275 	/** list of vma not yet bound during reservation phase */
276 	struct list_head unbound;
277 
278 	/** list of vma that have execobj.relocation_count */
279 	struct list_head relocs;
280 
281 	struct i915_gem_ww_ctx ww;
282 
283 	/**
284 	 * Track the most recently used object for relocations, as we
285 	 * frequently have to perform multiple relocations within the same
286 	 * obj/page
287 	 */
288 	struct reloc_cache {
289 		struct drm_mm_node node; /** temporary GTT binding */
290 		unsigned long vaddr; /** Current kmap address */
291 		unsigned long page; /** Currently mapped page index */
292 		unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
293 		bool use_64bit_reloc : 1;
294 		bool has_llc : 1;
295 		bool has_fence : 1;
296 		bool needs_unfenced : 1;
297 	} reloc_cache;
298 
299 	u64 invalid_flags; /** Set of execobj.flags that are invalid */
300 
301 	/** Length of batch within object */
302 	u64 batch_len[MAX_ENGINE_INSTANCE + 1];
303 	u32 batch_start_offset; /** Location within object of batch */
304 	u32 batch_flags; /** Flags composed for emit_bb_start() */
305 	struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
306 
307 	/**
308 	 * Indicate either the size of the hastable used to resolve
309 	 * relocation handles, or if negative that we are using a direct
310 	 * index into the execobj[].
311 	 */
312 	int lut_size;
313 	struct hlist_head *buckets; /** ht for relocation handles */
314 
315 	struct eb_fence *fences;
316 	unsigned long num_fences;
317 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
318 	struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
319 #endif
320 };
321 
322 static int eb_parse(struct i915_execbuffer *eb);
323 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
324 static void eb_unpin_engine(struct i915_execbuffer *eb);
325 static void eb_capture_release(struct i915_execbuffer *eb);
326 
327 static bool eb_use_cmdparser(const struct i915_execbuffer *eb)
328 {
329 	return intel_engine_requires_cmd_parser(eb->context->engine) ||
330 		(intel_engine_using_cmd_parser(eb->context->engine) &&
331 		 eb->args->batch_len);
332 }
333 
334 static int eb_create(struct i915_execbuffer *eb)
335 {
336 	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
337 		unsigned int size = 1 + ilog2(eb->buffer_count);
338 
339 		/*
340 		 * Without a 1:1 association between relocation handles and
341 		 * the execobject[] index, we instead create a hashtable.
342 		 * We size it dynamically based on available memory, starting
343 		 * first with 1:1 assocative hash and scaling back until
344 		 * the allocation succeeds.
345 		 *
346 		 * Later on we use a positive lut_size to indicate we are
347 		 * using this hashtable, and a negative value to indicate a
348 		 * direct lookup.
349 		 */
350 		do {
351 			gfp_t flags;
352 
353 			/* While we can still reduce the allocation size, don't
354 			 * raise a warning and allow the allocation to fail.
355 			 * On the last pass though, we want to try as hard
356 			 * as possible to perform the allocation and warn
357 			 * if it fails.
358 			 */
359 			flags = GFP_KERNEL;
360 			if (size > 1)
361 				flags |= __GFP_NORETRY | __GFP_NOWARN;
362 
363 			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
364 					      flags);
365 			if (eb->buckets)
366 				break;
367 		} while (--size);
368 
369 		if (unlikely(!size))
370 			return -ENOMEM;
371 
372 		eb->lut_size = size;
373 	} else {
374 		eb->lut_size = -eb->buffer_count;
375 	}
376 
377 	return 0;
378 }
379 
380 static bool
381 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
382 		 const struct i915_vma *vma,
383 		 unsigned int flags)
384 {
385 	const u64 start = i915_vma_offset(vma);
386 	const u64 size = i915_vma_size(vma);
387 
388 	if (size < entry->pad_to_size)
389 		return true;
390 
391 	if (entry->alignment && !IS_ALIGNED(start, entry->alignment))
392 		return true;
393 
394 	if (flags & EXEC_OBJECT_PINNED &&
395 	    start != entry->offset)
396 		return true;
397 
398 	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
399 	    start < BATCH_OFFSET_BIAS)
400 		return true;
401 
402 	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
403 	    (start + size + 4095) >> 32)
404 		return true;
405 
406 	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
407 	    !i915_vma_is_map_and_fenceable(vma))
408 		return true;
409 
410 	return false;
411 }
412 
413 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
414 			unsigned int exec_flags)
415 {
416 	u64 pin_flags = 0;
417 
418 	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
419 		pin_flags |= PIN_GLOBAL;
420 
421 	/*
422 	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
423 	 * limit address to the first 4GBs for unflagged objects.
424 	 */
425 	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
426 		pin_flags |= PIN_ZONE_4G;
427 
428 	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
429 		pin_flags |= PIN_MAPPABLE;
430 
431 	if (exec_flags & EXEC_OBJECT_PINNED)
432 		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
433 	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
434 		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
435 
436 	return pin_flags;
437 }
438 
439 static int
440 eb_pin_vma(struct i915_execbuffer *eb,
441 	   const struct drm_i915_gem_exec_object2 *entry,
442 	   struct eb_vma *ev)
443 {
444 	struct i915_vma *vma = ev->vma;
445 	u64 pin_flags;
446 	int err;
447 
448 	if (vma->node.size)
449 		pin_flags =  __i915_vma_offset(vma);
450 	else
451 		pin_flags = entry->offset & PIN_OFFSET_MASK;
452 
453 	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE;
454 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
455 		pin_flags |= PIN_GLOBAL;
456 
457 	/* Attempt to reuse the current location if available */
458 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
459 	if (err == -EDEADLK)
460 		return err;
461 
462 	if (unlikely(err)) {
463 		if (entry->flags & EXEC_OBJECT_PINNED)
464 			return err;
465 
466 		/* Failing that pick any _free_ space if suitable */
467 		err = i915_vma_pin_ww(vma, &eb->ww,
468 					     entry->pad_to_size,
469 					     entry->alignment,
470 					     eb_pin_flags(entry, ev->flags) |
471 					     PIN_USER | PIN_NOEVICT | PIN_VALIDATE);
472 		if (unlikely(err))
473 			return err;
474 	}
475 
476 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
477 		err = i915_vma_pin_fence(vma);
478 		if (unlikely(err))
479 			return err;
480 
481 		if (vma->fence)
482 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
483 	}
484 
485 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
486 	if (eb_vma_misplaced(entry, vma, ev->flags))
487 		return -EBADSLT;
488 
489 	return 0;
490 }
491 
492 static void
493 eb_unreserve_vma(struct eb_vma *ev)
494 {
495 	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
496 		__i915_vma_unpin_fence(ev->vma);
497 
498 	ev->flags &= ~__EXEC_OBJECT_RESERVED;
499 }
500 
501 static int
502 eb_validate_vma(struct i915_execbuffer *eb,
503 		struct drm_i915_gem_exec_object2 *entry,
504 		struct i915_vma *vma)
505 {
506 	/* Relocations are disallowed for all platforms after TGL-LP.  This
507 	 * also covers all platforms with local memory.
508 	 */
509 	if (entry->relocation_count &&
510 	    GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
511 		return -EINVAL;
512 
513 	if (unlikely(entry->flags & eb->invalid_flags))
514 		return -EINVAL;
515 
516 	if (unlikely(entry->alignment &&
517 		     !is_power_of_2_u64(entry->alignment)))
518 		return -EINVAL;
519 
520 	/*
521 	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
522 	 * any non-page-aligned or non-canonical addresses.
523 	 */
524 	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
525 		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
526 		return -EINVAL;
527 
528 	/* pad_to_size was once a reserved field, so sanitize it */
529 	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
530 		if (unlikely(offset_in_page(entry->pad_to_size)))
531 			return -EINVAL;
532 	} else {
533 		entry->pad_to_size = 0;
534 	}
535 	/*
536 	 * From drm_mm perspective address space is continuous,
537 	 * so from this point we're always using non-canonical
538 	 * form internally.
539 	 */
540 	entry->offset = gen8_noncanonical_addr(entry->offset);
541 
542 	if (!eb->reloc_cache.has_fence) {
543 		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
544 	} else {
545 		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
546 		     eb->reloc_cache.needs_unfenced) &&
547 		    i915_gem_object_is_tiled(vma->obj))
548 			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
549 	}
550 
551 	return 0;
552 }
553 
554 static bool
555 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
556 {
557 	return eb->args->flags & I915_EXEC_BATCH_FIRST ?
558 		buffer_idx < eb->num_batches :
559 		buffer_idx >= eb->args->buffer_count - eb->num_batches;
560 }
561 
562 static int
563 eb_add_vma(struct i915_execbuffer *eb,
564 	   unsigned int *current_batch,
565 	   unsigned int i,
566 	   struct i915_vma *vma)
567 {
568 	struct drm_i915_private *i915 = eb->i915;
569 	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
570 	struct eb_vma *ev = &eb->vma[i];
571 
572 	ev->vma = vma;
573 	ev->exec = entry;
574 	ev->flags = entry->flags;
575 
576 	if (eb->lut_size > 0) {
577 		ev->handle = entry->handle;
578 		hlist_add_head(&ev->node,
579 			       &eb->buckets[hash_32(entry->handle,
580 						    eb->lut_size)]);
581 	}
582 
583 	if (entry->relocation_count)
584 		list_add_tail(&ev->reloc_link, &eb->relocs);
585 
586 	/*
587 	 * SNA is doing fancy tricks with compressing batch buffers, which leads
588 	 * to negative relocation deltas. Usually that works out ok since the
589 	 * relocate address is still positive, except when the batch is placed
590 	 * very low in the GTT. Ensure this doesn't happen.
591 	 *
592 	 * Note that actual hangs have only been observed on gen7, but for
593 	 * paranoia do it everywhere.
594 	 */
595 	if (is_batch_buffer(eb, i)) {
596 		if (entry->relocation_count &&
597 		    !(ev->flags & EXEC_OBJECT_PINNED))
598 			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
599 		if (eb->reloc_cache.has_fence)
600 			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
601 
602 		eb->batches[*current_batch] = ev;
603 
604 		if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
605 			drm_dbg(&i915->drm,
606 				"Attempting to use self-modifying batch buffer\n");
607 			return -EINVAL;
608 		}
609 
610 		if (range_overflows_t(u64,
611 				      eb->batch_start_offset,
612 				      eb->args->batch_len,
613 				      ev->vma->size)) {
614 			drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
615 			return -EINVAL;
616 		}
617 
618 		if (eb->args->batch_len == 0)
619 			eb->batch_len[*current_batch] = ev->vma->size -
620 				eb->batch_start_offset;
621 		else
622 			eb->batch_len[*current_batch] = eb->args->batch_len;
623 		if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
624 			drm_dbg(&i915->drm, "Invalid batch length\n");
625 			return -EINVAL;
626 		}
627 
628 		++*current_batch;
629 	}
630 
631 	return 0;
632 }
633 
634 static int use_cpu_reloc(const struct reloc_cache *cache,
635 			 const struct drm_i915_gem_object *obj)
636 {
637 	if (!i915_gem_object_has_struct_page(obj))
638 		return false;
639 
640 	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
641 		return true;
642 
643 	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
644 		return false;
645 
646 	/*
647 	 * For objects created by userspace through GEM_CREATE with pat_index
648 	 * set by set_pat extension, i915_gem_object_has_cache_level() always
649 	 * return true, otherwise the call would fall back to checking whether
650 	 * the object is un-cached.
651 	 */
652 	return (cache->has_llc ||
653 		obj->cache_dirty ||
654 		!i915_gem_object_has_cache_level(obj, I915_CACHE_NONE));
655 }
656 
657 static int eb_reserve_vma(struct i915_execbuffer *eb,
658 			  struct eb_vma *ev,
659 			  u64 pin_flags)
660 {
661 	struct drm_i915_gem_exec_object2 *entry = ev->exec;
662 	struct i915_vma *vma = ev->vma;
663 	int err;
664 
665 	if (drm_mm_node_allocated(&vma->node) &&
666 	    eb_vma_misplaced(entry, vma, ev->flags)) {
667 		err = i915_vma_unbind(vma);
668 		if (err)
669 			return err;
670 	}
671 
672 	err = i915_vma_pin_ww(vma, &eb->ww,
673 			   entry->pad_to_size, entry->alignment,
674 			   eb_pin_flags(entry, ev->flags) | pin_flags);
675 	if (err)
676 		return err;
677 
678 	if (entry->offset != i915_vma_offset(vma)) {
679 		entry->offset = i915_vma_offset(vma) | UPDATE;
680 		eb->args->flags |= __EXEC_HAS_RELOC;
681 	}
682 
683 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
684 		err = i915_vma_pin_fence(vma);
685 		if (unlikely(err))
686 			return err;
687 
688 		if (vma->fence)
689 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
690 	}
691 
692 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
693 	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
694 
695 	return 0;
696 }
697 
698 static bool eb_unbind(struct i915_execbuffer *eb, bool force)
699 {
700 	const unsigned int count = eb->buffer_count;
701 	unsigned int i;
702 	struct list_head last;
703 	bool unpinned = false;
704 
705 	/* Resort *all* the objects into priority order */
706 	INIT_LIST_HEAD(&eb->unbound);
707 	INIT_LIST_HEAD(&last);
708 
709 	for (i = 0; i < count; i++) {
710 		struct eb_vma *ev = &eb->vma[i];
711 		unsigned int flags = ev->flags;
712 
713 		if (!force && flags & EXEC_OBJECT_PINNED &&
714 		    flags & __EXEC_OBJECT_HAS_PIN)
715 			continue;
716 
717 		unpinned = true;
718 		eb_unreserve_vma(ev);
719 
720 		if (flags & EXEC_OBJECT_PINNED)
721 			/* Pinned must have their slot */
722 			list_add(&ev->bind_link, &eb->unbound);
723 		else if (flags & __EXEC_OBJECT_NEEDS_MAP)
724 			/* Map require the lowest 256MiB (aperture) */
725 			list_add_tail(&ev->bind_link, &eb->unbound);
726 		else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
727 			/* Prioritise 4GiB region for restricted bo */
728 			list_add(&ev->bind_link, &last);
729 		else
730 			list_add_tail(&ev->bind_link, &last);
731 	}
732 
733 	list_splice_tail(&last, &eb->unbound);
734 	return unpinned;
735 }
736 
737 static int eb_reserve(struct i915_execbuffer *eb)
738 {
739 	struct eb_vma *ev;
740 	unsigned int pass;
741 	int err = 0;
742 
743 	/*
744 	 * We have one more buffers that we couldn't bind, which could be due to
745 	 * various reasons. To resolve this we have 4 passes, with every next
746 	 * level turning the screws tighter:
747 	 *
748 	 * 0. Unbind all objects that do not match the GTT constraints for the
749 	 * execbuffer (fenceable, mappable, alignment etc). Bind all new
750 	 * objects.  This avoids unnecessary unbinding of later objects in order
751 	 * to make room for the earlier objects *unless* we need to defragment.
