xref: /linux/drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c (revision c01044cc819160323f3ca4acd44fca487c4432e6)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6 
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11 
12 #include <drm/drm_syncobj.h>
13 
14 #include "display/intel_frontbuffer.h"
15 
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gt.h"
19 #include "gt/intel_gt_buffer_pool.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_ring.h"
22 
23 #include "i915_drv.h"
24 #include "i915_gem_clflush.h"
25 #include "i915_gem_context.h"
26 #include "i915_gem_ioctls.h"
27 #include "i915_sw_fence_work.h"
28 #include "i915_trace.h"
29 
30 struct eb_vma {
31 	struct i915_vma *vma;
32 	unsigned int flags;
33 
34 	/** This vma's place in the execbuf reservation list */
35 	struct drm_i915_gem_exec_object2 *exec;
36 	struct list_head bind_link;
37 	struct list_head reloc_link;
38 
39 	struct hlist_node node;
40 	u32 handle;
41 };
42 
43 struct eb_vma_array {
44 	struct kref kref;
45 	struct eb_vma vma[];
46 };
47 
48 enum {
49 	FORCE_CPU_RELOC = 1,
50 	FORCE_GTT_RELOC,
51 	FORCE_GPU_RELOC,
52 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
53 };
54 
55 #define __EXEC_OBJECT_HAS_PIN		BIT(31)
56 #define __EXEC_OBJECT_HAS_FENCE		BIT(30)
57 #define __EXEC_OBJECT_NEEDS_MAP		BIT(29)
58 #define __EXEC_OBJECT_NEEDS_BIAS	BIT(28)
59 #define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 28) /* all of the above */
60 
61 #define __EXEC_HAS_RELOC	BIT(31)
62 #define __EXEC_INTERNAL_FLAGS	(~0u << 31)
63 #define UPDATE			PIN_OFFSET_FIXED
64 
65 #define BATCH_OFFSET_BIAS (256*1024)
66 
67 #define __I915_EXEC_ILLEGAL_FLAGS \
68 	(__I915_EXEC_UNKNOWN_FLAGS | \
69 	 I915_EXEC_CONSTANTS_MASK  | \
70 	 I915_EXEC_RESOURCE_STREAMER)
71 
72 /* Catch emission of unexpected errors for CI! */
73 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
74 #undef EINVAL
75 #define EINVAL ({ \
76 	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
77 	22; \
78 })
79 #endif
80 
81 /**
82  * DOC: User command execution
83  *
84  * Userspace submits commands to be executed on the GPU as an instruction
85  * stream within a GEM object we call a batchbuffer. This instructions may
86  * refer to other GEM objects containing auxiliary state such as kernels,
87  * samplers, render targets and even secondary batchbuffers. Userspace does
88  * not know where in the GPU memory these objects reside and so before the
89  * batchbuffer is passed to the GPU for execution, those addresses in the
90  * batchbuffer and auxiliary objects are updated. This is known as relocation,
91  * or patching. To try and avoid having to relocate each object on the next
92  * execution, userspace is told the location of those objects in this pass,
93  * but this remains just a hint as the kernel may choose a new location for
94  * any object in the future.
95  *
96  * At the level of talking to the hardware, submitting a batchbuffer for the
97  * GPU to execute is to add content to a buffer from which the HW
98  * command streamer is reading.
99  *
100  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
101  *    Execlists, this command is not placed on the same buffer as the
102  *    remaining items.
103  *
104  * 2. Add a command to invalidate caches to the buffer.
105  *
106  * 3. Add a batchbuffer start command to the buffer; the start command is
107  *    essentially a token together with the GPU address of the batchbuffer
108  *    to be executed.
109  *
110  * 4. Add a pipeline flush to the buffer.
111  *
112  * 5. Add a memory write command to the buffer to record when the GPU
113  *    is done executing the batchbuffer. The memory write writes the
114  *    global sequence number of the request, ``i915_request::global_seqno``;
115  *    the i915 driver uses the current value in the register to determine
116  *    if the GPU has completed the batchbuffer.
117  *
118  * 6. Add a user interrupt command to the buffer. This command instructs
119  *    the GPU to issue an interrupt when the command, pipeline flush and
120  *    memory write are completed.
121  *
122  * 7. Inform the hardware of the additional commands added to the buffer
123  *    (by updating the tail pointer).
124  *
125  * Processing an execbuf ioctl is conceptually split up into a few phases.
126  *
127  * 1. Validation - Ensure all the pointers, handles and flags are valid.
128  * 2. Reservation - Assign GPU address space for every object
129  * 3. Relocation - Update any addresses to point to the final locations
130  * 4. Serialisation - Order the request with respect to its dependencies
131  * 5. Construction - Construct a request to execute the batchbuffer
132  * 6. Submission (at some point in the future execution)
133  *
134  * Reserving resources for the execbuf is the most complicated phase. We
135  * neither want to have to migrate the object in the address space, nor do
136  * we want to have to update any relocations pointing to this object. Ideally,
137  * we want to leave the object where it is and for all the existing relocations
138  * to match. If the object is given a new address, or if userspace thinks the
139  * object is elsewhere, we have to parse all the relocation entries and update
140  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
141  * all the target addresses in all of its objects match the value in the
142  * relocation entries and that they all match the presumed offsets given by the
143  * list of execbuffer objects. Using this knowledge, we know that if we haven't
144  * moved any buffers, all the relocation entries are valid and we can skip
145  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
146  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
147  *
148  *      The addresses written in the objects must match the corresponding
149  *      reloc.presumed_offset which in turn must match the corresponding
150  *      execobject.offset.
151  *
152  *      Any render targets written to in the batch must be flagged with
153  *      EXEC_OBJECT_WRITE.
154  *
155  *      To avoid stalling, execobject.offset should match the current
156  *      address of that object within the active context.
157  *
158  * The reservation is done is multiple phases. First we try and keep any
159  * object already bound in its current location - so as long as meets the
160  * constraints imposed by the new execbuffer. Any object left unbound after the
161  * first pass is then fitted into any available idle space. If an object does
162  * not fit, all objects are removed from the reservation and the process rerun
163  * after sorting the objects into a priority order (more difficult to fit
164  * objects are tried first). Failing that, the entire VM is cleared and we try
165  * to fit the execbuf once last time before concluding that it simply will not
166  * fit.
167  *
168  * A small complication to all of this is that we allow userspace not only to
169  * specify an alignment and a size for the object in the address space, but
170  * we also allow userspace to specify the exact offset. This objects are
171  * simpler to place (the location is known a priori) all we have to do is make
172  * sure the space is available.
173  *
174  * Once all the objects are in place, patching up the buried pointers to point
175  * to the final locations is a fairly simple job of walking over the relocation
176  * entry arrays, looking up the right address and rewriting the value into
177  * the object. Simple! ... The relocation entries are stored in user memory
178  * and so to access them we have to copy them into a local buffer. That copy
179  * has to avoid taking any pagefaults as they may lead back to a GEM object
180  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
181  * the relocation into multiple passes. First we try to do everything within an
182  * atomic context (avoid the pagefaults) which requires that we never wait. If
183  * we detect that we may wait, or if we need to fault, then we have to fallback
184  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
185  * bells yet?) Dropping the mutex means that we lose all the state we have
186  * built up so far for the execbuf and we must reset any global data. However,
187  * we do leave the objects pinned in their final locations - which is a
188  * potential issue for concurrent execbufs. Once we have left the mutex, we can
189  * allocate and copy all the relocation entries into a large array at our
190  * leisure, reacquire the mutex, reclaim all the objects and other state and
191  * then proceed to update any incorrect addresses with the objects.
192  *
193  * As we process the relocation entries, we maintain a record of whether the
194  * object is being written to. Using NORELOC, we expect userspace to provide
195  * this information instead. We also check whether we can skip the relocation
196  * by comparing the expected value inside the relocation entry with the target's
197  * final address. If they differ, we have to map the current object and rewrite
198  * the 4 or 8 byte pointer within.
199  *
200  * Serialising an execbuf is quite simple according to the rules of the GEM
201  * ABI. Execution within each context is ordered by the order of submission.
202  * Writes to any GEM object are in order of submission and are exclusive. Reads
203  * from a GEM object are unordered with respect to other reads, but ordered by
204  * writes. A write submitted after a read cannot occur before the read, and
205  * similarly any read submitted after a write cannot occur before the write.
206  * Writes are ordered between engines such that only one write occurs at any
207  * time (completing any reads beforehand) - using semaphores where available
208  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
209  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
210  * reads before starting, and any read (either using set-domain or pread) must
211  * flush all GPU writes before starting. (Note we only employ a barrier before,
212  * we currently rely on userspace not concurrently starting a new execution
213  * whilst reading or writing to an object. This may be an advantage or not
214  * depending on how much you trust userspace not to shoot themselves in the
215  * foot.) Serialisation may just result in the request being inserted into
216  * a DAG awaiting its turn, but most simple is to wait on the CPU until
217  * all dependencies are resolved.
218  *
219  * After all of that, is just a matter of closing the request and handing it to
220  * the hardware (well, leaving it in a queue to be executed). However, we also
221  * offer the ability for batchbuffers to be run with elevated privileges so
222  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
223  * Before any batch is given extra privileges we first must check that it
224  * contains no nefarious instructions, we check that each instruction is from
225  * our whitelist and all registers are also from an allowed list. We first
226  * copy the user's batchbuffer to a shadow (so that the user doesn't have
227  * access to it, either by the CPU or GPU as we scan it) and then parse each
228  * instruction. If everything is ok, we set a flag telling the hardware to run
229  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
230  */
231 
232 struct i915_execbuffer {
233 	struct drm_i915_private *i915; /** i915 backpointer */
234 	struct drm_file *file; /** per-file lookup tables and limits */
235 	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
236 	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
237 	struct eb_vma *vma;
238 
239 	struct intel_engine_cs *engine; /** engine to queue the request to */
240 	struct intel_context *context; /* logical state for the request */
241 	struct i915_gem_context *gem_context; /** caller's context */
242 
243 	struct i915_request *request; /** our request to build */
244 	struct eb_vma *batch; /** identity of the batch obj/vma */
245 	struct i915_vma *trampoline; /** trampoline used for chaining */
246 
247 	/** actual size of execobj[] as we may extend it for the cmdparser */
248 	unsigned int buffer_count;
249 
250 	/** list of vma not yet bound during reservation phase */
251 	struct list_head unbound;
252 
253 	/** list of vma that have execobj.relocation_count */
254 	struct list_head relocs;
255 
256 	/**
257 	 * Track the most recently used object for relocations, as we
258 	 * frequently have to perform multiple relocations within the same
259 	 * obj/page
260 	 */
261 	struct reloc_cache {
262 		struct drm_mm_node node; /** temporary GTT binding */
263 		unsigned long vaddr; /** Current kmap address */
264 		unsigned long page; /** Currently mapped page index */
265 		unsigned int gen; /** Cached value of INTEL_GEN */
266 		bool use_64bit_reloc : 1;
267 		bool has_llc : 1;
268 		bool has_fence : 1;
269 		bool needs_unfenced : 1;
270 
271 		struct i915_vma *target;
272 		struct i915_request *rq;
273 		struct i915_vma *rq_vma;
274 		u32 *rq_cmd;
275 		unsigned int rq_size;
276 	} reloc_cache;
277 
278 	u64 invalid_flags; /** Set of execobj.flags that are invalid */
279 	u32 context_flags; /** Set of execobj.flags to insert from the ctx */
280 
281 	u32 batch_start_offset; /** Location within object of batch */
282 	u32 batch_len; /** Length of batch within object */
283 	u32 batch_flags; /** Flags composed for emit_bb_start() */
284 
285 	/**
286 	 * Indicate either the size of the hastable used to resolve
287 	 * relocation handles, or if negative that we are using a direct
288 	 * index into the execobj[].