752 	 *
753 	 * 1. Reorder the buffers, where objects with the most restrictive
754 	 * placement requirements go first (ignoring fixed location buffers for
755 	 * now).  For example, objects needing the mappable aperture (the first
756 	 * 256M of GTT), should go first vs objects that can be placed just
757 	 * about anywhere. Repeat the previous pass.
758 	 *
759 	 * 2. Consider buffers that are pinned at a fixed location. Also try to
760 	 * evict the entire VM this time, leaving only objects that we were
761 	 * unable to lock. Try again to bind the buffers. (still using the new
762 	 * buffer order).
763 	 *
764 	 * 3. We likely have object lock contention for one or more stubborn
765 	 * objects in the VM, for which we need to evict to make forward
766 	 * progress (perhaps we are fighting the shrinker?). When evicting the
767 	 * VM this time around, anything that we can't lock we now track using
768 	 * the busy_bo, using the full lock (after dropping the vm->mutex to
769 	 * prevent deadlocks), instead of trylock. We then continue to evict the
770 	 * VM, this time with the stubborn object locked, which we can now
771 	 * hopefully unbind (if still bound in the VM). Repeat until the VM is
772 	 * evicted. Finally we should be able bind everything.
773 	 */
774 	for (pass = 0; pass <= 3; pass++) {
775 		int pin_flags = PIN_USER | PIN_VALIDATE;
776 
777 		if (pass == 0)
778 			pin_flags |= PIN_NONBLOCK;
779 
780 		if (pass >= 1)
781 			eb_unbind(eb, pass >= 2);
782 
783 		if (pass == 2) {
784 			err = mutex_lock_interruptible(&eb->context->vm->mutex);
785 			if (!err) {
786 				err = i915_gem_evict_vm(eb->context->vm, &eb->ww, NULL);
787 				mutex_unlock(&eb->context->vm->mutex);
788 			}
789 			if (err)
790 				return err;
791 		}
792 
793 		if (pass == 3) {
794 retry:
795 			err = mutex_lock_interruptible(&eb->context->vm->mutex);
796 			if (!err) {
797 				struct drm_i915_gem_object *busy_bo = NULL;
798 
799 				err = i915_gem_evict_vm(eb->context->vm, &eb->ww, &busy_bo);
800 				mutex_unlock(&eb->context->vm->mutex);
801 				if (err && busy_bo) {
802 					err = i915_gem_object_lock(busy_bo, &eb->ww);
803 					i915_gem_object_put(busy_bo);
804 					if (!err)
805 						goto retry;
806 				}
807 			}
808 			if (err)
809 				return err;
810 		}
811 
812 		list_for_each_entry(ev, &eb->unbound, bind_link) {
813 			err = eb_reserve_vma(eb, ev, pin_flags);
814 			if (err)
815 				break;
816 		}
817 
818 		if (err != -ENOSPC)
819 			break;
820 	}
821 
822 	return err;
823 }
824 
825 static int eb_select_context(struct i915_execbuffer *eb)
826 {
827 	struct i915_gem_context *ctx;
828 
829 	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
830 	if (unlikely(IS_ERR(ctx)))
831 		return PTR_ERR(ctx);
832 
833 	eb->gem_context = ctx;
834 	if (i915_gem_context_has_full_ppgtt(ctx))
835 		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
836 
837 	return 0;
838 }
839 
840 static int __eb_add_lut(struct i915_execbuffer *eb,
841 			u32 handle, struct i915_vma *vma)
842 {
843 	struct i915_gem_context *ctx = eb->gem_context;
844 	struct i915_lut_handle *lut;
845 	int err;
846 
847 	lut = i915_lut_handle_alloc();
848 	if (unlikely(!lut))
849 		return -ENOMEM;
850 
851 	i915_vma_get(vma);
852 	if (!atomic_fetch_inc(&vma->open_count))
853 		i915_vma_reopen(vma);
854 	lut->handle = handle;
855 	lut->ctx = ctx;
856 
857 	/* Check that the context hasn't been closed in the meantime */
858 	err = -EINTR;
859 	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
860 		if (likely(!i915_gem_context_is_closed(ctx)))
861 			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
862 		else
863 			err = -ENOENT;
864 		if (err == 0) { /* And nor has this handle */
865 			struct drm_i915_gem_object *obj = vma->obj;
866 
867 			spin_lock(&obj->lut_lock);
868 			if (idr_find(&eb->file->object_idr, handle) == obj) {
869 				list_add(&lut->obj_link, &obj->lut_list);
870 			} else {
871 				radix_tree_delete(&ctx->handles_vma, handle);
872 				err = -ENOENT;
873 			}
874 			spin_unlock(&obj->lut_lock);
875 		}
876 		mutex_unlock(&ctx->lut_mutex);
877 	}
878 	if (unlikely(err))
879 		goto err;
880 
881 	return 0;
882 
883 err:
884 	i915_vma_close(vma);
885 	i915_vma_put(vma);
886 	i915_lut_handle_free(lut);
887 	return err;
888 }
889 
890 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
891 {
892 	struct i915_address_space *vm = eb->context->vm;
893 
894 	do {
895 		struct drm_i915_gem_object *obj;
896 		struct i915_vma *vma;
897 		int err;
898 
899 		rcu_read_lock();
900 		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
901 		if (likely(vma && vma->vm == vm))
902 			vma = i915_vma_tryget(vma);
903 		rcu_read_unlock();
904 		if (likely(vma))
905 			return vma;
906 
907 		obj = i915_gem_object_lookup(eb->file, handle);
908 		if (unlikely(!obj))
909 			return ERR_PTR(-ENOENT);
910 
911 		/*
912 		 * If the user has opted-in for protected-object tracking, make
913 		 * sure the object encryption can be used.
914 		 * We only need to do this when the object is first used with
915 		 * this context, because the context itself will be banned when
916 		 * the protected objects become invalid.
917 		 */
918 		if (i915_gem_context_uses_protected_content(eb->gem_context) &&
919 		    i915_gem_object_is_protected(obj)) {
920 			err = intel_pxp_key_check(eb->i915->pxp, obj, true);
921 			if (err) {
922 				i915_gem_object_put(obj);
923 				return ERR_PTR(err);
924 			}
925 		}
926 
927 		vma = i915_vma_instance(obj, vm, NULL);
928 		if (IS_ERR(vma)) {
929 			i915_gem_object_put(obj);
930 			return vma;
931 		}
932 
933 		err = __eb_add_lut(eb, handle, vma);
934 		if (likely(!err))
935 			return vma;
936 
937 		i915_gem_object_put(obj);
938 		if (err != -EEXIST)
939 			return ERR_PTR(err);
940 	} while (1);
941 }
942 
943 static int eb_lookup_vmas(struct i915_execbuffer *eb)
944 {
945 	unsigned int i, current_batch = 0;
946 	int err = 0;
947 
948 	INIT_LIST_HEAD(&eb->relocs);
949 
950 	for (i = 0; i < eb->buffer_count; i++) {
951 		struct i915_vma *vma;
952 
953 		vma = eb_lookup_vma(eb, eb->exec[i].handle);
954 		if (IS_ERR(vma)) {
955 			err = PTR_ERR(vma);
956 			goto err;
957 		}
958 
959 		err = eb_validate_vma(eb, &eb->exec[i], vma);
960 		if (unlikely(err)) {
961 			i915_vma_put(vma);
962 			goto err;
963 		}
964 
965 		err = eb_add_vma(eb, &current_batch, i, vma);
966 		if (err)
967 			return err;
968 
969 		if (i915_gem_object_is_userptr(vma->obj)) {
970 			err = i915_gem_object_userptr_submit_init(vma->obj);
971 			if (err) {
972 				if (i + 1 < eb->buffer_count) {
973 					/*
974 					 * Execbuffer code expects last vma entry to be NULL,
975 					 * since we already initialized this entry,
976 					 * set the next value to NULL or we mess up
977 					 * cleanup handling.
978 					 */
979 					eb->vma[i + 1].vma = NULL;
980 				}
981 
982 				return err;
983 			}
984 
985 			eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
986 			eb->args->flags |= __EXEC_USERPTR_USED;
987 		}
988 	}
989 
990 	return 0;
991 
992 err:
993 	eb->vma[i].vma = NULL;
994 	return err;
995 }
996 
997 static int eb_lock_vmas(struct i915_execbuffer *eb)
998 {
999 	unsigned int i;
1000 	int err;
1001 
1002 	for (i = 0; i < eb->buffer_count; i++) {
1003 		struct eb_vma *ev = &eb->vma[i];
1004 		struct i915_vma *vma = ev->vma;
1005 
1006 		err = i915_gem_object_lock(vma->obj, &eb->ww);
1007 		if (err)
1008 			return err;
1009 	}
1010 
1011 	return 0;
1012 }
1013 
1014 static int eb_validate_vmas(struct i915_execbuffer *eb)
1015 {
1016 	unsigned int i;
1017 	int err;
1018 
1019 	INIT_LIST_HEAD(&eb->unbound);
1020 
1021 	err = eb_lock_vmas(eb);
1022 	if (err)
1023 		return err;
1024 
1025 	for (i = 0; i < eb->buffer_count; i++) {
1026 		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
1027 		struct eb_vma *ev = &eb->vma[i];
1028 		struct i915_vma *vma = ev->vma;
1029 
1030 		err = eb_pin_vma(eb, entry, ev);
1031 		if (err == -EDEADLK)
1032 			return err;
1033 
1034 		if (!err) {
1035 			if (entry->offset != i915_vma_offset(vma)) {
1036 				entry->offset = i915_vma_offset(vma) | UPDATE;
1037 				eb->args->flags |= __EXEC_HAS_RELOC;
1038 			}
1039 		} else {
1040 			eb_unreserve_vma(ev);
1041 
1042 			list_add_tail(&ev->bind_link, &eb->unbound);
1043 			if (drm_mm_node_allocated(&vma->node)) {
1044 				err = i915_vma_unbind(vma);
1045 				if (err)
1046 					return err;
1047 			}
1048 		}
1049 
1050 		/* Reserve enough slots to accommodate composite fences */
1051 		err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches);
1052 		if (err)
1053 			return err;
1054 
1055 		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
1056 			   eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
1057 	}
1058 
1059 	if (!list_empty(&eb->unbound))
1060 		return eb_reserve(eb);
1061 
1062 	return 0;
1063 }
1064 
1065 static struct eb_vma *
1066 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
1067 {
1068 	if (eb->lut_size < 0) {
1069 		if (handle >= -eb->lut_size)
1070 			return NULL;
1071 		return &eb->vma[handle];
1072 	} else {
1073 		struct hlist_head *head;
1074 		struct eb_vma *ev;
1075 
1076 		head = &eb->buckets[hash_32(handle, eb->lut_size)];
1077 		hlist_for_each_entry(ev, head, node) {
1078 			if (ev->handle == handle)
1079 				return ev;
1080 		}
1081 		return NULL;
1082 	}
1083 }
1084 
1085 static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
1086 {
1087 	const unsigned int count = eb->buffer_count;
1088 	unsigned int i;
1089 
1090 	for (i = 0; i < count; i++) {
1091 		struct eb_vma *ev = &eb->vma[i];
1092 		struct i915_vma *vma = ev->vma;
1093 
1094 		if (!vma)
1095 			break;
1096 
1097 		eb_unreserve_vma(ev);
1098 
1099 		if (final)
1100 			i915_vma_put(vma);
1101 	}
1102 
1103 	eb_capture_release(eb);
1104 	eb_unpin_engine(eb);
1105 }
1106 
1107 static void eb_destroy(const struct i915_execbuffer *eb)
1108 {
1109 	if (eb->lut_size > 0)
1110 		kfree(eb->buckets);
1111 }
1112 
1113 static u64
1114 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1115 		  const struct i915_vma *target)
1116 {
1117 	return gen8_canonical_addr((int)reloc->delta + i915_vma_offset(target));
1118 }
1119 
1120 static void reloc_cache_init(struct reloc_cache *cache,
1121 			     struct drm_i915_private *i915)
1122 {
1123 	cache->page = -1;
1124 	cache->vaddr = 0;
1125 	/* Must be a variable in the struct to allow GCC to unroll. */
1126 	cache->graphics_ver = GRAPHICS_VER(i915);
1127 	cache->has_llc = HAS_LLC(i915);
1128 	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1129 	cache->has_fence = cache->graphics_ver < 4;
1130 	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1131 	cache->node.flags = 0;
1132 }
1133 
1134 static void *unmask_page(unsigned long p)
1135 {
1136 	return (void *)(uintptr_t)(p & PAGE_MASK);
1137 }
1138 
1139 static unsigned int unmask_flags(unsigned long p)
1140 {
1141 	return p & ~PAGE_MASK;
1142 }
1143 
1144 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1145 
1146 static struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1147 {
1148 	struct drm_i915_private *i915 =
1149 		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1150 	return to_gt(i915)->ggtt;
1151 }
1152 
1153 static void reloc_cache_unmap(struct reloc_cache *cache)
1154 {
1155 	void *vaddr;
1156 
1157 	if (!cache->vaddr)
1158 		return;
1159 
1160 	vaddr = unmask_page(cache->vaddr);
1161 	if (cache->vaddr & KMAP)
1162 		kunmap_local(vaddr);
1163 	else
1164 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1165 }
1166 
1167 static void reloc_cache_remap(struct reloc_cache *cache,
1168 			      struct drm_i915_gem_object *obj)
1169 {
1170 	void *vaddr;
1171 
1172 	if (!cache->vaddr)
1173 		return;
1174 
1175 	if (cache->vaddr & KMAP) {
1176 		struct page *page = i915_gem_object_get_page(obj, cache->page);
1177 
1178 		vaddr = kmap_local_page(page);
1179 		cache->vaddr = unmask_flags(cache->vaddr) |
1180 			(unsigned long)vaddr;
1181 	} else {
1182 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1183 		unsigned long offset;
1184 
1185 		offset = cache->node.start;
1186 		if (!drm_mm_node_allocated(&cache->node))
1187 			offset += cache->page << PAGE_SHIFT;
1188 
1189 		cache->vaddr = (unsigned long)
1190 			io_mapping_map_atomic_wc(&ggtt->iomap, offset);
1191 	}
1192 }
1193 
1194 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1195 {
1196 	void *vaddr;
1197 
1198 	if (!cache->vaddr)
1199 		return;
1200 
1201 	vaddr = unmask_page(cache->vaddr);
1202 	if (cache->vaddr & KMAP) {
1203 		struct drm_i915_gem_object *obj =
1204 			(struct drm_i915_gem_object *)cache->node.mm;
1205 		if (cache->vaddr & CLFLUSH_AFTER)
1206 			mb();
1207 
1208 		kunmap_local(vaddr);
1209 		i915_gem_object_finish_access(obj);
1210 	} else {
1211 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1212 
1213 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1214 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1215 
1216 		if (drm_mm_node_allocated(&cache->node)) {
1217 			ggtt->vm.clear_range(&ggtt->vm,
1218 					     cache->node.start,
1219 					     cache->node.size);
1220 			mutex_lock(&ggtt->vm.mutex);
1221 			drm_mm_remove_node(&cache->node);
1222 			mutex_unlock(&ggtt->vm.mutex);
1223 		} else {
1224 			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1225 		}
1226 	}
1227 
1228 	cache->vaddr = 0;
1229 	cache->page = -1;
1230 }
1231 
1232 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1233 			struct reloc_cache *cache,
1234 			unsigned long pageno)
1235 {
1236 	void *vaddr;
1237 	struct page *page;
1238 
1239 	if (cache->vaddr) {
1240 		kunmap_local(unmask_page(cache->vaddr));
1241 	} else {
1242 		unsigned int flushes;
1243 		int err;
1244 
1245 		err = i915_gem_object_prepare_write(obj, &flushes);
1246 		if (err)
1247 			return ERR_PTR(err);
1248 
1249 		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1250 		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1251 
1252 		cache->vaddr = flushes | KMAP;
1253 		cache->node.mm = (void *)obj;
1254 		if (flushes)
1255 			mb();
1256 	}
1257 
1258 	page = i915_gem_object_get_page(obj, pageno);
1259 	if (!obj->mm.dirty)
1260 		set_page_dirty(page);
1261 
1262 	vaddr = kmap_local_page(page);
1263 	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1264 	cache->page = pageno;
1265 
1266 	return vaddr;
1267 }
1268 
1269 static void *reloc_iomap(struct i915_vma *batch,
1270 			 struct i915_execbuffer *eb,
1271 			 unsigned long page)
1272 {
1273 	struct drm_i915_gem_object *obj = batch->obj;
1274 	struct reloc_cache *cache = &eb->reloc_cache;
1275 	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1276 	unsigned long offset;
1277 	void *vaddr;
1278 
1279 	if (cache->vaddr) {
1280 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1281 		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1282 	} else {
1283 		struct i915_vma *vma = ERR_PTR(-ENODEV);
1284 		int err;
1285 
1286 		if (i915_gem_object_is_tiled(obj))
1287 			return ERR_PTR(-EINVAL);
1288 
1289 		if (use_cpu_reloc(cache, obj))
1290 			return NULL;
1291 
1292 		err = i915_gem_object_set_to_gtt_domain(obj, true);
1293 		if (err)
1294 			return ERR_PTR(err);
1295 
1296 		/*
1297 		 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch
1298 		 * VMA from the object list because we no longer pin.
1299 		 *
1300 		 * Only attempt to pin the batch buffer to ggtt if the current batch
1301 		 * is not inside ggtt, or the batch buffer is not misplaced.
1302 		 */
1303 		if (!i915_is_ggtt(batch->vm) ||
1304 		    !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) {
1305 			vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1306 							  PIN_MAPPABLE |
1307 							  PIN_NONBLOCK /* NOWARN */ |
1308 							  PIN_NOEVICT);
1309 		}
1310 
1311 		if (vma == ERR_PTR(-EDEADLK))
1312 			return vma;
1313 
1314 		if (IS_ERR(vma)) {
1315 			memset(&cache->node, 0, sizeof(cache->node));
1316 			mutex_lock(&ggtt->vm.mutex);
1317 			err = drm_mm_insert_node_in_range
1318 				(&ggtt->vm.mm, &cache->node,
1319 				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1320 				 0, ggtt->mappable_end,
1321 				 DRM_MM_INSERT_LOW);
1322 			mutex_unlock(&ggtt->vm.mutex);
1323 			if (err) /* no inactive aperture space, use cpu reloc */
1324 				return NULL;
1325 		} else {
1326 			cache->node.start = i915_ggtt_offset(vma);
1327 			cache->node.mm = (void *)vma;
1328 		}
1329 	}
1330 
1331 	offset = cache->node.start;
1332 	if (drm_mm_node_allocated(&cache->node)) {
1333 		ggtt->vm.insert_page(&ggtt->vm,
1334 				     i915_gem_object_get_dma_address(obj, page),
1335 				     offset,
1336 				     i915_gem_get_pat_index(ggtt->vm.i915,
1337 							    I915_CACHE_NONE),
1338 				     0);
1339 	} else {
1340 		offset += page << PAGE_SHIFT;
1341 	}
1342 
1343 	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1344 							 offset);
1345 	cache->page = page;
1346 	cache->vaddr = (unsigned long)vaddr;
1347 
1348 	return vaddr;
1349 }
1350 
1351 static void *reloc_vaddr(struct i915_vma *vma,
1352 			 struct i915_execbuffer *eb,
1353 			 unsigned long page)
1354 {
1355 	struct reloc_cache *cache = &eb->reloc_cache;
1356 	void *vaddr;
1357 
1358 	if (cache->page == page) {
1359 		vaddr = unmask_page(cache->vaddr);
1360 	} else {
1361 		vaddr = NULL;
1362 		if ((cache->vaddr & KMAP) == 0)
1363 			vaddr = reloc_iomap(vma, eb, page);
1364 		if (!vaddr)
1365 			vaddr = reloc_kmap(vma->obj, cache, page);
1366 	}
1367 
1368 	return vaddr;
1369 }
1370 
1371 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1372 {
1373 	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1374 		if (flushes & CLFLUSH_BEFORE)
1375 			drm_clflush_virt_range(addr, sizeof(*addr));
1376 
1377 		*addr = value;
1378 
1379 		/*
1380 		 * Writes to the same cacheline are serialised by the CPU
1381 		 * (including clflush). On the write path, we only require
1382 		 * that it hits memory in an orderly fashion and place
1383 		 * mb barriers at the start and end of the relocation phase
1384 		 * to ensure ordering of clflush wrt to the system.
1385 		 */
1386 		if (flushes & CLFLUSH_AFTER)
1387 			drm_clflush_virt_range(addr, sizeof(*addr));
1388 	} else
1389 		*addr = value;
1390 }
1391 
1392 static u64
1393 relocate_entry(struct i915_vma *vma,
1394 	       const struct drm_i915_gem_relocation_entry *reloc,
1395 	       struct i915_execbuffer *eb,
1396 	       const struct i915_vma *target)
1397 {
1398 	u64 target_addr = relocation_target(reloc, target);
1399 	u64 offset = reloc->offset;
1400 	bool wide = eb->reloc_cache.use_64bit_reloc;
1401 	void *vaddr;
1402 
1403 repeat:
1404 	vaddr = reloc_vaddr(vma, eb,
1405 			    offset >> PAGE_SHIFT);
1406 	if (IS_ERR(vaddr))
1407 		return PTR_ERR(vaddr);
1408 
1409 	GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1410 	clflush_write32(vaddr + offset_in_page(offset),
1411 			lower_32_bits(target_addr),
1412 			eb->reloc_cache.vaddr);
1413 
1414 	if (wide) {
1415 		offset += sizeof(u32);
1416 		target_addr >>= 32;
1417 		wide = false;
1418 		goto repeat;
1419 	}
1420 
1421 	return target->node.start | UPDATE;
1422 }
1423 
1424 static u64
1425 eb_relocate_entry(struct i915_execbuffer *eb,
1426 		  struct eb_vma *ev,
1427 		  const struct drm_i915_gem_relocation_entry *reloc)
1428 {
1429 	struct drm_i915_private *i915 = eb->i915;
1430 	struct eb_vma *target;
1431 	int err;
1432 
1433 	/* we've already hold a reference to all valid objects */
1434 	target = eb_get_vma(eb, reloc->target_handle);
1435 	if (unlikely(!target))
1436 		return -ENOENT;
1437 
1438 	/* Validate that the target is in a valid r/w GPU domain */
1439 	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1440 		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1441 			  "target %d offset %d "
1442 			  "read %08x write %08x\n",
1443 			  reloc->target_handle,
1444 			  (int) reloc->offset,
1445 			  reloc->read_domains,
1446 			  reloc->write_domain);
1447 		return -EINVAL;
1448 	}
1449 	if (unlikely((reloc->write_domain | reloc->read_domains)
1450 		     & ~I915_GEM_GPU_DOMAINS)) {
1451 		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1452 			  "target %d offset %d "
1453 			  "read %08x write %08x\n",
1454 			  reloc->target_handle,
1455 			  (int) reloc->offset,
1456 			  reloc->read_domains,
1457 			  reloc->write_domain);
1458 		return -EINVAL;
1459 	}
1460 
1461 	if (reloc->write_domain) {
1462 		target->flags |= EXEC_OBJECT_WRITE;
1463 
1464 		/*
1465 		 * Sandybridge PPGTT errata: We need a global gtt mapping
1466 		 * for MI and pipe_control writes because the gpu doesn't
1467 		 * properly redirect them through the ppgtt for non_secure
1468 		 * batchbuffers.
1469 		 */
1470 		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1471 		    GRAPHICS_VER(eb->i915) == 6 &&
1472 		    !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
1473 			struct i915_vma *vma = target->vma;
1474 
1475 			reloc_cache_unmap(&eb->reloc_cache);
1476 			mutex_lock(&vma->vm->mutex);
1477 			err = i915_vma_bind(target->vma,
1478 					    target->vma->obj->pat_index,
1479 					    PIN_GLOBAL, NULL, NULL);
1480 			mutex_unlock(&vma->vm->mutex);
1481 			reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
1482 			if (err)
1483 				return err;
1484 		}
1485 	}
1486 
1487 	/*
1488 	 * If the relocation already has the right value in it, no
1489 	 * more work needs to be done.
1490 	 */
1491 	if (!DBG_FORCE_RELOC &&
1492 	    gen8_canonical_addr(i915_vma_offset(target->vma)) == reloc->presumed_offset)
1493 		return 0;
1494 
1495 	/* Check that the relocation address is valid... */
1496 	if (unlikely(reloc->offset >
1497 		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1498 		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1499 			  "target %d offset %d size %d.\n",
1500 			  reloc->target_handle,
1501 			  (int)reloc->offset,
1502 			  (int)ev->vma->size);
1503 		return -EINVAL;
1504 	}
1505 	if (unlikely(reloc->offset & 3)) {
1506 		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1507 			  "target %d offset %d.\n",
1508 			  reloc->target_handle,
1509 			  (int)reloc->offset);
1510 		return -EINVAL;
1511 	}
1512 
1513 	/*
1514 	 * If we write into the object, we need to force the synchronisation
1515 	 * barrier, either with an asynchronous clflush or if we executed the
1516 	 * patching using the GPU (though that should be serialised by the
1517 	 * timeline). To be completely sure, and since we are required to
1518 	 * do relocations we are already stalling, disable the user's opt
1519 	 * out of our synchronisation.