289 	 */
290 	int lut_size;
291 	struct hlist_head *buckets; /** ht for relocation handles */
292 	struct eb_vma_array *array;
293 };
294 
295 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
296 {
297 	return intel_engine_requires_cmd_parser(eb->engine) ||
298 		(intel_engine_using_cmd_parser(eb->engine) &&
299 		 eb->args->batch_len);
300 }
301 
302 static struct eb_vma_array *eb_vma_array_create(unsigned int count)
303 {
304 	struct eb_vma_array *arr;
305 
306 	arr = kvmalloc(struct_size(arr, vma, count), GFP_KERNEL | __GFP_NOWARN);
307 	if (!arr)
308 		return NULL;
309 
310 	kref_init(&arr->kref);
311 	arr->vma[0].vma = NULL;
312 
313 	return arr;
314 }
315 
316 static inline void eb_unreserve_vma(struct eb_vma *ev)
317 {
318 	struct i915_vma *vma = ev->vma;
319 
320 	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
321 		__i915_vma_unpin_fence(vma);
322 
323 	if (ev->flags & __EXEC_OBJECT_HAS_PIN)
324 		__i915_vma_unpin(vma);
325 
326 	ev->flags &= ~(__EXEC_OBJECT_HAS_PIN |
327 		       __EXEC_OBJECT_HAS_FENCE);
328 }
329 
330 static void eb_vma_array_destroy(struct kref *kref)
331 {
332 	struct eb_vma_array *arr = container_of(kref, typeof(*arr), kref);
333 	struct eb_vma *ev = arr->vma;
334 
335 	while (ev->vma) {
336 		eb_unreserve_vma(ev);
337 		i915_vma_put(ev->vma);
338 		ev++;
339 	}
340 
341 	kvfree(arr);
342 }
343 
344 static void eb_vma_array_put(struct eb_vma_array *arr)
345 {
346 	kref_put(&arr->kref, eb_vma_array_destroy);
347 }
348 
349 static int eb_create(struct i915_execbuffer *eb)
350 {
351 	/* Allocate an extra slot for use by the command parser + sentinel */
352 	eb->array = eb_vma_array_create(eb->buffer_count + 2);
353 	if (!eb->array)
354 		return -ENOMEM;
355 
356 	eb->vma = eb->array->vma;
357 
358 	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
359 		unsigned int size = 1 + ilog2(eb->buffer_count);
360 
361 		/*
362 		 * Without a 1:1 association between relocation handles and
363 		 * the execobject[] index, we instead create a hashtable.
364 		 * We size it dynamically based on available memory, starting
365 		 * first with 1:1 assocative hash and scaling back until
366 		 * the allocation succeeds.
367 		 *
368 		 * Later on we use a positive lut_size to indicate we are
369 		 * using this hashtable, and a negative value to indicate a
370 		 * direct lookup.
371 		 */
372 		do {
373 			gfp_t flags;
374 
375 			/* While we can still reduce the allocation size, don't
376 			 * raise a warning and allow the allocation to fail.
377 			 * On the last pass though, we want to try as hard
378 			 * as possible to perform the allocation and warn
379 			 * if it fails.
380 			 */
381 			flags = GFP_KERNEL;
382 			if (size > 1)
383 				flags |= __GFP_NORETRY | __GFP_NOWARN;
384 
385 			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
386 					      flags);
387 			if (eb->buckets)
388 				break;
389 		} while (--size);
390 
391 		if (unlikely(!size)) {
392 			eb_vma_array_put(eb->array);
393 			return -ENOMEM;
394 		}
395 
396 		eb->lut_size = size;
397 	} else {
398 		eb->lut_size = -eb->buffer_count;
399 	}
400 
401 	return 0;
402 }
403 
404 static bool
405 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
406 		 const struct i915_vma *vma,
407 		 unsigned int flags)
408 {
409 	if (vma->node.size < entry->pad_to_size)
410 		return true;
411 
412 	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
413 		return true;
414 
415 	if (flags & EXEC_OBJECT_PINNED &&
416 	    vma->node.start != entry->offset)
417 		return true;
418 
419 	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
420 	    vma->node.start < BATCH_OFFSET_BIAS)
421 		return true;
422 
423 	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
424 	    (vma->node.start + vma->node.size - 1) >> 32)
425 		return true;
426 
427 	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
428 	    !i915_vma_is_map_and_fenceable(vma))
429 		return true;
430 
431 	return false;
432 }
433 
434 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
435 			unsigned int exec_flags)
436 {
437 	u64 pin_flags = 0;
438 
439 	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
440 		pin_flags |= PIN_GLOBAL;
441 
442 	/*
443 	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
444 	 * limit address to the first 4GBs for unflagged objects.
445 	 */
446 	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
447 		pin_flags |= PIN_ZONE_4G;
448 
449 	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
450 		pin_flags |= PIN_MAPPABLE;
451 
452 	if (exec_flags & EXEC_OBJECT_PINNED)
453 		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
454 	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
455 		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
456 
457 	return pin_flags;
458 }
459 
460 static inline bool
461 eb_pin_vma(struct i915_execbuffer *eb,
462 	   const struct drm_i915_gem_exec_object2 *entry,
463 	   struct eb_vma *ev)
464 {
465 	struct i915_vma *vma = ev->vma;
466 	u64 pin_flags;
467 
468 	if (vma->node.size)
469 		pin_flags = vma->node.start;
470 	else
471 		pin_flags = entry->offset & PIN_OFFSET_MASK;
472 
473 	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
474 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
475 		pin_flags |= PIN_GLOBAL;
476 
477 	/* Attempt to reuse the current location if available */
478 	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags))) {
479 		if (entry->flags & EXEC_OBJECT_PINNED)
480 			return false;
481 
482 		/* Failing that pick any _free_ space if suitable */
483 		if (unlikely(i915_vma_pin(vma,
484 					  entry->pad_to_size,
485 					  entry->alignment,
486 					  eb_pin_flags(entry, ev->flags) |
487 					  PIN_USER | PIN_NOEVICT)))
488 			return false;
489 	}
490 
491 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
492 		if (unlikely(i915_vma_pin_fence(vma))) {
493 			i915_vma_unpin(vma);
494 			return false;
495 		}
496 
497 		if (vma->fence)
498 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
499 	}
500 
501 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
502 	return !eb_vma_misplaced(entry, vma, ev->flags);
503 }
504 
505 static int
506 eb_validate_vma(struct i915_execbuffer *eb,
507 		struct drm_i915_gem_exec_object2 *entry,
508 		struct i915_vma *vma)
509 {
510 	if (unlikely(entry->flags & eb->invalid_flags))
511 		return -EINVAL;
512 
513 	if (unlikely(entry->alignment &&
514 		     !is_power_of_2_u64(entry->alignment)))
515 		return -EINVAL;
516 
517 	/*
518 	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
519 	 * any non-page-aligned or non-canonical addresses.
520 	 */
521 	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
522 		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
523 		return -EINVAL;
524 
525 	/* pad_to_size was once a reserved field, so sanitize it */
526 	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
527 		if (unlikely(offset_in_page(entry->pad_to_size)))
528 			return -EINVAL;
529 	} else {
530 		entry->pad_to_size = 0;
531 	}
532 	/*
533 	 * From drm_mm perspective address space is continuous,
534 	 * so from this point we're always using non-canonical
535 	 * form internally.
536 	 */
537 	entry->offset = gen8_noncanonical_addr(entry->offset);
538 
539 	if (!eb->reloc_cache.has_fence) {
540 		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
541 	} else {
542 		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
543 		     eb->reloc_cache.needs_unfenced) &&
544 		    i915_gem_object_is_tiled(vma->obj))
545 			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
546 	}
547 
548 	if (!(entry->flags & EXEC_OBJECT_PINNED))
549 		entry->flags |= eb->context_flags;
550 
551 	return 0;
552 }
553 
554 static void
555 eb_add_vma(struct i915_execbuffer *eb,
556 	   unsigned int i, unsigned batch_idx,
557 	   struct i915_vma *vma)
558 {
559 	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
560 	struct eb_vma *ev = &eb->vma[i];
561 
562 	GEM_BUG_ON(i915_vma_is_closed(vma));
563 
564 	ev->vma = vma;
565 	ev->exec = entry;
566 	ev->flags = entry->flags;
567 
568 	if (eb->lut_size > 0) {
569 		ev->handle = entry->handle;
570 		hlist_add_head(&ev->node,
571 			       &eb->buckets[hash_32(entry->handle,
572 						    eb->lut_size)]);
573 	}
574 
575 	if (entry->relocation_count)
576 		list_add_tail(&ev->reloc_link, &eb->relocs);
577 
578 	/*
579 	 * SNA is doing fancy tricks with compressing batch buffers, which leads
580 	 * to negative relocation deltas. Usually that works out ok since the
581 	 * relocate address is still positive, except when the batch is placed
582 	 * very low in the GTT. Ensure this doesn't happen.
583 	 *
584 	 * Note that actual hangs have only been observed on gen7, but for
585 	 * paranoia do it everywhere.
586 	 */
587 	if (i == batch_idx) {
588 		if (entry->relocation_count &&
589 		    !(ev->flags & EXEC_OBJECT_PINNED))
590 			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
591 		if (eb->reloc_cache.has_fence)
592 			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
593 
594 		eb->batch = ev;
595 	}
596 
597 	if (eb_pin_vma(eb, entry, ev)) {
598 		if (entry->offset != vma->node.start) {
599 			entry->offset = vma->node.start | UPDATE;
600 			eb->args->flags |= __EXEC_HAS_RELOC;
601 		}
602 	} else {
603 		eb_unreserve_vma(ev);
604 		list_add_tail(&ev->bind_link, &eb->unbound);
605 	}
606 }
607 
608 static inline int use_cpu_reloc(const struct reloc_cache *cache,
609 				const struct drm_i915_gem_object *obj)
610 {
611 	if (!i915_gem_object_has_struct_page(obj))
612 		return false;
613 
614 	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
615 		return true;
616 
617 	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
618 		return false;
619 
620 	return (cache->has_llc ||
621 		obj->cache_dirty ||
622 		obj->cache_level != I915_CACHE_NONE);
623 }
624 
625 static int eb_reserve_vma(const struct i915_execbuffer *eb,
626 			  struct eb_vma *ev,
627 			  u64 pin_flags)
628 {
629 	struct drm_i915_gem_exec_object2 *entry = ev->exec;
630 	struct i915_vma *vma = ev->vma;
631 	int err;
632 
633 	if (drm_mm_node_allocated(&vma->node) &&
634 	    eb_vma_misplaced(entry, vma, ev->flags)) {
635 		err = i915_vma_unbind(vma);
636 		if (err)
637 			return err;
638 	}
639 
640 	err = i915_vma_pin(vma,
641 			   entry->pad_to_size, entry->alignment,
642 			   eb_pin_flags(entry, ev->flags) | pin_flags);
643 	if (err)
644 		return err;
645 
646 	if (entry->offset != vma->node.start) {
647 		entry->offset = vma->node.start | UPDATE;
648 		eb->args->flags |= __EXEC_HAS_RELOC;
649 	}
650 
651 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
652 		err = i915_vma_pin_fence(vma);
653 		if (unlikely(err)) {
654 			i915_vma_unpin(vma);
655 			return err;
656 		}
657 
658 		if (vma->fence)
659 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
660 	}
661 
662 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
663 	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
664 
665 	return 0;
666 }
667 
668 static int eb_reserve(struct i915_execbuffer *eb)
669 {
670 	const unsigned int count = eb->buffer_count;
671 	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
672 	struct list_head last;
673 	struct eb_vma *ev;
674 	unsigned int i, pass;
675 	int err = 0;
676 
677 	/*
678 	 * Attempt to pin all of the buffers into the GTT.
679 	 * This is done in 3 phases:
680 	 *
681 	 * 1a. Unbind all objects that do not match the GTT constraints for
682 	 *     the execbuffer (fenceable, mappable, alignment etc).
683 	 * 1b. Increment pin count for already bound objects.
684 	 * 2.  Bind new objects.
685 	 * 3.  Decrement pin count.
686 	 *
687 	 * This avoid unnecessary unbinding of later objects in order to make
688 	 * room for the earlier objects *unless* we need to defragment.
689 	 */
690 
691 	if (mutex_lock_interruptible(&eb->i915->drm.struct_mutex))
692 		return -EINTR;
693 
694 	pass = 0;
695 	do {
696 		list_for_each_entry(ev, &eb->unbound, bind_link) {
697 			err = eb_reserve_vma(eb, ev, pin_flags);
698 			if (err)
699 				break;
700 		}
701 		if (!(err == -ENOSPC || err == -EAGAIN))
702 			break;
703 
704 		/* Resort *all* the objects into priority order */
705 		INIT_LIST_HEAD(&eb->unbound);
706 		INIT_LIST_HEAD(&last);
707 		for (i = 0; i < count; i++) {
708 			unsigned int flags;
709 
710 			ev = &eb->vma[i];
711 			flags = ev->flags;
712 			if (flags & EXEC_OBJECT_PINNED &&
713 			    flags & __EXEC_OBJECT_HAS_PIN)
714 				continue;
715 
716 			eb_unreserve_vma(ev);
717 
718 			if (flags & EXEC_OBJECT_PINNED)
719 				/* Pinned must have their slot */
720 				list_add(&ev->bind_link, &eb->unbound);
721 			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
722 				/* Map require the lowest 256MiB (aperture) */
723 				list_add_tail(&ev->bind_link, &eb->unbound);
724 			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
725 				/* Prioritise 4GiB region for restricted bo */
726 				list_add(&ev->bind_link, &last);
727 			else
728 				list_add_tail(&ev->bind_link, &last);
729 		}
730 		list_splice_tail(&last, &eb->unbound);
731 
732 		if (err == -EAGAIN) {
733 			mutex_unlock(&eb->i915->drm.struct_mutex);
734 			flush_workqueue(eb->i915->mm.userptr_wq);
735 			mutex_lock(&eb->i915->drm.struct_mutex);
736 			continue;
737 		}
738 
739 		switch (pass++) {
740 		case 0:
741 			break;
742 
743 		case 1:
744 			/* Too fragmented, unbind everything and retry */
745 			mutex_lock(&eb->context->vm->mutex);
746 			err = i915_gem_evict_vm(eb->context->vm);
747 			mutex_unlock(&eb->context->vm->mutex);
748 			if (err)
749 				goto unlock;
750 			break;
751 
752 		default:
753 			err = -ENOSPC;
754 			goto unlock;
755 		}
756 
757 		pin_flags = PIN_USER;
758 	} while (1);
759 
760 unlock:
761 	mutex_unlock(&eb->i915->drm.struct_mutex);
762 	return err;
763 }
764 
765 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
766 {
767 	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
768 		return 0;
769 	else
770 		return eb->buffer_count - 1;
771 }
772 
773 static int eb_select_context(struct i915_execbuffer *eb)
774 {
775 	struct i915_gem_context *ctx;
776 
777 	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
778 	if (unlikely(!ctx))
779 		return -ENOENT;
780 
781 	eb->gem_context = ctx;
782 	if (rcu_access_pointer(ctx->vm))
783 		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
784 
785 	eb->context_flags = 0;
786 	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
787 		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
788 
789 	return 0;
790 }
791 
792 static int __eb_add_lut(struct i915_execbuffer *eb,
793 			u32 handle, struct i915_vma *vma)
794 {
795 	struct i915_gem_context *ctx = eb->gem_context;
796 	struct i915_lut_handle *lut;
797 	int err;
798 
799 	lut = i915_lut_handle_alloc();
800 	if (unlikely(!lut))
801 		return -ENOMEM;
802 
803 	i915_vma_get(vma);
804 	if (!atomic_fetch_inc(&vma->open_count))
805 		i915_vma_reopen(vma);
806 	lut->handle = handle;
807 	lut->ctx = ctx;
808 
809 	/* Check that the context hasn't been closed in the meantime */
810 	err = -EINTR;
811 	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
812 		struct i915_address_space *vm = rcu_access_pointer(ctx->vm);
813 
814 		if (unlikely(vm && vma->vm != vm))
815 			err = -EAGAIN; /* user racing with ctx set-vm */
816 		else if (likely(!i915_gem_context_is_closed(ctx)))
817 			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
818 		else
819 			err = -ENOENT;
820 		if (err == 0) { /* And nor has this handle */
821 			struct drm_i915_gem_object *obj = vma->obj;
822 
823 			spin_lock(&obj->lut_lock);
824 			if (idr_find(&eb->file->object_idr, handle) == obj) {
825 				list_add(&lut->obj_link, &obj->lut_list);
826 			} else {
827 				radix_tree_delete(&ctx->handles_vma, handle);
828 				err = -ENOENT;
829 			}
830 			spin_unlock(&obj->lut_lock);
831 		}
832 		mutex_unlock(&ctx->lut_mutex);
833 	}
834 	if (unlikely(err))
835 		goto err;
836 
837 	return 0;
838 
839 err:
840 	i915_vma_close(vma);
841 	i915_vma_put(vma);
842 	i915_lut_handle_free(lut);
843 	return err;
844 }
845 
846 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
847 {
848 	struct i915_address_space *vm = eb->context->vm;
849 
850 	do {
851 		struct drm_i915_gem_object *obj;
852 		struct i915_vma *vma;
853 		int err;
854 
855 		rcu_read_lock();
856 		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
857 		if (likely(vma && vma->vm == vm))
858 			vma = i915_vma_tryget(vma);
859 		rcu_read_unlock();
860 		if (likely(vma))
861 			return vma;
862 
863 		obj = i915_gem_object_lookup(eb->file, handle);
864 		if (unlikely(!obj))
865 			return ERR_PTR(-ENOENT);
866 
867 		vma = i915_vma_instance(obj, vm, NULL);
868 		if (IS_ERR(vma)) {
869 			i915_gem_object_put(obj);
870 			return vma;
871 		}
872 
873 		err = __eb_add_lut(eb, handle, vma);
874 		if (likely(!err))
875 			return vma;
876 
877 		i915_gem_object_put(obj);
878 		if (err != -EEXIST)
879 			return ERR_PTR(err);
880 	} while (1);
881 }
882 
883 static int eb_lookup_vmas(struct i915_execbuffer *eb)
884 {
885 	unsigned int batch = eb_batch_index(eb);
886 	unsigned int i;
887 	int err = 0;
888 
889 	INIT_LIST_HEAD(&eb->relocs);
890 	INIT_LIST_HEAD(&eb->unbound);
891 
892 	for (i = 0; i < eb->buffer_count; i++) {
893 		struct i915_vma *vma;
894 
895 		vma = eb_lookup_vma(eb, eb->exec[i].handle);
896 		if (IS_ERR(vma)) {
897 			err = PTR_ERR(vma);
898 			break;
899 		}
900 
901 		err = eb_validate_vma(eb, &eb->exec[i], vma);
902 		if (unlikely(err)) {
903 			i915_vma_put(vma);
904 			break;
905 		}
906 
907 		eb_add_vma(eb, i, batch, vma);
908 	}
909 
910 	eb->vma[i].vma = NULL;
911 	return err;
912 }
913 
914 static struct eb_vma *
915 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
916 {
917 	if (eb->lut_size < 0) {
918 		if (handle >= -eb->lut_size)
919 			return NULL;
920 		return &eb->vma[handle];
921 	} else {
922 		struct hlist_head *head;
923 		struct eb_vma *ev;
924 
925 		head = &eb->buckets[hash_32(handle, eb->lut_size)];
926 		hlist_for_each_entry(ev, head, node) {
927 			if (ev->handle == handle)
928 				return ev;
929 		}
930 		return NULL;
931 	}
932 }
933 
934 static void eb_destroy(const struct i915_execbuffer *eb)
935 {
936 	GEM_BUG_ON(eb->reloc_cache.rq);
937 
938 	if (eb->array)
939 		eb_vma_array_put(eb->array);
940 
941 	if (eb->lut_size > 0)
942 		kfree(eb->buckets);
943 }
944 
945 static inline u64
946 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
947 		  const struct i915_vma *target)
948 {
949 	return gen8_canonical_addr((int)reloc->delta + target->node.start);
950 }
951 
952 static void reloc_cache_init(struct reloc_cache *cache,
953 			     struct drm_i915_private *i915)
954 {
955 	cache->page = -1;
956 	cache->vaddr = 0;
957 	/* Must be a variable in the struct to allow GCC to unroll. */
958 	cache->gen = INTEL_GEN(i915);
959 	cache->has_llc = HAS_LLC(i915);
960 	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
961 	cache->has_fence = cache->gen < 4;
962 	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
963 	cache->node.flags = 0;
964 	cache->rq = NULL;
965 	cache->target = NULL;
966 }
967 
968 static inline void *unmask_page(unsigned long p)
969 {
970 	return (void *)(uintptr_t)(p & PAGE_MASK);
971 }
972 
973 static inline unsigned int unmask_flags(unsigned long p)
974 {
975 	return p & ~PAGE_MASK;
976 }
977 
978 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
979 
980 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
981 {
982 	struct drm_i915_private *i915 =
983 		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
984 	return &i915->ggtt;
985 }
986 
987 #define RELOC_TAIL 4
988 
989 static int reloc_gpu_chain(struct reloc_cache *cache)
990 {
991 	struct intel_gt_buffer_pool_node *pool;
992 	struct i915_request *rq = cache->rq;
993 	struct i915_vma *batch;
994 	u32 *cmd;
995 	int err;
996 
997 	pool = intel_gt_get_buffer_pool(rq->engine->gt, PAGE_SIZE);
998 	if (IS_ERR(pool))
999 		return PTR_ERR(pool);
1000 
1001 	batch = i915_vma_instance(pool->obj, rq->context->vm, NULL);
1002 	if (IS_ERR(batch)) {
1003 		err = PTR_ERR(batch);
1004 		goto out_pool;
1005 	}
1006 
1007 	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1008 	if (err)
1009 		goto out_pool;
1010 
1011 	GEM_BUG_ON(cache->rq_size + RELOC_TAIL > PAGE_SIZE  / sizeof(u32));
1012 	cmd = cache->rq_cmd + cache->rq_size;
1013 	*cmd++ = MI_ARB_CHECK;
1014 	if (cache->gen >= 8)
1015 		*cmd++ = MI_BATCH_BUFFER_START_GEN8;
1016 	else if (cache->gen >= 6)
1017 		*cmd++ = MI_BATCH_BUFFER_START;
1018 	else
1019 		*cmd++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1020 	*cmd++ = lower_32_bits(batch->node.start);
1021 	*cmd++ = upper_32_bits(batch->node.start); /* Always 0 for gen<8 */
1022 	i915_gem_object_flush_map(cache->rq_vma->obj);
1023 	i915_gem_object_unpin_map(cache->rq_vma->obj);
1024 	cache->rq_vma = NULL;
1025 
1026 	err = intel_gt_buffer_pool_mark_active(pool, rq);
1027 	if (err == 0) {
1028 		i915_vma_lock(batch);
1029 		err = i915_request_await_object(rq, batch->obj, false);
1030 		if (err == 0)
1031 			err = i915_vma_move_to_active(batch, rq, 0);
1032 		i915_vma_unlock(batch);
1033 	}
1034 	i915_vma_unpin(batch);
1035 	if (err)
1036 		goto out_pool;
1037 
1038 	cmd = i915_gem_object_pin_map(batch->obj,
1039 				      cache->has_llc ?