1520 	 */
1521 	ev->flags &= ~EXEC_OBJECT_ASYNC;
1522 
1523 	/* and update the user's relocation entry */
1524 	return relocate_entry(ev->vma, reloc, eb, target->vma);
1525 }
1526 
1527 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1528 {
1529 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1530 	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1531 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1532 	struct drm_i915_gem_relocation_entry __user *urelocs =
1533 		u64_to_user_ptr(entry->relocs_ptr);
1534 	unsigned long remain = entry->relocation_count;
1535 
1536 	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1537 		return -EINVAL;
1538 
1539 	/*
1540 	 * We must check that the entire relocation array is safe
1541 	 * to read. However, if the array is not writable the user loses
1542 	 * the updated relocation values.
1543 	 */
1544 	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1545 		return -EFAULT;
1546 
1547 	do {
1548 		struct drm_i915_gem_relocation_entry *r = stack;
1549 		unsigned int count =
1550 			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1551 		unsigned int copied;
1552 
1553 		/*
1554 		 * This is the fast path and we cannot handle a pagefault
1555 		 * whilst holding the struct mutex lest the user pass in the
1556 		 * relocations contained within a mmaped bo. For in such a case
1557 		 * we, the page fault handler would call i915_gem_fault() and
1558 		 * we would try to acquire the struct mutex again. Obviously
1559 		 * this is bad and so lockdep complains vehemently.
1560 		 */
1561 		pagefault_disable();
1562 		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1563 		pagefault_enable();
1564 		if (unlikely(copied)) {
1565 			remain = -EFAULT;
1566 			goto out;
1567 		}
1568 
1569 		remain -= count;
1570 		do {
1571 			u64 offset = eb_relocate_entry(eb, ev, r);
1572 
1573 			if (likely(offset == 0)) {
1574 			} else if ((s64)offset < 0) {
1575 				remain = (int)offset;
1576 				goto out;
1577 			} else {
1578 				/*
1579 				 * Note that reporting an error now
1580 				 * leaves everything in an inconsistent
1581 				 * state as we have *already* changed
1582 				 * the relocation value inside the
1583 				 * object. As we have not changed the
1584 				 * reloc.presumed_offset or will not
1585 				 * change the execobject.offset, on the
1586 				 * call we may not rewrite the value
1587 				 * inside the object, leaving it
1588 				 * dangling and causing a GPU hang. Unless
1589 				 * userspace dynamically rebuilds the
1590 				 * relocations on each execbuf rather than
1591 				 * presume a static tree.
1592 				 *
1593 				 * We did previously check if the relocations
1594 				 * were writable (access_ok), an error now
1595 				 * would be a strange race with mprotect,
1596 				 * having already demonstrated that we
1597 				 * can read from this userspace address.
1598 				 */
1599 				offset = gen8_canonical_addr(offset & ~UPDATE);
1600 				__put_user(offset,
1601 					   &urelocs[r - stack].presumed_offset);
1602 			}
1603 		} while (r++, --count);
1604 		urelocs += ARRAY_SIZE(stack);
1605 	} while (remain);
1606 out:
1607 	reloc_cache_reset(&eb->reloc_cache, eb);
1608 	return remain;
1609 }
1610 
1611 static int
1612 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1613 {
1614 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1615 	struct drm_i915_gem_relocation_entry *relocs =
1616 		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1617 	unsigned int i;
1618 	int err;
1619 
1620 	for (i = 0; i < entry->relocation_count; i++) {
1621 		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1622 
1623 		if ((s64)offset < 0) {
1624 			err = (int)offset;
1625 			goto err;
1626 		}
1627 	}
1628 	err = 0;
1629 err:
1630 	reloc_cache_reset(&eb->reloc_cache, eb);
1631 	return err;
1632 }
1633 
1634 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1635 {
1636 	const char __user *addr, *end;
1637 	unsigned long size;
1638 	char __maybe_unused c;
1639 
1640 	size = entry->relocation_count;
1641 	if (size == 0)
1642 		return 0;
1643 
1644 	if (size > N_RELOC(ULONG_MAX))
1645 		return -EINVAL;
1646 
1647 	addr = u64_to_user_ptr(entry->relocs_ptr);
1648 	size *= sizeof(struct drm_i915_gem_relocation_entry);
1649 	if (!access_ok(addr, size))
1650 		return -EFAULT;
1651 
1652 	end = addr + size;
1653 	for (; addr < end; addr += PAGE_SIZE) {
1654 		int err = __get_user(c, addr);
1655 		if (err)
1656 			return err;
1657 	}
1658 	return __get_user(c, end - 1);
1659 }
1660 
1661 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1662 {
1663 	struct drm_i915_gem_relocation_entry *relocs;
1664 	const unsigned int count = eb->buffer_count;
1665 	unsigned int i;
1666 	int err;
1667 
1668 	for (i = 0; i < count; i++) {
1669 		const unsigned int nreloc = eb->exec[i].relocation_count;
1670 		struct drm_i915_gem_relocation_entry __user *urelocs;
1671 		unsigned long size;
1672 		unsigned long copied;
1673 
1674 		if (nreloc == 0)
1675 			continue;
1676 
1677 		err = check_relocations(&eb->exec[i]);
1678 		if (err)
1679 			goto err;
1680 
1681 		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1682 		size = nreloc * sizeof(*relocs);
1683 
1684 		relocs = kvmalloc_array(1, size, GFP_KERNEL);
1685 		if (!relocs) {
1686 			err = -ENOMEM;
1687 			goto err;
1688 		}
1689 
1690 		/* copy_from_user is limited to < 4GiB */
1691 		copied = 0;
1692 		do {
1693 			unsigned int len =
1694 				min_t(u64, BIT_ULL(31), size - copied);
1695 
1696 			if (__copy_from_user((char *)relocs + copied,
1697 					     (char __user *)urelocs + copied,
1698 					     len))
1699 				goto end;
1700 
1701 			copied += len;
1702 		} while (copied < size);
1703 
1704 		/*
1705 		 * As we do not update the known relocation offsets after
1706 		 * relocating (due to the complexities in lock handling),
1707 		 * we need to mark them as invalid now so that we force the
1708 		 * relocation processing next time. Just in case the target
1709 		 * object is evicted and then rebound into its old
1710 		 * presumed_offset before the next execbuffer - if that
1711 		 * happened we would make the mistake of assuming that the
1712 		 * relocations were valid.
1713 		 */
1714 		if (!user_access_begin(urelocs, size))
1715 			goto end;
1716 
1717 		for (copied = 0; copied < nreloc; copied++)
1718 			unsafe_put_user(-1,
1719 					&urelocs[copied].presumed_offset,
1720 					end_user);
1721 		user_access_end();
1722 
1723 		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1724 	}
1725 
1726 	return 0;
1727 
1728 end_user:
1729 	user_access_end();
1730 end:
1731 	kvfree(relocs);
1732 	err = -EFAULT;
1733 err:
1734 	while (i--) {
1735 		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1736 		if (eb->exec[i].relocation_count)
1737 			kvfree(relocs);
1738 	}
1739 	return err;
1740 }
1741 
1742 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1743 {
1744 	const unsigned int count = eb->buffer_count;
1745 	unsigned int i;
1746 
1747 	for (i = 0; i < count; i++) {
1748 		int err;
1749 
1750 		err = check_relocations(&eb->exec[i]);
1751 		if (err)
1752 			return err;
1753 	}
1754 
1755 	return 0;
1756 }
1757 
1758 static int eb_reinit_userptr(struct i915_execbuffer *eb)
1759 {
1760 	const unsigned int count = eb->buffer_count;
1761 	unsigned int i;
1762 	int ret;
1763 
1764 	if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1765 		return 0;
1766 
1767 	for (i = 0; i < count; i++) {
1768 		struct eb_vma *ev = &eb->vma[i];
1769 
1770 		if (!i915_gem_object_is_userptr(ev->vma->obj))
1771 			continue;
1772 
1773 		ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1774 		if (ret)
1775 			return ret;
1776 
1777 		ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1778 	}
1779 
1780 	return 0;
1781 }
1782 
1783 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
1784 {
1785 	bool have_copy = false;
1786 	struct eb_vma *ev;
1787 	int err = 0;
1788 
1789 repeat:
1790 	if (signal_pending(current)) {
1791 		err = -ERESTARTSYS;
1792 		goto out;
1793 	}
1794 
1795 	/* We may process another execbuffer during the unlock... */
1796 	eb_release_vmas(eb, false);
1797 	i915_gem_ww_ctx_fini(&eb->ww);
1798 
1799 	/*
1800 	 * We take 3 passes through the slowpatch.
1801 	 *
1802 	 * 1 - we try to just prefault all the user relocation entries and
1803 	 * then attempt to reuse the atomic pagefault disabled fast path again.
1804 	 *
1805 	 * 2 - we copy the user entries to a local buffer here outside of the
1806 	 * local and allow ourselves to wait upon any rendering before
1807 	 * relocations
1808 	 *
1809 	 * 3 - we already have a local copy of the relocation entries, but
1810 	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1811 	 */
1812 	if (!err) {
1813 		err = eb_prefault_relocations(eb);
1814 	} else if (!have_copy) {
1815 		err = eb_copy_relocations(eb);
1816 		have_copy = err == 0;
1817 	} else {
1818 		cond_resched();
1819 		err = 0;
1820 	}
1821 
1822 	if (!err)
1823 		err = eb_reinit_userptr(eb);
1824 
1825 	i915_gem_ww_ctx_init(&eb->ww, true);
1826 	if (err)
1827 		goto out;
1828 
1829 	/* reacquire the objects */
1830 repeat_validate:
1831 	err = eb_pin_engine(eb, false);
1832 	if (err)
1833 		goto err;
1834 
1835 	err = eb_validate_vmas(eb);
1836 	if (err)
1837 		goto err;
1838 
1839 	GEM_BUG_ON(!eb->batches[0]);
1840 
1841 	list_for_each_entry(ev, &eb->relocs, reloc_link) {
1842 		if (!have_copy) {
1843 			err = eb_relocate_vma(eb, ev);
1844 			if (err)
1845 				break;
1846 		} else {
1847 			err = eb_relocate_vma_slow(eb, ev);
1848 			if (err)
1849 				break;
1850 		}
1851 	}
1852 
1853 	if (err == -EDEADLK)
1854 		goto err;
1855 
1856 	if (err && !have_copy)
1857 		goto repeat;
1858 
1859 	if (err)
1860 		goto err;
1861 
1862 	/* as last step, parse the command buffer */
1863 	err = eb_parse(eb);
1864 	if (err)
1865 		goto err;
1866 
1867 	/*
1868 	 * Leave the user relocations as are, this is the painfully slow path,
1869 	 * and we want to avoid the complication of dropping the lock whilst
1870 	 * having buffers reserved in the aperture and so causing spurious
1871 	 * ENOSPC for random operations.
1872 	 */
1873 
1874 err:
1875 	if (err == -EDEADLK) {
1876 		eb_release_vmas(eb, false);
1877 		err = i915_gem_ww_ctx_backoff(&eb->ww);
1878 		if (!err)
1879 			goto repeat_validate;
1880 	}
1881 
1882 	if (err == -EAGAIN)
1883 		goto repeat;
1884 
1885 out:
1886 	if (have_copy) {
1887 		const unsigned int count = eb->buffer_count;
1888 		unsigned int i;
1889 
1890 		for (i = 0; i < count; i++) {
1891 			const struct drm_i915_gem_exec_object2 *entry =
1892 				&eb->exec[i];
1893 			struct drm_i915_gem_relocation_entry *relocs;
1894 
1895 			if (!entry->relocation_count)
1896 				continue;
1897 
1898 			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1899 			kvfree(relocs);
1900 		}
1901 	}
1902 
1903 	return err;
1904 }
1905 
1906 static int eb_relocate_parse(struct i915_execbuffer *eb)
1907 {
1908 	int err;
1909 	bool throttle = true;
1910 
1911 retry:
1912 	err = eb_pin_engine(eb, throttle);
1913 	if (err) {
1914 		if (err != -EDEADLK)
1915 			return err;
1916 
1917 		goto err;
1918 	}
1919 
1920 	/* only throttle once, even if we didn't need to throttle */
1921 	throttle = false;
1922 
1923 	err = eb_validate_vmas(eb);
1924 	if (err == -EAGAIN)
1925 		goto slow;
1926 	else if (err)
1927 		goto err;
1928 
1929 	/* The objects are in their final locations, apply the relocations. */
1930 	if (eb->args->flags & __EXEC_HAS_RELOC) {
1931 		struct eb_vma *ev;
1932 
1933 		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1934 			err = eb_relocate_vma(eb, ev);
1935 			if (err)
1936 				break;
1937 		}
1938 
1939 		if (err == -EDEADLK)
1940 			goto err;
1941 		else if (err)
1942 			goto slow;
1943 	}
1944 
1945 	if (!err)
1946 		err = eb_parse(eb);
1947 
1948 err:
1949 	if (err == -EDEADLK) {
1950 		eb_release_vmas(eb, false);
1951 		err = i915_gem_ww_ctx_backoff(&eb->ww);
1952 		if (!err)
1953 			goto retry;
1954 	}
1955 
1956 	return err;
1957 
1958 slow:
1959 	err = eb_relocate_parse_slow(eb);
1960 	if (err)
1961 		/*
1962 		 * If the user expects the execobject.offset and
1963 		 * reloc.presumed_offset to be an exact match,
1964 		 * as for using NO_RELOC, then we cannot update
1965 		 * the execobject.offset until we have completed
1966 		 * relocation.