1040 				      I915_MAP_FORCE_WB :
1041 				      I915_MAP_FORCE_WC);
1042 	if (IS_ERR(cmd)) {
1043 		err = PTR_ERR(cmd);
1044 		goto out_pool;
1045 	}
1046 
1047 	/* Return with batch mapping (cmd) still pinned */
1048 	cache->rq_cmd = cmd;
1049 	cache->rq_size = 0;
1050 	cache->rq_vma = batch;
1051 
1052 out_pool:
1053 	intel_gt_buffer_pool_put(pool);
1054 	return err;
1055 }
1056 
1057 static unsigned int reloc_bb_flags(const struct reloc_cache *cache)
1058 {
1059 	return cache->gen > 5 ? 0 : I915_DISPATCH_SECURE;
1060 }
1061 
1062 static int reloc_gpu_flush(struct reloc_cache *cache)
1063 {
1064 	struct i915_request *rq;
1065 	int err;
1066 
1067 	rq = fetch_and_zero(&cache->rq);
1068 	if (!rq)
1069 		return 0;
1070 
1071 	if (cache->rq_vma) {
1072 		struct drm_i915_gem_object *obj = cache->rq_vma->obj;
1073 
1074 		GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
1075 		cache->rq_cmd[cache->rq_size++] = MI_BATCH_BUFFER_END;
1076 
1077 		__i915_gem_object_flush_map(obj,
1078 					    0, sizeof(u32) * cache->rq_size);
1079 		i915_gem_object_unpin_map(obj);
1080 	}
1081 
1082 	err = 0;
1083 	if (rq->engine->emit_init_breadcrumb)
1084 		err = rq->engine->emit_init_breadcrumb(rq);
1085 	if (!err)
1086 		err = rq->engine->emit_bb_start(rq,
1087 						rq->batch->node.start,
1088 						PAGE_SIZE,
1089 						reloc_bb_flags(cache));
1090 	if (err)
1091 		i915_request_set_error_once(rq, err);
1092 
1093 	intel_gt_chipset_flush(rq->engine->gt);
1094 	i915_request_add(rq);
1095 
1096 	return err;
1097 }
1098 
1099 static void reloc_cache_reset(struct reloc_cache *cache)
1100 {
1101 	void *vaddr;
1102 
1103 	if (!cache->vaddr)
1104 		return;
1105 
1106 	vaddr = unmask_page(cache->vaddr);
1107 	if (cache->vaddr & KMAP) {
1108 		if (cache->vaddr & CLFLUSH_AFTER)
1109 			mb();
1110 
1111 		kunmap_atomic(vaddr);
1112 		i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
1113 	} else {
1114 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1115 
1116 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1117 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1118 
1119 		if (drm_mm_node_allocated(&cache->node)) {
1120 			ggtt->vm.clear_range(&ggtt->vm,
1121 					     cache->node.start,
1122 					     cache->node.size);
1123 			mutex_lock(&ggtt->vm.mutex);
1124 			drm_mm_remove_node(&cache->node);
1125 			mutex_unlock(&ggtt->vm.mutex);
1126 		} else {
1127 			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1128 		}
1129 	}
1130 
1131 	cache->vaddr = 0;
1132 	cache->page = -1;
1133 }
1134 
1135 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1136 			struct reloc_cache *cache,
1137 			unsigned long page)
1138 {
1139 	void *vaddr;
1140 
1141 	if (cache->vaddr) {
1142 		kunmap_atomic(unmask_page(cache->vaddr));
1143 	} else {
1144 		unsigned int flushes;
1145 		int err;
1146 
1147 		err = i915_gem_object_prepare_write(obj, &flushes);
1148 		if (err)
1149 			return ERR_PTR(err);
1150 
1151 		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1152 		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1153 
1154 		cache->vaddr = flushes | KMAP;
1155 		cache->node.mm = (void *)obj;
1156 		if (flushes)
1157 			mb();
1158 	}
1159 
1160 	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
1161 	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1162 	cache->page = page;
1163 
1164 	return vaddr;
1165 }
1166 
1167 static void *reloc_iomap(struct drm_i915_gem_object *obj,
1168 			 struct reloc_cache *cache,
1169 			 unsigned long page)
1170 {
1171 	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1172 	unsigned long offset;
1173 	void *vaddr;
1174 
1175 	if (cache->vaddr) {
1176 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1177 		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1178 	} else {
1179 		struct i915_vma *vma;
1180 		int err;
1181 
1182 		if (i915_gem_object_is_tiled(obj))
1183 			return ERR_PTR(-EINVAL);
1184 
1185 		if (use_cpu_reloc(cache, obj))
1186 			return NULL;
1187 
1188 		i915_gem_object_lock(obj);
1189 		err = i915_gem_object_set_to_gtt_domain(obj, true);
1190 		i915_gem_object_unlock(obj);
1191 		if (err)
1192 			return ERR_PTR(err);
1193 
1194 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1195 					       PIN_MAPPABLE |
1196 					       PIN_NONBLOCK /* NOWARN */ |
1197 					       PIN_NOEVICT);
1198 		if (IS_ERR(vma)) {
1199 			memset(&cache->node, 0, sizeof(cache->node));
1200 			mutex_lock(&ggtt->vm.mutex);
1201 			err = drm_mm_insert_node_in_range
1202 				(&ggtt->vm.mm, &cache->node,
1203 				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1204 				 0, ggtt->mappable_end,
1205 				 DRM_MM_INSERT_LOW);
1206 			mutex_unlock(&ggtt->vm.mutex);
1207 			if (err) /* no inactive aperture space, use cpu reloc */
1208 				return NULL;
1209 		} else {
1210 			cache->node.start = vma->node.start;
1211 			cache->node.mm = (void *)vma;
1212 		}
1213 	}
1214 
1215 	offset = cache->node.start;
1216 	if (drm_mm_node_allocated(&cache->node)) {
1217 		ggtt->vm.insert_page(&ggtt->vm,
1218 				     i915_gem_object_get_dma_address(obj, page),
1219 				     offset, I915_CACHE_NONE, 0);
1220 	} else {
1221 		offset += page << PAGE_SHIFT;
1222 	}
1223 
1224 	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1225 							 offset);
1226 	cache->page = page;
1227 	cache->vaddr = (unsigned long)vaddr;
1228 
1229 	return vaddr;
1230 }
1231 
1232 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1233 			 struct reloc_cache *cache,
1234 			 unsigned long page)
1235 {
1236 	void *vaddr;
1237 
1238 	if (cache->page == page) {
1239 		vaddr = unmask_page(cache->vaddr);
1240 	} else {
1241 		vaddr = NULL;
1242 		if ((cache->vaddr & KMAP) == 0)
1243 			vaddr = reloc_iomap(obj, cache, page);
1244 		if (!vaddr)
1245 			vaddr = reloc_kmap(obj, cache, page);
1246 	}
1247 
1248 	return vaddr;
1249 }
1250 
1251 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1252 {
1253 	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1254 		if (flushes & CLFLUSH_BEFORE) {
1255 			clflushopt(addr);
1256 			mb();
1257 		}
1258 
1259 		*addr = value;
1260 
1261 		/*
1262 		 * Writes to the same cacheline are serialised by the CPU
1263 		 * (including clflush). On the write path, we only require
1264 		 * that it hits memory in an orderly fashion and place
1265 		 * mb barriers at the start and end of the relocation phase
1266 		 * to ensure ordering of clflush wrt to the system.
1267 		 */
1268 		if (flushes & CLFLUSH_AFTER)
1269 			clflushopt(addr);
1270 	} else
1271 		*addr = value;
1272 }
1273 
1274 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1275 {
1276 	struct drm_i915_gem_object *obj = vma->obj;
1277 	int err;
1278 
1279 	i915_vma_lock(vma);
1280 
1281 	if (obj->cache_dirty & ~obj->cache_coherent)
1282 		i915_gem_clflush_object(obj, 0);
1283 	obj->write_domain = 0;
1284 
1285 	err = i915_request_await_object(rq, vma->obj, true);
1286 	if (err == 0)
1287 		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1288 
1289 	i915_vma_unlock(vma);
1290 
1291 	return err;
1292 }
1293 
1294 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1295 			     struct intel_engine_cs *engine,
1296 			     unsigned int len)
1297 {
1298 	struct reloc_cache *cache = &eb->reloc_cache;
1299 	struct intel_gt_buffer_pool_node *pool;
1300 	struct i915_request *rq;
1301 	struct i915_vma *batch;
1302 	u32 *cmd;
1303 	int err;
1304 
1305 	pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE);
1306 	if (IS_ERR(pool))
1307 		return PTR_ERR(pool);
1308 
1309 	cmd = i915_gem_object_pin_map(pool->obj,
1310 				      cache->has_llc ?