1967 		 */
1968 		eb->args->flags &= ~__EXEC_HAS_RELOC;
1969 
1970 	return err;
1971 }
1972 
1973 /*
1974  * Using two helper loops for the order of which requests / batches are created
1975  * and added the to backend. Requests are created in order from the parent to
1976  * the last child. Requests are added in the reverse order, from the last child
1977  * to parent. This is done for locking reasons as the timeline lock is acquired
1978  * during request creation and released when the request is added to the
1979  * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
1980  * the ordering.
1981  */
1982 #define for_each_batch_create_order(_eb, _i) \
1983 	for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
1984 #define for_each_batch_add_order(_eb, _i) \
1985 	BUILD_BUG_ON(!typecheck(int, _i)); \
1986 	for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
1987 
1988 static struct i915_request *
1989 eb_find_first_request_added(struct i915_execbuffer *eb)
1990 {
1991 	int i;
1992 
1993 	for_each_batch_add_order(eb, i)
1994 		if (eb->requests[i])
1995 			return eb->requests[i];
1996 
1997 	GEM_BUG_ON("Request not found");
1998 
1999 	return NULL;
2000 }
2001 
2002 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
2003 
2004 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
2005 static int eb_capture_stage(struct i915_execbuffer *eb)
2006 {
2007 	const unsigned int count = eb->buffer_count;
2008 	unsigned int i = count, j;
2009 
2010 	while (i--) {
2011 		struct eb_vma *ev = &eb->vma[i];
2012 		struct i915_vma *vma = ev->vma;
2013 		unsigned int flags = ev->flags;
2014 
2015 		if (!(flags & EXEC_OBJECT_CAPTURE))
2016 			continue;
2017 
2018 		if (i915_gem_context_is_recoverable(eb->gem_context) &&
2019 		    (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0)))
2020 			return -EINVAL;
2021 
2022 		for_each_batch_create_order(eb, j) {
2023 			struct i915_capture_list *capture;
2024 
2025 			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
2026 			if (!capture)
2027 				continue;
2028 
2029 			capture->next = eb->capture_lists[j];
2030 			capture->vma_res = i915_vma_resource_get(vma->resource);
2031 			eb->capture_lists[j] = capture;
2032 		}
2033 	}
2034 
2035 	return 0;
2036 }
2037 
2038 /* Commit once we're in the critical path */
2039 static void eb_capture_commit(struct i915_execbuffer *eb)
2040 {
2041 	unsigned int j;
2042 
2043 	for_each_batch_create_order(eb, j) {
2044 		struct i915_request *rq = eb->requests[j];
2045 
2046 		if (!rq)
2047 			break;
2048 
2049 		rq->capture_list = eb->capture_lists[j];
2050 		eb->capture_lists[j] = NULL;
2051 	}
2052 }
2053 
2054 /*
2055  * Release anything that didn't get committed due to errors.
2056  * The capture_list will otherwise be freed at request retire.
2057  */
2058 static void eb_capture_release(struct i915_execbuffer *eb)
2059 {
2060 	unsigned int j;
2061 
2062 	for_each_batch_create_order(eb, j) {
2063 		if (eb->capture_lists[j]) {
2064 			i915_request_free_capture_list(eb->capture_lists[j]);
2065 			eb->capture_lists[j] = NULL;
2066 		}
2067 	}
2068 }
2069 
2070 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2071 {
2072 	memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
2073 }
2074 
2075 #else
2076 
2077 static int eb_capture_stage(struct i915_execbuffer *eb)
2078 {
2079 	return 0;
2080 }
2081 
2082 static void eb_capture_commit(struct i915_execbuffer *eb)
2083 {
2084 }
2085 
2086 static void eb_capture_release(struct i915_execbuffer *eb)
2087 {
2088 }
2089 
2090 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2091 {
2092 }
2093 
2094 #endif
2095 
2096 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2097 {
2098 	const unsigned int count = eb->buffer_count;
2099 	unsigned int i = count;
2100 	int err = 0, j;
2101 
2102 	while (i--) {
2103 		struct eb_vma *ev = &eb->vma[i];
2104 		struct i915_vma *vma = ev->vma;
2105 		unsigned int flags = ev->flags;
2106 		struct drm_i915_gem_object *obj = vma->obj;
2107 
2108 		assert_vma_held(vma);
2109 
2110 		/*
2111 		 * If the GPU is not _reading_ through the CPU cache, we need
2112 		 * to make sure that any writes (both previous GPU writes from
2113 		 * before a change in snooping levels and normal CPU writes)
2114 		 * caught in that cache are flushed to main memory.
2115 		 *
2116 		 * We want to say
2117 		 *   obj->cache_dirty &&
2118 		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2119 		 * but gcc's optimiser doesn't handle that as well and emits
2120 		 * two jumps instead of one. Maybe one day...
2121 		 *
2122 		 * FIXME: There is also sync flushing in set_pages(), which
2123 		 * serves a different purpose(some of the time at least).
2124 		 *
2125 		 * We should consider:
2126 		 *
2127 		 *   1. Rip out the async flush code.
2128 		 *
2129 		 *   2. Or make the sync flushing use the async clflush path
2130 		 *   using mandatory fences underneath. Currently the below
2131 		 *   async flush happens after we bind the object.
2132 		 */
2133 		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2134 			if (i915_gem_clflush_object(obj, 0))
2135 				flags &= ~EXEC_OBJECT_ASYNC;
2136 		}
2137 
2138 		/* We only need to await on the first request */
2139 		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2140 			err = i915_request_await_object
2141 				(eb_find_first_request_added(eb), obj,
2142 				 flags & EXEC_OBJECT_WRITE);
2143 		}
2144 
2145 		for_each_batch_add_order(eb, j) {
2146 			if (err)
2147 				break;
2148 			if (!eb->requests[j])
2149 				continue;
2150 
2151 			err = _i915_vma_move_to_active(vma, eb->requests[j],
2152 						       j ? NULL :
2153 						       eb->composite_fence ?
2154 						       eb->composite_fence :
2155 						       &eb->requests[j]->fence,
2156 						       flags | __EXEC_OBJECT_NO_RESERVE |
2157 						       __EXEC_OBJECT_NO_REQUEST_AWAIT);
2158 		}
2159 	}
2160 
2161 #ifdef CONFIG_MMU_NOTIFIER
2162 	if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2163 		read_lock(&eb->i915->mm.notifier_lock);
2164 
2165 		/*
2166 		 * count is always at least 1, otherwise __EXEC_USERPTR_USED
2167 		 * could not have been set
2168 		 */
2169 		for (i = 0; i < count; i++) {
2170 			struct eb_vma *ev = &eb->vma[i];
2171 			struct drm_i915_gem_object *obj = ev->vma->obj;
2172 
2173 			if (!i915_gem_object_is_userptr(obj))
2174 				continue;
2175 
2176 			err = i915_gem_object_userptr_submit_done(obj);
2177 			if (err)
2178 				break;
2179 		}
2180 
2181 		read_unlock(&eb->i915->mm.notifier_lock);
2182 	}
2183 #endif
2184 
2185 	if (unlikely(err))
2186 		goto err_skip;
2187 
2188 	/* Unconditionally flush any chipset caches (for streaming writes). */
2189 	intel_gt_chipset_flush(eb->gt);
2190 	eb_capture_commit(eb);
2191 
2192 	return 0;
2193 
2194 err_skip:
2195 	for_each_batch_create_order(eb, j) {
2196 		if (!eb->requests[j])
2197 			break;
2198 
2199 		i915_request_set_error_once(eb->requests[j], err);
2200 	}
2201 	return err;
2202 }
2203 
2204 static int i915_gem_check_execbuffer(struct drm_i915_private *i915,
2205 				     struct drm_i915_gem_execbuffer2 *exec)
2206 {
2207 	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2208 		return -EINVAL;
2209 
2210 	/* Kernel clipping was a DRI1 misfeature */
2211 	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2212 			     I915_EXEC_USE_EXTENSIONS))) {
2213 		if (exec->num_cliprects || exec->cliprects_ptr)
2214 			return -EINVAL;
2215 	}
2216 
2217 	if (exec->DR4 == 0xffffffff) {
2218 		drm_dbg(&i915->drm, "UXA submitting garbage DR4, fixing up\n");
2219 		exec->DR4 = 0;
2220 	}
2221 	if (exec->DR1 || exec->DR4)
2222 		return -EINVAL;
2223 
2224 	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2225 		return -EINVAL;
2226 
2227 	return 0;
2228 }
2229 
2230 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2231 {
2232 	u32 *cs;
2233 	int i;
2234 
2235 	if (GRAPHICS_VER(rq->i915) != 7 || rq->engine->id != RCS0) {
2236 		drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n");
2237 		return -EINVAL;
2238 	}
2239 
2240 	cs = intel_ring_begin(rq, 4 * 2 + 2);
2241 	if (IS_ERR(cs))
2242 		return PTR_ERR(cs);
2243 
2244 	*cs++ = MI_LOAD_REGISTER_IMM(4);
2245 	for (i = 0; i < 4; i++) {
2246 		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2247 		*cs++ = 0;
2248 	}
2249 	*cs++ = MI_NOOP;
2250 	intel_ring_advance(rq, cs);
2251 
2252 	return 0;
2253 }
2254 
2255 static struct i915_vma *
2256 shadow_batch_pin(struct i915_execbuffer *eb,
2257 		 struct drm_i915_gem_object *obj,
2258 		 struct i915_address_space *vm,
2259 		 unsigned int flags)
2260 {
2261 	struct i915_vma *vma;
2262 	int err;
2263 
2264 	vma = i915_vma_instance(obj, vm, NULL);
2265 	if (IS_ERR(vma))
2266 		return vma;
2267 
2268 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE);
2269 	if (err)
2270 		return ERR_PTR(err);
2271 
2272 	return vma;
2273 }
2274 
2275 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2276 {
2277 	/*
2278 	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2279 	 * batch" bit. Hence we need to pin secure batches into the global gtt.
2280 	 * hsw should have this fixed, but bdw mucks it up again. */
2281 	if (eb->batch_flags & I915_DISPATCH_SECURE)
2282 		return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE);
2283 
2284 	return NULL;
2285 }
2286 
2287 static int eb_parse(struct i915_execbuffer *eb)
2288 {
2289 	struct drm_i915_private *i915 = eb->i915;
2290 	struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2291 	struct i915_vma *shadow, *trampoline, *batch;
2292 	unsigned long len;
2293 	int err;
2294 
2295 	if (!eb_use_cmdparser(eb)) {
2296 		batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
2297 		if (IS_ERR(batch))
2298 			return PTR_ERR(batch);
2299 
2300 		goto secure_batch;
2301 	}
2302 
2303 	if (intel_context_is_parallel(eb->context))
2304 		return -EINVAL;
2305 
2306 	len = eb->batch_len[0];
2307 	if (!CMDPARSER_USES_GGTT(eb->i915)) {
2308 		/*
2309 		 * ppGTT backed shadow buffers must be mapped RO, to prevent
2310 		 * post-scan tampering
2311 		 */
2312 		if (!eb->context->vm->has_read_only) {
2313 			drm_dbg(&i915->drm,
2314 				"Cannot prevent post-scan tampering without RO capable vm\n");
2315 			return -EINVAL;
2316 		}
2317 	} else {
2318 		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2319 	}
2320 	if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
2321 		return -EINVAL;
2322 
2323 	if (!pool) {
2324 		pool = intel_gt_get_buffer_pool(eb->gt, len,
2325 						I915_MAP_WB);
2326 		if (IS_ERR(pool))
2327 			return PTR_ERR(pool);
2328 		eb->batch_pool = pool;
2329 	}
2330 
2331 	err = i915_gem_object_lock(pool->obj, &eb->ww);
2332 	if (err)
2333 		return err;
2334 
2335 	shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2336 	if (IS_ERR(shadow))
2337 		return PTR_ERR(shadow);
2338 
2339 	intel_gt_buffer_pool_mark_used(pool);
2340 	i915_gem_object_set_readonly(shadow->obj);
2341 	shadow->private = pool;
2342 
2343 	trampoline = NULL;
2344 	if (CMDPARSER_USES_GGTT(eb->i915)) {
2345 		trampoline = shadow;
2346 
2347 		shadow = shadow_batch_pin(eb, pool->obj,
2348 					  &eb->gt->ggtt->vm,
2349 					  PIN_GLOBAL);
2350 		if (IS_ERR(shadow))
2351 			return PTR_ERR(shadow);
2352 
2353 		shadow->private = pool;
2354 
2355 		eb->batch_flags |= I915_DISPATCH_SECURE;
2356 	}
2357 
2358 	batch = eb_dispatch_secure(eb, shadow);
2359 	if (IS_ERR(batch))
2360 		return PTR_ERR(batch);
2361 
2362 	err = dma_resv_reserve_fences(shadow->obj->base.resv, 1);
2363 	if (err)
2364 		return err;
2365 
2366 	err = intel_engine_cmd_parser(eb->context->engine,
2367 				      eb->batches[0]->vma,
2368 				      eb->batch_start_offset,
2369 				      eb->batch_len[0],
2370 				      shadow, trampoline);
2371 	if (err)
2372 		return err;
2373 
2374 	eb->batches[0] = &eb->vma[eb->buffer_count++];
2375 	eb->batches[0]->vma = i915_vma_get(shadow);
2376 	eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2377 
2378 	eb->trampoline = trampoline;
2379 	eb->batch_start_offset = 0;
2380 
2381 secure_batch:
2382 	if (batch) {
2383 		if (intel_context_is_parallel(eb->context))
2384 			return -EINVAL;
2385 
2386 		eb->batches[0] = &eb->vma[eb->buffer_count++];
2387 		eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2388 		eb->batches[0]->vma = i915_vma_get(batch);
2389 	}
2390 	return 0;
2391 }
2392 
2393 static int eb_request_submit(struct i915_execbuffer *eb,
2394 			     struct i915_request *rq,
2395 			     struct i915_vma *batch,
2396 			     u64 batch_len)
2397 {
2398 	int err;
2399 
2400 	if (intel_context_nopreempt(rq->context))
2401 		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
2402 
2403 	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2404 		err = i915_reset_gen7_sol_offsets(rq);
2405 		if (err)
2406 			return err;
2407 	}
2408 
2409 	/*
2410 	 * After we completed waiting for other engines (using HW semaphores)
2411 	 * then we can signal that this request/batch is ready to run. This
2412 	 * allows us to determine if the batch is still waiting on the GPU
2413 	 * or actually running by checking the breadcrumb.