1311 				      I915_MAP_FORCE_WB :
1312 				      I915_MAP_FORCE_WC);
1313 	if (IS_ERR(cmd)) {
1314 		err = PTR_ERR(cmd);
1315 		goto out_pool;
1316 	}
1317 
1318 	batch = i915_vma_instance(pool->obj, eb->context->vm, NULL);
1319 	if (IS_ERR(batch)) {
1320 		err = PTR_ERR(batch);
1321 		goto err_unmap;
1322 	}
1323 
1324 	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1325 	if (err)
1326 		goto err_unmap;
1327 
1328 	if (engine == eb->context->engine) {
1329 		rq = i915_request_create(eb->context);
1330 	} else {
1331 		struct intel_context *ce;
1332 
1333 		ce = intel_context_create(engine);
1334 		if (IS_ERR(ce)) {
1335 			err = PTR_ERR(ce);
1336 			goto err_unpin;
1337 		}
1338 
1339 		i915_vm_put(ce->vm);
1340 		ce->vm = i915_vm_get(eb->context->vm);
1341 
1342 		rq = intel_context_create_request(ce);
1343 		intel_context_put(ce);
1344 	}
1345 	if (IS_ERR(rq)) {
1346 		err = PTR_ERR(rq);
1347 		goto err_unpin;
1348 	}
1349 
1350 	err = intel_gt_buffer_pool_mark_active(pool, rq);
1351 	if (err)
1352 		goto err_request;
1353 
1354 	i915_vma_lock(batch);
1355 	err = i915_request_await_object(rq, batch->obj, false);
1356 	if (err == 0)
1357 		err = i915_vma_move_to_active(batch, rq, 0);
1358 	i915_vma_unlock(batch);
1359 	if (err)
1360 		goto skip_request;
1361 
1362 	rq->batch = batch;
1363 	i915_vma_unpin(batch);
1364 
1365 	cache->rq = rq;
1366 	cache->rq_cmd = cmd;
1367 	cache->rq_size = 0;
1368 	cache->rq_vma = batch;
1369 
1370 	/* Return with batch mapping (cmd) still pinned */
1371 	goto out_pool;
1372 
1373 skip_request:
1374 	i915_request_set_error_once(rq, err);
1375 err_request:
1376 	i915_request_add(rq);
1377 err_unpin:
1378 	i915_vma_unpin(batch);
1379 err_unmap:
1380 	i915_gem_object_unpin_map(pool->obj);
1381 out_pool:
1382 	intel_gt_buffer_pool_put(pool);
1383 	return err;
1384 }
1385 
1386 static bool reloc_can_use_engine(const struct intel_engine_cs *engine)
1387 {
1388 	return engine->class != VIDEO_DECODE_CLASS || !IS_GEN(engine->i915, 6);
1389 }
1390 
1391 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1392 		      struct i915_vma *vma,
1393 		      unsigned int len)
1394 {
1395 	struct reloc_cache *cache = &eb->reloc_cache;
1396 	u32 *cmd;
1397 	int err;
1398 
1399 	if (unlikely(!cache->rq)) {
1400 		struct intel_engine_cs *engine = eb->engine;
1401 
1402 		if (!reloc_can_use_engine(engine)) {
1403 			engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0];
1404 			if (!engine)
1405 				return ERR_PTR(-ENODEV);
1406 		}
1407 
1408 		err = __reloc_gpu_alloc(eb, engine, len);
1409 		if (unlikely(err))
1410 			return ERR_PTR(err);
1411 	}
1412 
1413 	if (vma != cache->target) {
1414 		err = reloc_move_to_gpu(cache->rq, vma);
1415 		if (unlikely(err)) {
1416 			i915_request_set_error_once(cache->rq, err);
1417 			return ERR_PTR(err);
1418 		}
1419 
1420 		cache->target = vma;
1421 	}
1422 
1423 	if (unlikely(cache->rq_size + len >
1424 		     PAGE_SIZE / sizeof(u32) - RELOC_TAIL)) {
1425 		err = reloc_gpu_chain(cache);
1426 		if (unlikely(err)) {
1427 			i915_request_set_error_once(cache->rq, err);
1428 			return ERR_PTR(err);
1429 		}
1430 	}
1431 
1432 	GEM_BUG_ON(cache->rq_size + len >= PAGE_SIZE  / sizeof(u32));
1433 	cmd = cache->rq_cmd + cache->rq_size;
1434 	cache->rq_size += len;
1435 
1436 	return cmd;
1437 }
1438 
1439 static inline bool use_reloc_gpu(struct i915_vma *vma)
1440 {
1441 	if (DBG_FORCE_RELOC == FORCE_GPU_RELOC)
1442 		return true;
1443 
1444 	if (DBG_FORCE_RELOC)
1445 		return false;
1446 
1447 	return !dma_resv_test_signaled_rcu(vma->resv, true);
1448 }
1449 
1450 static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset)
1451 {
1452 	struct page *page;
1453 	unsigned long addr;
1454 
1455 	GEM_BUG_ON(vma->pages != vma->obj->mm.pages);
1456 
1457 	page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT);
1458 	addr = PFN_PHYS(page_to_pfn(page));
1459 	GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */
1460 
1461 	return addr + offset_in_page(offset);
1462 }
1463 
1464 static bool __reloc_entry_gpu(struct i915_execbuffer *eb,
1465 			      struct i915_vma *vma,
1466 			      u64 offset,
1467 			      u64 target_addr)
1468 {
1469 	const unsigned int gen = eb->reloc_cache.gen;
1470 	unsigned int len;
1471 	u32 *batch;
1472 	u64 addr;
1473 
1474 	if (gen >= 8)
1475 		len = offset & 7 ? 8 : 5;
1476 	else if (gen >= 4)
1477 		len = 4;
1478 	else
1479 		len = 3;
1480 
1481 	batch = reloc_gpu(eb, vma, len);
1482 	if (IS_ERR(batch))
1483 		return false;
1484 
1485 	addr = gen8_canonical_addr(vma->node.start + offset);
1486 	if (gen >= 8) {
1487 		if (offset & 7) {
1488 			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1489 			*batch++ = lower_32_bits(addr);
1490 			*batch++ = upper_32_bits(addr);
1491 			*batch++ = lower_32_bits(target_addr);
1492 
1493 			addr = gen8_canonical_addr(addr + 4);
1494 
1495 			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1496 			*batch++ = lower_32_bits(addr);
1497 			*batch++ = upper_32_bits(addr);
1498 			*batch++ = upper_32_bits(target_addr);
1499 		} else {
1500 			*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1501 			*batch++ = lower_32_bits(addr);
1502 			*batch++ = upper_32_bits(addr);
1503 			*batch++ = lower_32_bits(target_addr);
1504 			*batch++ = upper_32_bits(target_addr);
1505 		}
1506 	} else if (gen >= 6) {
1507 		*batch++ = MI_STORE_DWORD_IMM_GEN4;
1508 		*batch++ = 0;
1509 		*batch++ = addr;
1510 		*batch++ = target_addr;
1511 	} else if (IS_I965G(eb->i915)) {
1512 		*batch++ = MI_STORE_DWORD_IMM_GEN4;
1513 		*batch++ = 0;
1514 		*batch++ = vma_phys_addr(vma, offset);
1515 		*batch++ = target_addr;
1516 	} else if (gen >= 4) {
1517 		*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1518 		*batch++ = 0;
1519 		*batch++ = addr;
1520 		*batch++ = target_addr;
1521 	} else if (gen >= 3 &&
1522 		   !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) {
1523 		*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1524 		*batch++ = addr;
1525 		*batch++ = target_addr;
1526 	} else {
1527 		*batch++ = MI_STORE_DWORD_IMM;
1528 		*batch++ = vma_phys_addr(vma, offset);
1529 		*batch++ = target_addr;
1530 	}
1531 
1532 	return true;
1533 }
1534 
1535 static bool reloc_entry_gpu(struct i915_execbuffer *eb,
1536 			    struct i915_vma *vma,
1537 			    u64 offset,
1538 			    u64 target_addr)
1539 {
1540 	if (eb->reloc_cache.vaddr)
1541 		return false;
1542 
1543 	if (!use_reloc_gpu(vma))
1544 		return false;
1545 
1546 	return __reloc_entry_gpu(eb, vma, offset, target_addr);
1547 }
1548 
1549 static u64
1550 relocate_entry(struct i915_vma *vma,
1551 	       const struct drm_i915_gem_relocation_entry *reloc,
1552 	       struct i915_execbuffer *eb,
1553 	       const struct i915_vma *target)
1554 {
1555 	u64 target_addr = relocation_target(reloc, target);
1556 	u64 offset = reloc->offset;
1557 
1558 	if (!reloc_entry_gpu(eb, vma, offset, target_addr)) {
1559 		bool wide = eb->reloc_cache.use_64bit_reloc;
1560 		void *vaddr;
1561 
1562 repeat:
1563 		vaddr = reloc_vaddr(vma->obj,
1564 				    &eb->reloc_cache,
1565 				    offset >> PAGE_SHIFT);
1566 		if (IS_ERR(vaddr))
1567 			return PTR_ERR(vaddr);
1568 
1569 		GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1570 		clflush_write32(vaddr + offset_in_page(offset),
1571 				lower_32_bits(target_addr),
1572 				eb->reloc_cache.vaddr);
1573 
1574 		if (wide) {
1575 			offset += sizeof(u32);
1576 			target_addr >>= 32;
1577 			wide = false;
1578 			goto repeat;
1579 		}
1580 	}
1581 
1582 	return target->node.start | UPDATE;
1583 }
1584 
1585 static u64
1586 eb_relocate_entry(struct i915_execbuffer *eb,
1587 		  struct eb_vma *ev,
1588 		  const struct drm_i915_gem_relocation_entry *reloc)
1589 {
1590 	struct drm_i915_private *i915 = eb->i915;
1591 	struct eb_vma *target;
1592 	int err;
1593 
1594 	/* we've already hold a reference to all valid objects */
1595 	target = eb_get_vma(eb, reloc->target_handle);
1596 	if (unlikely(!target))
1597 		return -ENOENT;
1598 
1599 	/* Validate that the target is in a valid r/w GPU domain */
1600 	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1601 		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1602 			  "target %d offset %d "
1603 			  "read %08x write %08x",
1604 			  reloc->target_handle,
1605 			  (int) reloc->offset,
1606 			  reloc->read_domains,
1607 			  reloc->write_domain);
1608 		return -EINVAL;
1609 	}
1610 	if (unlikely((reloc->write_domain | reloc->read_domains)
1611 		     & ~I915_GEM_GPU_DOMAINS)) {
1612 		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1613 			  "target %d offset %d "
1614 			  "read %08x write %08x",
1615 			  reloc->target_handle,
1616 			  (int) reloc->offset,
1617 			  reloc->read_domains,
1618 			  reloc->write_domain);
1619 		return -EINVAL;
1620 	}
1621 
1622 	if (reloc->write_domain) {
1623 		target->flags |= EXEC_OBJECT_WRITE;
1624 
1625 		/*
1626 		 * Sandybridge PPGTT errata: We need a global gtt mapping
1627 		 * for MI and pipe_control writes because the gpu doesn't
1628 		 * properly redirect them through the ppgtt for non_secure
1629 		 * batchbuffers.
1630 		 */
1631 		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1632 		    IS_GEN(eb->i915, 6)) {
1633 			err = i915_vma_bind(target->vma,
1634 					    target->vma->obj->cache_level,
1635 					    PIN_GLOBAL, NULL);
1636 			if (err)
1637 				return err;
1638 		}
1639 	}
1640 
1641 	/*
1642 	 * If the relocation already has the right value in it, no
1643 	 * more work needs to be done.
1644 	 */
1645 	if (!DBG_FORCE_RELOC &&
1646 	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1647 		return 0;
1648 
1649 	/* Check that the relocation address is valid... */
1650 	if (unlikely(reloc->offset >
1651 		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1652 		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1653 			  "target %d offset %d size %d.\n",
1654 			  reloc->target_handle,
1655 			  (int)reloc->offset,
1656 			  (int)ev->vma->size);
1657 		return -EINVAL;
1658 	}
1659 	if (unlikely(reloc->offset & 3)) {
1660 		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1661 			  "target %d offset %d.\n",
1662 			  reloc->target_handle,
1663 			  (int)reloc->offset);
1664 		return -EINVAL;
1665 	}
1666 
1667 	/*
1668 	 * If we write into the object, we need to force the synchronisation
1669 	 * barrier, either with an asynchronous clflush or if we executed the
1670 	 * patching using the GPU (though that should be serialised by the
1671 	 * timeline). To be completely sure, and since we are required to
1672 	 * do relocations we are already stalling, disable the user's opt
1673 	 * out of our synchronisation.
1674 	 */
1675 	ev->flags &= ~EXEC_OBJECT_ASYNC;
1676 
1677 	/* and update the user's relocation entry */
1678 	return relocate_entry(ev->vma, reloc, eb, target->vma);
1679 }
1680 
1681 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1682 {
1683 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1684 	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1685 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1686 	struct drm_i915_gem_relocation_entry __user *urelocs =
1687 		u64_to_user_ptr(entry->relocs_ptr);
1688 	unsigned long remain = entry->relocation_count;
1689 
1690 	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1691 		return -EINVAL;
1692 
1693 	/*
1694 	 * We must check that the entire relocation array is safe
1695 	 * to read. However, if the array is not writable the user loses
1696 	 * the updated relocation values.
1697 	 */
1698 	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1699 		return -EFAULT;
1700 
1701 	do {
1702 		struct drm_i915_gem_relocation_entry *r = stack;
1703 		unsigned int count =
1704 			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1705 		unsigned int copied;
1706 
1707 		/*
1708 		 * This is the fast path and we cannot handle a pagefault
1709 		 * whilst holding the struct mutex lest the user pass in the
1710 		 * relocations contained within a mmaped bo. For in such a case
1711 		 * we, the page fault handler would call i915_gem_fault() and
1712 		 * we would try to acquire the struct mutex again. Obviously
1713 		 * this is bad and so lockdep complains vehemently.
1714 		 */
1715 		copied = __copy_from_user(r, urelocs, count * sizeof(r[0]));
1716 		if (unlikely(copied)) {
1717 			remain = -EFAULT;
1718 			goto out;
1719 		}
1720 
1721 		remain -= count;
1722 		do {
1723 			u64 offset = eb_relocate_entry(eb, ev, r);
1724 
1725 			if (likely(offset == 0)) {
1726 			} else if ((s64)offset < 0) {
1727 				remain = (int)offset;
1728 				goto out;
1729 			} else {
1730 				/*
1731 				 * Note that reporting an error now
1732 				 * leaves everything in an inconsistent
1733 				 * state as we have *already* changed
1734 				 * the relocation value inside the
1735 				 * object. As we have not changed the
1736 				 * reloc.presumed_offset or will not
1737 				 * change the execobject.offset, on the
1738 				 * call we may not rewrite the value
1739 				 * inside the object, leaving it
1740 				 * dangling and causing a GPU hang. Unless
1741 				 * userspace dynamically rebuilds the
1742 				 * relocations on each execbuf rather than
1743 				 * presume a static tree.
1744 				 *
1745 				 * We did previously check if the relocations
1746 				 * were writable (access_ok), an error now
1747 				 * would be a strange race with mprotect,
1748 				 * having already demonstrated that we
1749 				 * can read from this userspace address.
1750 				 */
1751 				offset = gen8_canonical_addr(offset & ~UPDATE);
1752 				__put_user(offset,
1753 					   &urelocs[r - stack].presumed_offset);
1754 			}
1755 		} while (r++, --count);
1756 		urelocs += ARRAY_SIZE(stack);
1757 	} while (remain);
1758 out:
1759 	reloc_cache_reset(&eb->reloc_cache);
1760 	return remain;
1761 }
1762 
1763 static int eb_relocate(struct i915_execbuffer *eb)
1764 {
1765 	int err;
1766 
1767 	err = eb_lookup_vmas(eb);
1768 	if (err)
1769 		return err;
1770 
1771 	if (!list_empty(&eb->unbound)) {
1772 		err = eb_reserve(eb);
1773 		if (err)
1774 			return err;
1775 	}
1776 
1777 	/* The objects are in their final locations, apply the relocations. */
1778 	if (eb->args->flags & __EXEC_HAS_RELOC) {
1779 		struct eb_vma *ev;
1780 		int flush;
1781 
1782 		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1783 			err = eb_relocate_vma(eb, ev);
1784 			if (err)
1785 				break;
1786 		}
1787 
1788 		flush = reloc_gpu_flush(&eb->reloc_cache);
1789 		if (!err)
1790 			err = flush;
1791 	}
1792 
1793 	return err;
1794 }
1795 
1796 static int eb_move_to_gpu(struct i915_execbuffer *eb)
1797 {
1798 	const unsigned int count = eb->buffer_count;
1799 	struct ww_acquire_ctx acquire;
1800 	unsigned int i;
1801 	int err = 0;
1802 
1803 	ww_acquire_init(&acquire, &reservation_ww_class);
1804 
1805 	for (i = 0; i < count; i++) {
1806 		struct eb_vma *ev = &eb->vma[i];
1807 		struct i915_vma *vma = ev->vma;
1808 
1809 		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
1810 		if (err == -EDEADLK) {
1811 			GEM_BUG_ON(i == 0);
1812 			do {
1813 				int j = i - 1;
1814 
1815 				ww_mutex_unlock(&eb->vma[j].vma->resv->lock);
1816 
1817 				swap(eb->vma[i],  eb->vma[j]);
1818 			} while (--i);
1819 
1820 			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
1821 							       &acquire);
1822 		}
1823 		if (err)
1824 			break;
1825 	}
1826 	ww_acquire_done(&acquire);
1827 
1828 	while (i--) {
1829 		struct eb_vma *ev = &eb->vma[i];
1830 		struct i915_vma *vma = ev->vma;
1831 		unsigned int flags = ev->flags;
1832 		struct drm_i915_gem_object *obj = vma->obj;
1833 
1834 		assert_vma_held(vma);
1835 
1836 		if (flags & EXEC_OBJECT_CAPTURE) {
1837 			struct i915_capture_list *capture;
1838 
1839 			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1840 			if (capture) {
1841 				capture->next = eb->request->capture_list;
1842 				capture->vma = vma;
1843 				eb->request->capture_list = capture;
1844 			}
1845 		}
1846 
1847 		/*
1848 		 * If the GPU is not _reading_ through the CPU cache, we need
1849 		 * to make sure that any writes (both previous GPU writes from
1850 		 * before a change in snooping levels and normal CPU writes)
1851 		 * caught in that cache are flushed to main memory.
1852 		 *
1853 		 * We want to say
1854 		 *   obj->cache_dirty &&
1855 		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1856 		 * but gcc's optimiser doesn't handle that as well and emits
1857 		 * two jumps instead of one. Maybe one day...
1858 		 */
1859 		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1860 			if (i915_gem_clflush_object(obj, 0))
1861 				flags &= ~EXEC_OBJECT_ASYNC;
1862 		}
1863 
1864 		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
1865 			err = i915_request_await_object
1866 				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
1867 		}
1868 
1869 		if (err == 0)
1870 			err = i915_vma_move_to_active(vma, eb->request, flags);
1871 
1872 		i915_vma_unlock(vma);
1873 		eb_unreserve_vma(ev);
1874 	}
1875 	ww_acquire_fini(&acquire);
1876 
1877 	eb_vma_array_put(fetch_and_zero(&eb->array));
1878 
1879 	if (unlikely(err))
1880 		goto err_skip;
1881 
1882 	/* Unconditionally flush any chipset caches (for streaming writes). */
1883 	intel_gt_chipset_flush(eb->engine->gt);
1884 	return 0;
1885 
1886 err_skip:
1887 	i915_request_set_error_once(eb->request, err);
1888 	return err;
1889 }
1890 
1891 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1892 {
1893 	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1894 		return -EINVAL;
1895 
1896 	/* Kernel clipping was a DRI1 misfeature */
1897 	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1898 		if (exec->num_cliprects || exec->cliprects_ptr)
1899 			return -EINVAL;
1900 	}
1901 
1902 	if (exec->DR4 == 0xffffffff) {
1903 		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1904 		exec->DR4 = 0;
1905 	}
1906 	if (exec->DR1 || exec->DR4)
1907 		return -EINVAL;
1908 
1909 	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1910 		return -EINVAL;
1911 
1912 	return 0;
1913 }
1914 
1915 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1916 {
1917 	u32 *cs;
1918 	int i;
1919 
1920 	if (!IS_GEN(rq->engine->i915, 7) || rq->engine->id != RCS0) {
1921 		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
1922 		return -EINVAL;
1923 	}
1924 
1925 	cs = intel_ring_begin(rq, 4 * 2 + 2);
1926 	if (IS_ERR(cs))
1927 		return PTR_ERR(cs);
1928 
1929 	*cs++ = MI_LOAD_REGISTER_IMM(4);
1930 	for (i = 0; i < 4; i++) {
1931 		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1932 		*cs++ = 0;
1933 	}
1934 	*cs++ = MI_NOOP;
1935 	intel_ring_advance(rq, cs);
1936 
1937 	return 0;
1938 }
1939 
1940 static struct i915_vma *
1941 shadow_batch_pin(struct drm_i915_gem_object *obj,
1942 		 struct i915_address_space *vm,
1943 		 unsigned int flags)
1944 {
1945 	struct i915_vma *vma;
1946 	int err;
1947 
1948 	vma = i915_vma_instance(obj, vm, NULL);
1949 	if (IS_ERR(vma))
1950 		return vma;
1951 
1952 	err = i915_vma_pin(vma, 0, 0, flags);
1953 	if (err)
1954 		return ERR_PTR(err);
1955 
1956 	return vma;
1957 }
1958 
1959 struct eb_parse_work {
1960 	struct dma_fence_work base;
1961 	struct intel_engine_cs *engine;
1962 	struct i915_vma *batch;
1963 	struct i915_vma *shadow;
1964 	struct i915_vma *trampoline;
1965 	unsigned int batch_offset;
1966 	unsigned int batch_length;
1967 };
1968 
1969 static int __eb_parse(struct dma_fence_work *work)
1970 {
1971 	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
1972 
1973 	return intel_engine_cmd_parser(pw->engine,
1974 				       pw->batch,
1975 				       pw->batch_offset,
1976 				       pw->batch_length,
1977 				       pw->shadow,
1978 				       pw->trampoline);
1979 }
1980 
1981 static void __eb_parse_release(struct dma_fence_work *work)
1982 {
1983 	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
1984 
1985 	if (pw->trampoline)
1986 		i915_active_release(&pw->trampoline->active);
1987 	i915_active_release(&pw->shadow->active);
1988 	i915_active_release(&pw->batch->active);
1989 }
1990 
1991 static const struct dma_fence_work_ops eb_parse_ops = {
1992 	.name = "eb_parse",
1993 	.work = __eb_parse,
1994 	.release = __eb_parse_release,
1995 };
1996 
1997 static inline int
1998 __parser_mark_active(struct i915_vma *vma,
1999 		     struct intel_timeline *tl,
2000 		     struct dma_fence *fence)
2001 {