2414 	 */
2415 	if (rq->context->engine->emit_init_breadcrumb) {
2416 		err = rq->context->engine->emit_init_breadcrumb(rq);
2417 		if (err)
2418 			return err;
2419 	}
2420 
2421 	err = rq->context->engine->emit_bb_start(rq,
2422 						 i915_vma_offset(batch) +
2423 						 eb->batch_start_offset,
2424 						 batch_len,
2425 						 eb->batch_flags);
2426 	if (err)
2427 		return err;
2428 
2429 	if (eb->trampoline) {
2430 		GEM_BUG_ON(intel_context_is_parallel(rq->context));
2431 		GEM_BUG_ON(eb->batch_start_offset);
2432 		err = rq->context->engine->emit_bb_start(rq,
2433 							 i915_vma_offset(eb->trampoline) +
2434 							 batch_len, 0, 0);
2435 		if (err)
2436 			return err;
2437 	}
2438 
2439 	return 0;
2440 }
2441 
2442 static int eb_submit(struct i915_execbuffer *eb)
2443 {
2444 	unsigned int i;
2445 	int err;
2446 
2447 	err = eb_move_to_gpu(eb);
2448 
2449 	for_each_batch_create_order(eb, i) {
2450 		if (!eb->requests[i])
2451 			break;
2452 
2453 		trace_i915_request_queue(eb->requests[i], eb->batch_flags);
2454 		if (!err)
2455 			err = eb_request_submit(eb, eb->requests[i],
2456 						eb->batches[i]->vma,
2457 						eb->batch_len[i]);
2458 	}
2459 
2460 	return err;
2461 }
2462 
2463 /*
2464  * Find one BSD ring to dispatch the corresponding BSD command.
2465  * The engine index is returned.
2466  */
2467 static unsigned int
2468 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2469 			 struct drm_file *file)
2470 {
2471 	struct drm_i915_file_private *file_priv = file->driver_priv;
2472 
2473 	/* Check whether the file_priv has already selected one ring. */
2474 	if ((int)file_priv->bsd_engine < 0)
2475 		file_priv->bsd_engine =
2476 			get_random_u32_below(dev_priv->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO]);
2477 
2478 	return file_priv->bsd_engine;
2479 }
2480 
2481 static const enum intel_engine_id user_ring_map[] = {
2482 	[I915_EXEC_DEFAULT]	= RCS0,
2483 	[I915_EXEC_RENDER]	= RCS0,
2484 	[I915_EXEC_BLT]		= BCS0,
2485 	[I915_EXEC_BSD]		= VCS0,
2486 	[I915_EXEC_VEBOX]	= VECS0
2487 };
2488 
2489 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2490 {
2491 	struct intel_ring *ring = ce->ring;
2492 	struct intel_timeline *tl = ce->timeline;
2493 	struct i915_request *rq;
2494 
2495 	/*
2496 	 * Completely unscientific finger-in-the-air estimates for suitable
2497 	 * maximum user request size (to avoid blocking) and then backoff.
2498 	 */
2499 	if (intel_ring_update_space(ring) >= PAGE_SIZE)
2500 		return NULL;
2501 
2502 	/*
2503 	 * Find a request that after waiting upon, there will be at least half
2504 	 * the ring available. The hysteresis allows us to compete for the
2505 	 * shared ring and should mean that we sleep less often prior to
2506 	 * claiming our resources, but not so long that the ring completely
2507 	 * drains before we can submit our next request.
2508 	 */
2509 	list_for_each_entry(rq, &tl->requests, link) {
2510 		if (rq->ring != ring)
2511 			continue;
2512 
2513 		if (__intel_ring_space(rq->postfix,
2514 				       ring->emit, ring->size) > ring->size / 2)
2515 			break;
2516 	}
2517 	if (&rq->link == &tl->requests)
2518 		return NULL; /* weird, we will check again later for real */
2519 
2520 	return i915_request_get(rq);
2521 }
2522 
2523 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
2524 			   bool throttle)
2525 {
2526 	struct intel_timeline *tl;
2527 	struct i915_request *rq = NULL;
2528 
2529 	/*
2530 	 * Take a local wakeref for preparing to dispatch the execbuf as
2531 	 * we expect to access the hardware fairly frequently in the
2532 	 * process, and require the engine to be kept awake between accesses.
2533 	 * Upon dispatch, we acquire another prolonged wakeref that we hold
2534 	 * until the timeline is idle, which in turn releases the wakeref
2535 	 * taken on the engine, and the parent device.
2536 	 */
2537 	tl = intel_context_timeline_lock(ce);
2538 	if (IS_ERR(tl))
2539 		return PTR_ERR(tl);
2540 
2541 	intel_context_enter(ce);
2542 	if (throttle)
2543 		rq = eb_throttle(eb, ce);
2544 	intel_context_timeline_unlock(tl);
2545 
2546 	if (rq) {
2547 		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2548 		long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
2549 
2550 		if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2551 				      timeout) < 0) {
2552 			i915_request_put(rq);
2553 
2554 			/*
2555 			 * Error path, cannot use intel_context_timeline_lock as
2556 			 * that is user interruptable and this clean up step
2557 			 * must be done.
2558 			 */
2559 			mutex_lock(&ce->timeline->mutex);
2560 			intel_context_exit(ce);
2561 			mutex_unlock(&ce->timeline->mutex);
2562 
2563 			if (nonblock)
2564 				return -EWOULDBLOCK;
2565 			else
2566 				return -EINTR;
2567 		}
2568 		i915_request_put(rq);
2569 	}
2570 
2571 	return 0;
2572 }
2573 
2574 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2575 {
2576 	struct intel_context *ce = eb->context, *child;
2577 	int err;
2578 	int i = 0, j = 0;
2579 
2580 	GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2581 
2582 	if (unlikely(intel_context_is_banned(ce)))
2583 		return -EIO;
2584 
2585 	/*
2586 	 * Pinning the contexts may generate requests in order to acquire
2587 	 * GGTT space, so do this first before we reserve a seqno for
2588 	 * ourselves.
2589 	 */
2590 	err = intel_context_pin_ww(ce, &eb->ww);
2591 	if (err)
2592 		return err;
2593 	for_each_child(ce, child) {
2594 		err = intel_context_pin_ww(child, &eb->ww);
2595 		GEM_BUG_ON(err);	/* perma-pinned should incr a counter */
2596 	}
2597 
2598 	for_each_child(ce, child) {
2599 		err = eb_pin_timeline(eb, child, throttle);
2600 		if (err)
2601 			goto unwind;
2602 		++i;
2603 	}
2604 	err = eb_pin_timeline(eb, ce, throttle);
2605 	if (err)
2606 		goto unwind;
2607 
2608 	eb->args->flags |= __EXEC_ENGINE_PINNED;
2609 	return 0;
2610 
2611 unwind:
2612 	for_each_child(ce, child) {
2613 		if (j++ < i) {
2614 			mutex_lock(&child->timeline->mutex);
2615 			intel_context_exit(child);
2616 			mutex_unlock(&child->timeline->mutex);
2617 		}
2618 	}
2619 	for_each_child(ce, child)
2620 		intel_context_unpin(child);
2621 	intel_context_unpin(ce);
2622 	return err;
2623 }
2624 
2625 static void eb_unpin_engine(struct i915_execbuffer *eb)
2626 {
2627 	struct intel_context *ce = eb->context, *child;
2628 
2629 	if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2630 		return;
2631 
2632 	eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2633 
2634 	for_each_child(ce, child) {
2635 		mutex_lock(&child->timeline->mutex);
2636 		intel_context_exit(child);
2637 		mutex_unlock(&child->timeline->mutex);
2638 
2639 		intel_context_unpin(child);
2640 	}
2641 
2642 	mutex_lock(&ce->timeline->mutex);
2643 	intel_context_exit(ce);
2644 	mutex_unlock(&ce->timeline->mutex);
2645 
2646 	intel_context_unpin(ce);
2647 }
2648 
2649 static unsigned int
2650 eb_select_legacy_ring(struct i915_execbuffer *eb)
2651 {
2652 	struct drm_i915_private *i915 = eb->i915;
2653 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2654 	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2655 
2656 	if (user_ring_id != I915_EXEC_BSD &&
2657 	    (args->flags & I915_EXEC_BSD_MASK)) {
2658 		drm_dbg(&i915->drm,
2659 			"execbuf with non bsd ring but with invalid "
2660 			"bsd dispatch flags: %d\n", (int)(args->flags));
2661 		return -1;
2662 	}
2663 
2664 	if (user_ring_id == I915_EXEC_BSD &&
2665 	    i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO] > 1) {
2666 		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2667 
2668 		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2669 			bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2670 		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2671 			   bsd_idx <= I915_EXEC_BSD_RING2) {
2672 			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2673 			bsd_idx--;
2674 		} else {
2675 			drm_dbg(&i915->drm,
2676 				"execbuf with unknown bsd ring: %u\n",
2677 				bsd_idx);
2678 			return -1;
2679 		}
2680 
2681 		return _VCS(bsd_idx);
2682 	}
2683 
2684 	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2685 		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2686 			user_ring_id);
2687 		return -1;
2688 	}
2689 
2690 	return user_ring_map[user_ring_id];
2691 }
2692 
2693 static int
2694 eb_select_engine(struct i915_execbuffer *eb)
2695 {
2696 	struct intel_context *ce, *child;
2697 	struct intel_gt *gt;
2698 	unsigned int idx;
2699 	int err;
2700 
2701 	if (i915_gem_context_user_engines(eb->gem_context))
2702 		idx = eb->args->flags & I915_EXEC_RING_MASK;
2703 	else
2704 		idx = eb_select_legacy_ring(eb);
2705 
2706 	ce = i915_gem_context_get_engine(eb->gem_context, idx);
2707 	if (IS_ERR(ce))
2708 		return PTR_ERR(ce);
2709 
2710 	if (intel_context_is_parallel(ce)) {
2711 		if (eb->buffer_count < ce->parallel.number_children + 1) {
2712 			intel_context_put(ce);
2713 			return -EINVAL;
2714 		}
2715 		if (eb->batch_start_offset || eb->args->batch_len) {
2716 			intel_context_put(ce);
2717 			return -EINVAL;
2718 		}
2719 	}
2720 	eb->num_batches = ce->parallel.number_children + 1;
2721 	gt = ce->engine->gt;
2722 
2723 	for_each_child(ce, child)
2724 		intel_context_get(child);
2725 	eb->wakeref = intel_gt_pm_get(ce->engine->gt);
2726 	/*
2727 	 * Keep GT0 active on MTL so that i915_vma_parked() doesn't
2728 	 * free VMAs while execbuf ioctl is validating VMAs.
2729 	 */
2730 	if (gt->info.id)
2731 		eb->wakeref_gt0 = intel_gt_pm_get(to_gt(gt->i915));
2732 
2733 	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2734 		err = intel_context_alloc_state(ce);
2735 		if (err)
2736 			goto err;
2737 	}
2738 	for_each_child(ce, child) {
2739 		if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
2740 			err = intel_context_alloc_state(child);
2741 			if (err)
2742 				goto err;
2743 		}
2744 	}
2745 
2746 	/*
2747 	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2748 	 * EIO if the GPU is already wedged.
2749 	 */
2750 	err = intel_gt_terminally_wedged(ce->engine->gt);
2751 	if (err)
2752 		goto err;
2753 
2754 	if (!i915_vm_tryget(ce->vm)) {
2755 		err = -ENOENT;
2756 		goto err;
2757 	}
2758 
2759 	eb->context = ce;
2760 	eb->gt = ce->engine->gt;
2761 
2762 	/*
2763 	 * Make sure engine pool stays alive even if we call intel_context_put
2764 	 * during ww handling. The pool is destroyed when last pm reference
2765 	 * is dropped, which breaks our -EDEADLK handling.
2766 	 */
2767 	return err;
2768 
2769 err:
2770 	if (gt->info.id)
2771 		intel_gt_pm_put(to_gt(gt->i915), eb->wakeref_gt0);
2772 
2773 	intel_gt_pm_put(ce->engine->gt, eb->wakeref);
2774 	for_each_child(ce, child)
2775 		intel_context_put(child);
2776 	intel_context_put(ce);
2777 	return err;
2778 }
2779 
2780 static void
2781 eb_put_engine(struct i915_execbuffer *eb)
2782 {
2783 	struct intel_context *child;
2784 
2785 	i915_vm_put(eb->context->vm);
2786 	/*
2787 	 * This works in conjunction with eb_select_engine() to prevent
2788 	 * i915_vma_parked() from interfering while execbuf validates vmas.