2002 	struct intel_gt_buffer_pool_node *node = vma->private;
2003 
2004 	return i915_active_ref(&node->active, tl, fence);
2005 }
2006 
2007 static int
2008 parser_mark_active(struct eb_parse_work *pw, struct intel_timeline *tl)
2009 {
2010 	int err;
2011 
2012 	mutex_lock(&tl->mutex);
2013 
2014 	err = __parser_mark_active(pw->shadow, tl, &pw->base.dma);
2015 	if (err)
2016 		goto unlock;
2017 
2018 	if (pw->trampoline) {
2019 		err = __parser_mark_active(pw->trampoline, tl, &pw->base.dma);
2020 		if (err)
2021 			goto unlock;
2022 	}
2023 
2024 unlock:
2025 	mutex_unlock(&tl->mutex);
2026 	return err;
2027 }
2028 
2029 static int eb_parse_pipeline(struct i915_execbuffer *eb,
2030 			     struct i915_vma *shadow,
2031 			     struct i915_vma *trampoline)
2032 {
2033 	struct eb_parse_work *pw;
2034 	int err;
2035 
2036 	pw = kzalloc(sizeof(*pw), GFP_KERNEL);
2037 	if (!pw)
2038 		return -ENOMEM;
2039 
2040 	err = i915_active_acquire(&eb->batch->vma->active);
2041 	if (err)
2042 		goto err_free;
2043 
2044 	err = i915_active_acquire(&shadow->active);
2045 	if (err)
2046 		goto err_batch;
2047 
2048 	if (trampoline) {
2049 		err = i915_active_acquire(&trampoline->active);
2050 		if (err)
2051 			goto err_shadow;
2052 	}
2053 
2054 	dma_fence_work_init(&pw->base, &eb_parse_ops);
2055 
2056 	pw->engine = eb->engine;
2057 	pw->batch = eb->batch->vma;
2058 	pw->batch_offset = eb->batch_start_offset;
2059 	pw->batch_length = eb->batch_len;
2060 	pw->shadow = shadow;
2061 	pw->trampoline = trampoline;
2062 
2063 	/* Mark active refs early for this worker, in case we get interrupted */
2064 	err = parser_mark_active(pw, eb->context->timeline);
2065 	if (err)
2066 		goto err_commit;
2067 
2068 	err = dma_resv_lock_interruptible(pw->batch->resv, NULL);
2069 	if (err)
2070 		goto err_commit;
2071 
2072 	err = dma_resv_reserve_shared(pw->batch->resv, 1);
2073 	if (err)
2074 		goto err_commit_unlock;
2075 
2076 	/* Wait for all writes (and relocs) into the batch to complete */
2077 	err = i915_sw_fence_await_reservation(&pw->base.chain,
2078 					      pw->batch->resv, NULL, false,
2079 					      0, I915_FENCE_GFP);
2080 	if (err < 0)
2081 		goto err_commit_unlock;
2082 
2083 	/* Keep the batch alive and unwritten as we parse */
2084 	dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);
2085 
2086 	dma_resv_unlock(pw->batch->resv);
2087 
2088 	/* Force execution to wait for completion of the parser */
2089 	dma_resv_lock(shadow->resv, NULL);
2090 	dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
2091 	dma_resv_unlock(shadow->resv);
2092 
2093 	dma_fence_work_commit_imm(&pw->base);
2094 	return 0;
2095 
2096 err_commit_unlock:
2097 	dma_resv_unlock(pw->batch->resv);
2098 err_commit:
2099 	i915_sw_fence_set_error_once(&pw->base.chain, err);
2100 	dma_fence_work_commit_imm(&pw->base);
2101 	return err;
2102 
2103 err_shadow:
2104 	i915_active_release(&shadow->active);
2105 err_batch:
2106 	i915_active_release(&eb->batch->vma->active);
2107 err_free:
2108 	kfree(pw);
2109 	return err;
2110 }
2111 
2112 static int eb_parse(struct i915_execbuffer *eb)
2113 {
2114 	struct drm_i915_private *i915 = eb->i915;
2115 	struct intel_gt_buffer_pool_node *pool;
2116 	struct i915_vma *shadow, *trampoline;
2117 	unsigned int len;
2118 	int err;
2119 
2120 	if (!eb_use_cmdparser(eb))
2121 		return 0;
2122 
2123 	len = eb->batch_len;
2124 	if (!CMDPARSER_USES_GGTT(eb->i915)) {
2125 		/*
2126 		 * ppGTT backed shadow buffers must be mapped RO, to prevent
2127 		 * post-scan tampering
2128 		 */
2129 		if (!eb->context->vm->has_read_only) {
2130 			drm_dbg(&i915->drm,
2131 				"Cannot prevent post-scan tampering without RO capable vm\n");
2132 			return -EINVAL;
2133 		}
2134 	} else {
2135 		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2136 	}
2137 
2138 	pool = intel_gt_get_buffer_pool(eb->engine->gt, len);
2139 	if (IS_ERR(pool))
2140 		return PTR_ERR(pool);
2141 
2142 	shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER);
2143 	if (IS_ERR(shadow)) {
2144 		err = PTR_ERR(shadow);
2145 		goto err;
2146 	}
2147 	i915_gem_object_set_readonly(shadow->obj);
2148 	shadow->private = pool;
2149 
2150 	trampoline = NULL;
2151 	if (CMDPARSER_USES_GGTT(eb->i915)) {
2152 		trampoline = shadow;
2153 
2154 		shadow = shadow_batch_pin(pool->obj,
2155 					  &eb->engine->gt->ggtt->vm,
2156 					  PIN_GLOBAL);
2157 		if (IS_ERR(shadow)) {
2158 			err = PTR_ERR(shadow);
2159 			shadow = trampoline;
2160 			goto err_shadow;
2161 		}
2162 		shadow->private = pool;
2163 
2164 		eb->batch_flags |= I915_DISPATCH_SECURE;
2165 	}
2166 
2167 	err = eb_parse_pipeline(eb, shadow, trampoline);
2168 	if (err)
2169 		goto err_trampoline;
2170 
2171 	eb->vma[eb->buffer_count].vma = i915_vma_get(shadow);
2172 	eb->vma[eb->buffer_count].flags = __EXEC_OBJECT_HAS_PIN;
2173 	eb->batch = &eb->vma[eb->buffer_count++];
2174 	eb->vma[eb->buffer_count].vma = NULL;
2175 
2176 	eb->trampoline = trampoline;
2177 	eb->batch_start_offset = 0;
2178 
2179 	return 0;
2180 
2181 err_trampoline:
2182 	if (trampoline)
2183 		i915_vma_unpin(trampoline);
2184 err_shadow:
2185 	i915_vma_unpin(shadow);
2186 err:
2187 	intel_gt_buffer_pool_put(pool);
2188 	return err;
2189 }
2190 
2191 static void
2192 add_to_client(struct i915_request *rq, struct drm_file *file)
2193 {
2194 	struct drm_i915_file_private *file_priv = file->driver_priv;
2195 
2196 	rq->file_priv = file_priv;
2197 
2198 	spin_lock(&file_priv->mm.lock);
2199 	list_add_tail(&rq->client_link, &file_priv->mm.request_list);
2200 	spin_unlock(&file_priv->mm.lock);
2201 }
2202 
2203 static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
2204 {
2205 	int err;
2206 
2207 	err = eb_move_to_gpu(eb);
2208 	if (err)
2209 		return err;
2210 
2211 	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2212 		err = i915_reset_gen7_sol_offsets(eb->request);
2213 		if (err)
2214 			return err;
2215 	}
2216 
2217 	/*
2218 	 * After we completed waiting for other engines (using HW semaphores)
2219 	 * then we can signal that this request/batch is ready to run. This
2220 	 * allows us to determine if the batch is still waiting on the GPU
2221 	 * or actually running by checking the breadcrumb.
2222 	 */
2223 	if (eb->engine->emit_init_breadcrumb) {
2224 		err = eb->engine->emit_init_breadcrumb(eb->request);
2225 		if (err)
2226 			return err;
2227 	}
2228 
2229 	err = eb->engine->emit_bb_start(eb->request,
2230 					batch->node.start +
2231 					eb->batch_start_offset,
2232 					eb->batch_len,
2233 					eb->batch_flags);
2234 	if (err)
2235 		return err;
2236 
2237 	if (eb->trampoline) {
2238 		GEM_BUG_ON(eb->batch_start_offset);
2239 		err = eb->engine->emit_bb_start(eb->request,
2240 						eb->trampoline->node.start +
2241 						eb->batch_len,
2242 						0, 0);
2243 		if (err)
2244 			return err;
2245 	}
2246 
2247 	if (intel_context_nopreempt(eb->context))
2248 		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2249 
2250 	return 0;
2251 }
2252 
2253 static int num_vcs_engines(const struct drm_i915_private *i915)
2254 {
2255 	return hweight64(VDBOX_MASK(&i915->gt));
2256 }
2257 
2258 /*
2259  * Find one BSD ring to dispatch the corresponding BSD command.
2260  * The engine index is returned.
2261  */
2262 static unsigned int
2263 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2264 			 struct drm_file *file)
2265 {
2266 	struct drm_i915_file_private *file_priv = file->driver_priv;
2267 
2268 	/* Check whether the file_priv has already selected one ring. */
2269 	if ((int)file_priv->bsd_engine < 0)
2270 		file_priv->bsd_engine =
2271 			get_random_int() % num_vcs_engines(dev_priv);
2272 
2273 	return file_priv->bsd_engine;
2274 }
2275 
2276 static const enum intel_engine_id user_ring_map[] = {
2277 	[I915_EXEC_DEFAULT]	= RCS0,
2278 	[I915_EXEC_RENDER]	= RCS0,
2279 	[I915_EXEC_BLT]		= BCS0,
2280 	[I915_EXEC_BSD]		= VCS0,
2281 	[I915_EXEC_VEBOX]	= VECS0
2282 };
2283 
2284 static struct i915_request *eb_throttle(struct intel_context *ce)
2285 {
2286 	struct intel_ring *ring = ce->ring;
2287 	struct intel_timeline *tl = ce->timeline;
2288 	struct i915_request *rq;
2289 
2290 	/*
2291 	 * Completely unscientific finger-in-the-air estimates for suitable
2292 	 * maximum user request size (to avoid blocking) and then backoff.
2293 	 */
2294 	if (intel_ring_update_space(ring) >= PAGE_SIZE)
2295 		return NULL;
2296 
2297 	/*
2298 	 * Find a request that after waiting upon, there will be at least half
2299 	 * the ring available. The hysteresis allows us to compete for the
2300 	 * shared ring and should mean that we sleep less often prior to
2301 	 * claiming our resources, but not so long that the ring completely
2302 	 * drains before we can submit our next request.
2303 	 */
2304 	list_for_each_entry(rq, &tl->requests, link) {
2305 		if (rq->ring != ring)
2306 			continue;
2307 
2308 		if (__intel_ring_space(rq->postfix,
2309 				       ring->emit, ring->size) > ring->size / 2)
2310 			break;
2311 	}
2312 	if (&rq->link == &tl->requests)
2313 		return NULL; /* weird, we will check again later for real */
2314 
2315 	return i915_request_get(rq);
2316 }
2317 
2318 static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
2319 {
2320 	struct intel_timeline *tl;
2321 	struct i915_request *rq;
2322 	int err;
2323 
2324 	/*
2325 	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2326 	 * EIO if the GPU is already wedged.
2327 	 */
2328 	err = intel_gt_terminally_wedged(ce->engine->gt);
2329 	if (err)
2330 		return err;
2331 
2332 	if (unlikely(intel_context_is_banned(ce)))
2333 		return -EIO;
2334 
2335 	/*
2336 	 * Pinning the contexts may generate requests in order to acquire
2337 	 * GGTT space, so do this first before we reserve a seqno for
2338 	 * ourselves.