2789 	 */
2790 	if (eb->gt->info.id)
2791 		intel_gt_pm_put(to_gt(eb->gt->i915), eb->wakeref_gt0);
2792 	intel_gt_pm_put(eb->context->engine->gt, eb->wakeref);
2793 	for_each_child(eb->context, child)
2794 		intel_context_put(child);
2795 	intel_context_put(eb->context);
2796 }
2797 
2798 static void
2799 __free_fence_array(struct eb_fence *fences, unsigned int n)
2800 {
2801 	while (n--) {
2802 		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2803 		dma_fence_put(fences[n].dma_fence);
2804 		dma_fence_chain_free(fences[n].chain_fence);
2805 	}
2806 	kvfree(fences);
2807 }
2808 
2809 static int
2810 add_timeline_fence_array(struct i915_execbuffer *eb,
2811 			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2812 {
2813 	struct drm_i915_gem_exec_fence __user *user_fences;
2814 	u64 __user *user_values;
2815 	struct eb_fence *f;
2816 	u64 nfences;
2817 	int err = 0;
2818 
2819 	nfences = timeline_fences->fence_count;
2820 	if (!nfences)
2821 		return 0;
2822 
2823 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2824 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2825 	if (nfences > min_t(unsigned long,
2826 			    ULONG_MAX / sizeof(*user_fences),
2827 			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2828 		return -EINVAL;
2829 
2830 	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2831 	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2832 		return -EFAULT;
2833 
2834 	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2835 	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2836 		return -EFAULT;
2837 
2838 	f = krealloc(eb->fences,
2839 		     (eb->num_fences + nfences) * sizeof(*f),
2840 		     __GFP_NOWARN | GFP_KERNEL);
2841 	if (!f)
2842 		return -ENOMEM;
2843 
2844 	eb->fences = f;
2845 	f += eb->num_fences;
2846 
2847 	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2848 		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2849 
2850 	while (nfences--) {
2851 		struct drm_i915_gem_exec_fence user_fence;
2852 		struct drm_syncobj *syncobj;
2853 		struct dma_fence *fence = NULL;
2854 		u64 point;
2855 
2856 		if (__copy_from_user(&user_fence,
2857 				     user_fences++,
2858 				     sizeof(user_fence)))
2859 			return -EFAULT;
2860 
2861 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2862 			return -EINVAL;
2863 
2864 		if (__get_user(point, user_values++))
2865 			return -EFAULT;
2866 
2867 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2868 		if (!syncobj) {
2869 			drm_dbg(&eb->i915->drm,
2870 				"Invalid syncobj handle provided\n");
2871 			return -ENOENT;
2872 		}
2873 
2874 		fence = drm_syncobj_fence_get(syncobj);
2875 
2876 		if (!fence && user_fence.flags &&
2877 		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2878 			drm_dbg(&eb->i915->drm,
2879 				"Syncobj handle has no fence\n");
2880 			drm_syncobj_put(syncobj);
2881 			return -EINVAL;
2882 		}
2883 
2884 		if (fence)
2885 			err = dma_fence_chain_find_seqno(&fence, point);
2886 
2887 		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2888 			drm_dbg(&eb->i915->drm,
2889 				"Syncobj handle missing requested point %llu\n",
2890 				point);
2891 			dma_fence_put(fence);
2892 			drm_syncobj_put(syncobj);
2893 			return err;
2894 		}
2895 
2896 		/*
2897 		 * A point might have been signaled already and
2898 		 * garbage collected from the timeline. In this case
2899 		 * just ignore the point and carry on.
2900 		 */
2901 		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2902 			drm_syncobj_put(syncobj);
2903 			continue;
2904 		}
2905 
2906 		/*
2907 		 * For timeline syncobjs we need to preallocate chains for
2908 		 * later signaling.
2909 		 */
2910 		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2911 			/*
2912 			 * Waiting and signaling the same point (when point !=
2913 			 * 0) would break the timeline.
2914 			 */
2915 			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2916 				drm_dbg(&eb->i915->drm,
2917 					"Trying to wait & signal the same timeline point.\n");
2918 				dma_fence_put(fence);
2919 				drm_syncobj_put(syncobj);
2920 				return -EINVAL;
2921 			}
2922 
2923 			f->chain_fence = dma_fence_chain_alloc();
2924 			if (!f->chain_fence) {
2925 				drm_syncobj_put(syncobj);
2926 				dma_fence_put(fence);
2927 				return -ENOMEM;
2928 			}
2929 		} else {
2930 			f->chain_fence = NULL;
2931 		}
2932 
2933 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2934 		f->dma_fence = fence;
2935 		f->value = point;
2936 		f++;
2937 		eb->num_fences++;
2938 	}
2939 
2940 	return 0;
2941 }
2942 
2943 static int add_fence_array(struct i915_execbuffer *eb)
2944 {
2945 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2946 	struct drm_i915_gem_exec_fence __user *user;
2947 	unsigned long num_fences = args->num_cliprects;
2948 	struct eb_fence *f;
2949 
2950 	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2951 		return 0;
2952 
2953 	if (!num_fences)
2954 		return 0;
2955 
2956 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2957 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2958 	if (num_fences > min_t(unsigned long,
2959 			       ULONG_MAX / sizeof(*user),
2960 			       SIZE_MAX / sizeof(*f) - eb->num_fences))
2961 		return -EINVAL;
2962 
2963 	user = u64_to_user_ptr(args->cliprects_ptr);
2964 	if (!access_ok(user, num_fences * sizeof(*user)))
2965 		return -EFAULT;
2966 
2967 	f = krealloc(eb->fences,
2968 		     (eb->num_fences + num_fences) * sizeof(*f),
2969 		     __GFP_NOWARN | GFP_KERNEL);
2970 	if (!f)
2971 		return -ENOMEM;
2972 
2973 	eb->fences = f;
2974 	f += eb->num_fences;
2975 	while (num_fences--) {
2976 		struct drm_i915_gem_exec_fence user_fence;
2977 		struct drm_syncobj *syncobj;
2978 		struct dma_fence *fence = NULL;
2979 
2980 		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2981 			return -EFAULT;
2982 
2983 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2984 			return -EINVAL;
2985 
2986 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2987 		if (!syncobj) {
2988 			drm_dbg(&eb->i915->drm,
2989 				"Invalid syncobj handle provided\n");
2990 			return -ENOENT;
2991 		}
2992 
2993 		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2994 			fence = drm_syncobj_fence_get(syncobj);
2995 			if (!fence) {
2996 				drm_dbg(&eb->i915->drm,
2997 					"Syncobj handle has no fence\n");
2998 				drm_syncobj_put(syncobj);
2999 				return -EINVAL;
3000 			}
3001 		}
3002 
3003 		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
3004 			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
3005 
3006 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
3007 		f->dma_fence = fence;
3008 		f->value = 0;
3009 		f->chain_fence = NULL;
3010 		f++;
3011 		eb->num_fences++;
3012 	}
3013 
3014 	return 0;
3015 }
3016 
3017 static void put_fence_array(struct eb_fence *fences, int num_fences)
3018 {
3019 	if (fences)
3020 		__free_fence_array(fences, num_fences);
3021 }
3022 
3023 static int
3024 await_fence_array(struct i915_execbuffer *eb,
3025 		  struct i915_request *rq)
3026 {
3027 	unsigned int n;
3028 	int err;
3029 
3030 	for (n = 0; n < eb->num_fences; n++) {
3031 		if (!eb->fences[n].dma_fence)
3032 			continue;
3033 
3034 		err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
3035 		if (err < 0)
3036 			return err;
3037 	}
3038 
3039 	return 0;
3040 }
3041 
3042 static void signal_fence_array(const struct i915_execbuffer *eb,
3043 			       struct dma_fence * const fence)
3044 {
3045 	unsigned int n;
3046 
3047 	for (n = 0; n < eb->num_fences; n++) {
3048 		struct drm_syncobj *syncobj;
3049 		unsigned int flags;
3050 
3051 		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3052 		if (!(flags & I915_EXEC_FENCE_SIGNAL))
3053 			continue;
3054 
3055 		if (eb->fences[n].chain_fence) {
3056 			drm_syncobj_add_point(syncobj,
3057 					      eb->fences[n].chain_fence,
3058 					      fence,
3059 					      eb->fences[n].value);
3060 			/*
3061 			 * The chain's ownership is transferred to the
3062 			 * timeline.
3063 			 */
3064 			eb->fences[n].chain_fence = NULL;
3065 		} else {
3066 			drm_syncobj_replace_fence(syncobj, fence);
3067 		}
3068 	}
3069 }
3070 
3071 static int
3072 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3073 {
3074 	struct i915_execbuffer *eb = data;
3075 	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3076 
3077 	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3078 		return -EFAULT;
3079 
3080 	return add_timeline_fence_array(eb, &timeline_fences);
3081 }
3082 
3083 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3084 {
3085 	struct i915_request *rq, *rn;
3086 
3087 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
3088 		if (rq == end || !i915_request_retire(rq))
3089 			break;
3090 }
3091 
3092 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
3093 			  int err, bool last_parallel)
3094 {
3095 	struct intel_timeline * const tl = i915_request_timeline(rq);
3096 	struct i915_sched_attr attr = {};
3097 	struct i915_request *prev;
3098 
3099 	lockdep_assert_held(&tl->mutex);
3100 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
3101 
3102 	trace_i915_request_add(rq);
3103 
3104 	prev = __i915_request_commit(rq);
3105 
3106 	/* Check that the context wasn't destroyed before submission */
3107 	if (likely(!intel_context_is_closed(eb->context))) {
3108 		attr = eb->gem_context->sched;
3109 	} else {
3110 		/* Serialise with context_close via the add_to_timeline */
3111 		i915_request_set_error_once(rq, -ENOENT);
3112 		__i915_request_skip(rq);
3113 		err = -ENOENT; /* override any transient errors */
3114 	}
3115 
3116 	if (intel_context_is_parallel(eb->context)) {
3117 		if (err) {
3118 			__i915_request_skip(rq);
3119 			set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
3120 				&rq->fence.flags);
3121 		}
3122 		if (last_parallel)
3123 			set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
3124 				&rq->fence.flags);
3125 	}
3126 
3127 	__i915_request_queue(rq, &attr);
3128 
3129 	/* Try to clean up the client's timeline after submitting the request */
3130 	if (prev)
3131 		retire_requests(tl, prev);
3132 
3133 	mutex_unlock(&tl->mutex);
3134 
3135 	return err;
3136 }
3137 
3138 static int eb_requests_add(struct i915_execbuffer *eb, int err)
3139 {
3140 	int i;
3141 
3142 	/*
3143 	 * We iterate in reverse order of creation to release timeline mutexes in
3144 	 * same order.
3145 	 */
3146 	for_each_batch_add_order(eb, i) {
3147 		struct i915_request *rq = eb->requests[i];
3148 
3149 		if (!rq)
3150 			continue;
3151 		err |= eb_request_add(eb, rq, err, i == 0);
3152 	}
3153 
3154 	return err;
3155 }
3156 
3157 static const i915_user_extension_fn execbuf_extensions[] = {
3158 	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3159 };
3160 
3161 static int
3162 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3163 			  struct i915_execbuffer *eb)
3164 {
3165 	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3166 		return 0;
3167 
3168 	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3169 	 * have another flag also using it at the same time.
3170 	 */
3171 	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3172 		return -EINVAL;
3173 
3174 	if (args->num_cliprects != 0)
3175 		return -EINVAL;
3176 
3177 	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3178 				    execbuf_extensions,
3179 				    ARRAY_SIZE(execbuf_extensions),
3180 				    eb);
3181 }
3182 
3183 static void eb_requests_get(struct i915_execbuffer *eb)
3184 {
3185 	unsigned int i;
3186 
3187 	for_each_batch_create_order(eb, i) {
3188 		if (!eb->requests[i])
3189 			break;
3190 
3191 		i915_request_get(eb->requests[i]);
3192 	}
3193 }
3194 
3195 static void eb_requests_put(struct i915_execbuffer *eb)
3196 {
3197 	unsigned int i;
3198 
3199 	for_each_batch_create_order(eb, i) {
3200 		if (!eb->requests[i])
3201 			break;
3202 
3203 		i915_request_put(eb->requests[i]);
3204 	}
3205 }
3206 
3207 static struct sync_file *
3208 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
3209 {
3210 	struct sync_file *out_fence = NULL;
3211 	struct dma_fence_array *fence_array;
3212 	struct dma_fence **fences;
3213 	unsigned int i;
3214 
3215 	GEM_BUG_ON(!intel_context_is_parent(eb->context));
3216 
3217 	fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
3218 	if (!fences)
3219 		return ERR_PTR(-ENOMEM);
3220 
3221 	for_each_batch_create_order(eb, i) {
3222 		fences[i] = &eb->requests[i]->fence;
3223 		__set_bit(I915_FENCE_FLAG_COMPOSITE,
3224 			  &eb->requests[i]->fence.flags);
3225 	}
3226 
3227 	fence_array = dma_fence_array_create(eb->num_batches,
3228 					     fences,
3229 					     eb->context->parallel.fence_context,
3230 					     eb->context->parallel.seqno++,
3231 					     false);
3232 	if (!fence_array) {
3233 		kfree(fences);
3234 		return ERR_PTR(-ENOMEM);
3235 	}
3236 
3237 	/* Move ownership to the dma_fence_array created above */
3238 	for_each_batch_create_order(eb, i)
3239 		dma_fence_get(fences[i]);
3240 
3241 	if (out_fence_fd != -1) {
3242 		out_fence = sync_file_create(&fence_array->base);
3243 		/* sync_file now owns fence_arry, drop creation ref */
3244 		dma_fence_put(&fence_array->base);
3245 		if (!out_fence)
3246 			return ERR_PTR(-ENOMEM);
3247 	}
3248 
3249 	eb->composite_fence = &fence_array->base;
3250 
3251 	return out_fence;
3252 }
3253 
3254 static struct sync_file *
3255 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
3256 	      struct dma_fence *in_fence, int out_fence_fd)
3257 {
3258 	struct sync_file *out_fence = NULL;
3259 	int err;
3260 
3261 	if (unlikely(eb->gem_context->syncobj)) {
3262 		struct dma_fence *fence;
3263 
3264 		fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
3265 		err = i915_request_await_dma_fence(rq, fence);
3266 		dma_fence_put(fence);
3267 		if (err)
3268 			return ERR_PTR(err);
3269 	}
3270 
3271 	if (in_fence) {
3272 		if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
3273 			err = i915_request_await_execution(rq, in_fence);
3274 		else
3275 			err = i915_request_await_dma_fence(rq, in_fence);
3276 		if (err < 0)
3277 			return ERR_PTR(err);
3278 	}
3279 
3280 	if (eb->fences) {
3281 		err = await_fence_array(eb, rq);
3282 		if (err)
3283 			return ERR_PTR(err);
3284 	}
3285 
3286 	if (intel_context_is_parallel(eb->context)) {
3287 		out_fence = eb_composite_fence_create(eb, out_fence_fd);
3288 		if (IS_ERR(out_fence))
3289 			return ERR_PTR(-ENOMEM);
3290 	} else if (out_fence_fd != -1) {
3291 		out_fence = sync_file_create(&rq->fence);
3292 		if (!out_fence)
3293 			return ERR_PTR(-ENOMEM);
3294 	}
3295 
3296 	return out_fence;
3297 }
3298 
3299 static struct intel_context *
3300 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
3301 {
3302 	struct intel_context *child;
3303 
3304 	if (likely(context_number == 0))
3305 		return eb->context;
3306 
3307 	for_each_child(eb->context, child)
3308 		if (!--context_number)
3309 			return child;
3310 
3311 	GEM_BUG_ON("Context not found");
3312 
3313 	return NULL;
3314 }
3315 
3316 static struct sync_file *
3317 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
3318 		   int out_fence_fd)
3319 {
3320 	struct sync_file *out_fence = NULL;
3321 	unsigned int i;
3322 
3323 	for_each_batch_create_order(eb, i) {
3324 		/* Allocate a request for this batch buffer nice and early. */
3325 		eb->requests[i] = i915_request_create(eb_find_context(eb, i));
3326 		if (IS_ERR(eb->requests[i])) {
3327 			out_fence = ERR_CAST(eb->requests[i]);
3328 			eb->requests[i] = NULL;
3329 			return out_fence;
3330 		}
3331 
3332 		/*
3333 		 * Only the first request added (committed to backend) has to
3334 		 * take the in fences into account as all subsequent requests
3335 		 * will have fences inserted inbetween them.
3336 		 */
3337 		if (i + 1 == eb->num_batches) {
3338 			out_fence = eb_fences_add(eb, eb->requests[i],
3339 						  in_fence, out_fence_fd);
3340 			if (IS_ERR(out_fence))
3341 				return out_fence;
3342 		}
3343 
3344 		/*
3345 		 * Not really on stack, but we don't want to call
3346 		 * kfree on the batch_snapshot when we put it, so use the
3347 		 * _onstack interface.
3348 		 */
3349 		if (eb->batches[i]->vma)
3350 			eb->requests[i]->batch_res =
3351 				i915_vma_resource_get(eb->batches[i]->vma->resource);
3352 		if (eb->batch_pool) {
3353 			GEM_BUG_ON(intel_context_is_parallel(eb->context));
3354 			intel_gt_buffer_pool_mark_active(eb->batch_pool,
3355 							 eb->requests[i]);
3356 		}
3357 	}
3358 
3359 	return out_fence;
3360 }
3361 
3362 static int
3363 i915_gem_do_execbuffer(struct drm_device *dev,
3364 		       struct drm_file *file,
3365 		       struct drm_i915_gem_execbuffer2 *args,
3366 		       struct drm_i915_gem_exec_object2 *exec)
3367 {
3368 	struct drm_i915_private *i915 = to_i915(dev);
3369 	struct i915_execbuffer eb;
3370 	struct dma_fence *in_fence = NULL;
3371 	struct sync_file *out_fence = NULL;
3372 	int out_fence_fd = -1;
3373 	int err;
3374 
3375 	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3376 	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3377 		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3378 
3379 	eb.i915 = i915;
3380 	eb.file = file;
3381 	eb.args = args;
3382 	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3383 		args->flags |= __EXEC_HAS_RELOC;
3384 
3385 	eb.exec = exec;
3386 	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3387 	eb.vma[0].vma = NULL;
3388 	eb.batch_pool = NULL;
3389 
3390 	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3391 	reloc_cache_init(&eb.reloc_cache, eb.i915);
3392 
3393 	eb.buffer_count = args->buffer_count;
3394 	eb.batch_start_offset = args->batch_start_offset;
3395 	eb.trampoline = NULL;
3396 
3397 	eb.fences = NULL;
3398 	eb.num_fences = 0;
3399 
3400 	eb_capture_list_clear(&eb);
3401 
3402 	memset(eb.requests, 0, sizeof(struct i915_request *) *
3403 	       ARRAY_SIZE(eb.requests));
3404 	eb.composite_fence = NULL;
3405 
3406 	eb.batch_flags = 0;
3407 	if (args->flags & I915_EXEC_SECURE) {
3408 		if (GRAPHICS_VER(i915) >= 11)
3409 			return -ENODEV;
3410 
3411 		/* Return -EPERM to trigger fallback code on old binaries. */
3412 		if (!HAS_SECURE_BATCHES(i915))
3413 			return -EPERM;
3414 
3415 		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3416 			return -EPERM;
3417 
3418 		eb.batch_flags |= I915_DISPATCH_SECURE;
3419 	}
3420 	if (args->flags & I915_EXEC_IS_PINNED)
3421 		eb.batch_flags |= I915_DISPATCH_PINNED;
3422 
3423 	err = parse_execbuf2_extensions(args, &eb);
3424 	if (err)
3425 		goto err_ext;
3426 
3427 	err = add_fence_array(&eb);
3428 	if (err)
3429 		goto err_ext;
3430 
3431 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3432 	if (args->flags & IN_FENCES) {
3433 		if ((args->flags & IN_FENCES) == IN_FENCES)
3434 			return -EINVAL;
3435 
3436 		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3437 		if (!in_fence) {
3438 			err = -EINVAL;
3439 			goto err_ext;
3440 		}
3441 	}
3442 #undef IN_FENCES
3443 
3444 	if (args->flags & I915_EXEC_FENCE_OUT) {
3445 		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3446 		if (out_fence_fd < 0) {
3447 			err = out_fence_fd;
3448 			goto err_in_fence;
3449 		}
3450 	}
3451 
3452 	err = eb_create(&eb);
3453 	if (err)
3454 		goto err_out_fence;
3455 
3456 	GEM_BUG_ON(!eb.lut_size);
3457 
3458 	err = eb_select_context(&eb);
3459 	if (unlikely(err))
3460 		goto err_destroy;
3461 
3462 	err = eb_select_engine(&eb);
3463 	if (unlikely(err))
3464 		goto err_context;
3465 
3466 	err = eb_lookup_vmas(&eb);
3467 	if (err) {
3468 		eb_release_vmas(&eb, true);
3469 		goto err_engine;
3470 	}
3471 
3472 	i915_gem_ww_ctx_init(&eb.ww, true);
3473 
3474 	err = eb_relocate_parse(&eb);
3475 	if (err) {
3476 		/*
3477 		 * If the user expects the execobject.offset and
3478 		 * reloc.presumed_offset to be an exact match,
3479 		 * as for using NO_RELOC, then we cannot update
3480 		 * the execobject.offset until we have completed
3481 		 * relocation.
3482 		 */
3483 		args->flags &= ~__EXEC_HAS_RELOC;
3484 		goto err_vma;
3485 	}
3486 
3487 	ww_acquire_done(&eb.ww.ctx);
3488 	err = eb_capture_stage(&eb);
3489 	if (err)
3490 		goto err_vma;
3491 
3492 	out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
3493 	if (IS_ERR(out_fence)) {
3494 		err = PTR_ERR(out_fence);
3495 		out_fence = NULL;
3496 		if (eb.requests[0])
3497 			goto err_request;
3498 		else
3499 			goto err_vma;
3500 	}
3501 
3502 	err = eb_submit(&eb);
3503 
3504 err_request:
3505 	eb_requests_get(&eb);
3506 	err = eb_requests_add(&eb, err);
3507 
3508 	if (eb.fences)
3509 		signal_fence_array(&eb, eb.composite_fence ?
3510 				   eb.composite_fence :
3511 				   &eb.requests[0]->fence);
3512 
3513 	if (unlikely(eb.gem_context->syncobj)) {
3514 		drm_syncobj_replace_fence(eb.gem_context->syncobj,
3515 					  eb.composite_fence ?
3516 					  eb.composite_fence :
3517 					  &eb.requests[0]->fence);
3518 	}
3519 
3520 	if (out_fence) {
3521 		if (err == 0) {
3522 			fd_install(out_fence_fd, out_fence->file);
3523 			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3524 			args->rsvd2 |= (u64)out_fence_fd << 32;
3525 			out_fence_fd = -1;
3526 		} else {
3527 			fput(out_fence->file);
3528 		}
3529 	}
3530 
3531 	if (!out_fence && eb.composite_fence)
3532 		dma_fence_put(eb.composite_fence);
3533 
3534 	eb_requests_put(&eb);
3535 
3536 err_vma:
3537 	eb_release_vmas(&eb, true);
3538 	WARN_ON(err == -EDEADLK);
3539 	i915_gem_ww_ctx_fini(&eb.ww);
3540 
3541 	if (eb.batch_pool)
3542 		intel_gt_buffer_pool_put(eb.batch_pool);
3543 err_engine:
3544 	eb_put_engine(&eb);
3545 err_context:
3546 	i915_gem_context_put(eb.gem_context);
3547 err_destroy:
3548 	eb_destroy(&eb);
3549 err_out_fence:
3550 	if (out_fence_fd != -1)
3551 		put_unused_fd(out_fence_fd);
3552 err_in_fence:
3553 	dma_fence_put(in_fence);
3554 err_ext:
3555 	put_fence_array(eb.fences, eb.num_fences);
3556 	return err;
3557 }
3558 
3559 static size_t eb_element_size(void)
3560 {
3561 	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3562 }
3563 
3564 static bool check_buffer_count(size_t count)
3565 {
3566 	const size_t sz = eb_element_size();
3567 
3568 	/*
3569 	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3570 	 * array size (see eb_create()). Otherwise, we can accept an array as
3571 	 * large as can be addressed (though use large arrays at your peril)!
3572 	 */
3573 
3574 	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3575 }
3576 
3577 int
3578 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3579 			   struct drm_file *file)
3580 {
3581 	struct drm_i915_private *i915 = to_i915(dev);
3582 	struct drm_i915_gem_execbuffer2 *args = data;
3583 	struct drm_i915_gem_exec_object2 *exec2_list;
3584 	const size_t count = args->buffer_count;
3585 	int err;
3586 
3587 	if (!check_buffer_count(count)) {
3588 		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3589 		return -EINVAL;
3590 	}
3591 
3592 	err = i915_gem_check_execbuffer(i915, args);
3593 	if (err)
3594 		return err;
3595 
3596 	/* Allocate extra slots for use by the command parser */
3597 	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3598 				    __GFP_NOWARN | GFP_KERNEL);
3599 	if (exec2_list == NULL) {
3600 		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3601 			count);
3602 		return -ENOMEM;
3603 	}
3604 	if (copy_from_user(exec2_list,
3605 			   u64_to_user_ptr(args->buffers_ptr),
3606 			   sizeof(*exec2_list) * count)) {
3607 		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3608 		kvfree(exec2_list);
3609 		return -EFAULT;
3610 	}
3611 
3612 	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3613 
3614 	/*
3615 	 * Now that we have begun execution of the batchbuffer, we ignore
3616 	 * any new error after this point. Also given that we have already
3617 	 * updated the associated relocations, we try to write out the current
3618 	 * object locations irrespective of any error.
3619 	 */
3620 	if (args->flags & __EXEC_HAS_RELOC) {
3621 		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3622 			u64_to_user_ptr(args->buffers_ptr);
3623 		unsigned int i;
3624 
3625 		/* Copy the new buffer offsets back to the user's exec list. */
3626 		/*
3627 		 * Note: count * sizeof(*user_exec_list) does not overflow,
3628 		 * because we checked 'count' in check_buffer_count().
3629 		 *
3630 		 * And this range already got effectively checked earlier
3631 		 * when we did the "copy_from_user()" above.
3632 		 */
3633 		if (!user_write_access_begin(user_exec_list,
3634 					     count * sizeof(*user_exec_list)))
3635 			goto end;
3636 
3637 		for (i = 0; i < args->buffer_count; i++) {
3638 			if (!(exec2_list[i].offset & UPDATE))
3639 				continue;
3640 
3641 			exec2_list[i].offset =
3642 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3643 			unsafe_put_user(exec2_list[i].offset,
3644 					&user_exec_list[i].offset,
3645 					end_user);
3646 		}
3647 end_user:
3648 		user_write_access_end();
3649 end:;
3650 	}
3651 
3652 	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3653 	kvfree(exec2_list);
3654 	return err;
3655 }
3656