2339 	 */
2340 	err = intel_context_pin(ce);
2341 	if (err)
2342 		return err;
2343 
2344 	/*
2345 	 * Take a local wakeref for preparing to dispatch the execbuf as
2346 	 * we expect to access the hardware fairly frequently in the
2347 	 * process, and require the engine to be kept awake between accesses.
2348 	 * Upon dispatch, we acquire another prolonged wakeref that we hold
2349 	 * until the timeline is idle, which in turn releases the wakeref
2350 	 * taken on the engine, and the parent device.
2351 	 */
2352 	tl = intel_context_timeline_lock(ce);
2353 	if (IS_ERR(tl)) {
2354 		err = PTR_ERR(tl);
2355 		goto err_unpin;
2356 	}
2357 
2358 	intel_context_enter(ce);
2359 	rq = eb_throttle(ce);
2360 
2361 	intel_context_timeline_unlock(tl);
2362 
2363 	if (rq) {
2364 		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2365 		long timeout;
2366 
2367 		timeout = MAX_SCHEDULE_TIMEOUT;
2368 		if (nonblock)
2369 			timeout = 0;
2370 
2371 		timeout = i915_request_wait(rq,
2372 					    I915_WAIT_INTERRUPTIBLE,
2373 					    timeout);
2374 		i915_request_put(rq);
2375 
2376 		if (timeout < 0) {
2377 			err = nonblock ? -EWOULDBLOCK : timeout;
2378 			goto err_exit;
2379 		}
2380 	}
2381 
2382 	eb->engine = ce->engine;
2383 	eb->context = ce;
2384 	return 0;
2385 
2386 err_exit:
2387 	mutex_lock(&tl->mutex);
2388 	intel_context_exit(ce);
2389 	intel_context_timeline_unlock(tl);
2390 err_unpin:
2391 	intel_context_unpin(ce);
2392 	return err;
2393 }
2394 
2395 static void eb_unpin_engine(struct i915_execbuffer *eb)
2396 {
2397 	struct intel_context *ce = eb->context;
2398 	struct intel_timeline *tl = ce->timeline;
2399 
2400 	mutex_lock(&tl->mutex);
2401 	intel_context_exit(ce);
2402 	mutex_unlock(&tl->mutex);
2403 
2404 	intel_context_unpin(ce);
2405 }
2406 
2407 static unsigned int
2408 eb_select_legacy_ring(struct i915_execbuffer *eb,
2409 		      struct drm_file *file,
2410 		      struct drm_i915_gem_execbuffer2 *args)
2411 {
2412 	struct drm_i915_private *i915 = eb->i915;
2413 	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2414 
2415 	if (user_ring_id != I915_EXEC_BSD &&
2416 	    (args->flags & I915_EXEC_BSD_MASK)) {
2417 		drm_dbg(&i915->drm,
2418 			"execbuf with non bsd ring but with invalid "
2419 			"bsd dispatch flags: %d\n", (int)(args->flags));
2420 		return -1;
2421 	}
2422 
2423 	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2424 		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2425 
2426 		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2427 			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2428 		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2429 			   bsd_idx <= I915_EXEC_BSD_RING2) {
2430 			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2431 			bsd_idx--;
2432 		} else {
2433 			drm_dbg(&i915->drm,
2434 				"execbuf with unknown bsd ring: %u\n",
2435 				bsd_idx);
2436 			return -1;
2437 		}
2438 
2439 		return _VCS(bsd_idx);
2440 	}
2441 
2442 	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2443 		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2444 			user_ring_id);
2445 		return -1;
2446 	}
2447 
2448 	return user_ring_map[user_ring_id];
2449 }
2450 
2451 static int
2452 eb_pin_engine(struct i915_execbuffer *eb,
2453 	      struct drm_file *file,
2454 	      struct drm_i915_gem_execbuffer2 *args)
2455 {
2456 	struct intel_context *ce;
2457 	unsigned int idx;
2458 	int err;
2459 
2460 	if (i915_gem_context_user_engines(eb->gem_context))
2461 		idx = args->flags & I915_EXEC_RING_MASK;
2462 	else
2463 		idx = eb_select_legacy_ring(eb, file, args);
2464 
2465 	ce = i915_gem_context_get_engine(eb->gem_context, idx);
2466 	if (IS_ERR(ce))
2467 		return PTR_ERR(ce);
2468 
2469 	err = __eb_pin_engine(eb, ce);
2470 	intel_context_put(ce);
2471 
2472 	return err;
2473 }
2474 
2475 static void
2476 __free_fence_array(struct drm_syncobj **fences, unsigned int n)
2477 {
2478 	while (n--)
2479 		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2480 	kvfree(fences);
2481 }
2482 
2483 static struct drm_syncobj **
2484 get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2485 		struct drm_file *file)
2486 {
2487 	const unsigned long nfences = args->num_cliprects;
2488 	struct drm_i915_gem_exec_fence __user *user;
2489 	struct drm_syncobj **fences;
2490 	unsigned long n;
2491 	int err;
2492 
2493 	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2494 		return NULL;
2495 
2496 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2497 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2498 	if (nfences > min_t(unsigned long,
2499 			    ULONG_MAX / sizeof(*user),
2500 			    SIZE_MAX / sizeof(*fences)))
2501 		return ERR_PTR(-EINVAL);
2502 
2503 	user = u64_to_user_ptr(args->cliprects_ptr);
2504 	if (!access_ok(user, nfences * sizeof(*user)))
2505 		return ERR_PTR(-EFAULT);
2506 
2507 	fences = kvmalloc_array(nfences, sizeof(*fences),
2508 				__GFP_NOWARN | GFP_KERNEL);
2509 	if (!fences)
2510 		return ERR_PTR(-ENOMEM);
2511 
2512 	for (n = 0; n < nfences; n++) {
2513 		struct drm_i915_gem_exec_fence fence;
2514 		struct drm_syncobj *syncobj;
2515 
2516 		if (__copy_from_user(&fence, user++, sizeof(fence))) {
2517 			err = -EFAULT;
2518 			goto err;
2519 		}
2520 
2521 		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
2522 			err = -EINVAL;
2523 			goto err;
2524 		}
2525 
2526 		syncobj = drm_syncobj_find(file, fence.handle);
2527 		if (!syncobj) {
2528 			DRM_DEBUG("Invalid syncobj handle provided\n");
2529 			err = -ENOENT;
2530 			goto err;
2531 		}
2532 
2533 		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2534 			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2535 
2536 		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2537 	}
2538 
2539 	return fences;
2540 
2541 err:
2542 	__free_fence_array(fences, n);
2543 	return ERR_PTR(err);
2544 }
2545 
2546 static void
2547 put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2548 		struct drm_syncobj **fences)
2549 {
2550 	if (fences)
2551 		__free_fence_array(fences, args->num_cliprects);
2552 }
2553 
2554 static int
2555 await_fence_array(struct i915_execbuffer *eb,
2556 		  struct drm_syncobj **fences)
2557 {
2558 	const unsigned int nfences = eb->args->num_cliprects;
2559 	unsigned int n;
2560 	int err;
2561 
2562 	for (n = 0; n < nfences; n++) {
2563 		struct drm_syncobj *syncobj;
2564 		struct dma_fence *fence;
2565 		unsigned int flags;
2566 
2567 		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2568 		if (!(flags & I915_EXEC_FENCE_WAIT))
2569 			continue;
2570 
2571 		fence = drm_syncobj_fence_get(syncobj);
2572 		if (!fence)
2573 			return -EINVAL;
2574 
2575 		err = i915_request_await_dma_fence(eb->request, fence);
2576 		dma_fence_put(fence);
2577 		if (err < 0)
2578 			return err;
2579 	}
2580 
2581 	return 0;
2582 }
2583 
2584 static void
2585 signal_fence_array(struct i915_execbuffer *eb,
2586 		   struct drm_syncobj **fences)
2587 {
2588 	const unsigned int nfences = eb->args->num_cliprects;
2589 	struct dma_fence * const fence = &eb->request->fence;
2590 	unsigned int n;
2591 
2592 	for (n = 0; n < nfences; n++) {
2593 		struct drm_syncobj *syncobj;
2594 		unsigned int flags;
2595 
2596 		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2597 		if (!(flags & I915_EXEC_FENCE_SIGNAL))
2598 			continue;
2599 
2600 		drm_syncobj_replace_fence(syncobj, fence);
2601 	}
2602 }
2603 
2604 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
2605 {
2606 	struct i915_request *rq, *rn;
2607 
2608 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
2609 		if (rq == end || !i915_request_retire(rq))
2610 			break;
2611 }
2612 
2613 static void eb_request_add(struct i915_execbuffer *eb)
2614 {
2615 	struct i915_request *rq = eb->request;
2616 	struct intel_timeline * const tl = i915_request_timeline(rq);
2617 	struct i915_sched_attr attr = {};
2618 	struct i915_request *prev;
2619 
2620 	lockdep_assert_held(&tl->mutex);
2621 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
2622 
2623 	trace_i915_request_add(rq);
2624 
2625 	prev = __i915_request_commit(rq);
2626 
2627 	/* Check that the context wasn't destroyed before submission */
2628 	if (likely(!intel_context_is_closed(eb->context))) {
2629 		attr = eb->gem_context->sched;
2630 	} else {
2631 		/* Serialise with context_close via the add_to_timeline */
2632 		i915_request_set_error_once(rq, -ENOENT);
2633 		__i915_request_skip(rq);
2634 	}
2635 
2636 	__i915_request_queue(rq, &attr);
2637 
2638 	/* Try to clean up the client's timeline after submitting the request */
2639 	if (prev)
2640 		retire_requests(tl, prev);
2641 
2642 	mutex_unlock(&tl->mutex);
2643 }
2644 
2645 static int
2646 i915_gem_do_execbuffer(struct drm_device *dev,
2647 		       struct drm_file *file,
2648 		       struct drm_i915_gem_execbuffer2 *args,
2649 		       struct drm_i915_gem_exec_object2 *exec,
2650 		       struct drm_syncobj **fences)
2651 {
2652 	struct drm_i915_private *i915 = to_i915(dev);
2653 	struct i915_execbuffer eb;
2654 	struct dma_fence *in_fence = NULL;
2655 	struct sync_file *out_fence = NULL;
2656 	struct i915_vma *batch;
2657 	int out_fence_fd = -1;
2658 	int err;
2659 
2660 	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2661 	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2662 		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2663 
2664 	eb.i915 = i915;
2665 	eb.file = file;
2666 	eb.args = args;
2667 	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2668 		args->flags |= __EXEC_HAS_RELOC;
2669 
2670 	eb.exec = exec;
2671 
2672 	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2673 	reloc_cache_init(&eb.reloc_cache, eb.i915);
2674 
2675 	eb.buffer_count = args->buffer_count;
2676 	eb.batch_start_offset = args->batch_start_offset;
2677 	eb.batch_len = args->batch_len;
2678 	eb.trampoline = NULL;
2679 
2680 	eb.batch_flags = 0;
2681 	if (args->flags & I915_EXEC_SECURE) {
2682 		if (INTEL_GEN(i915) >= 11)
2683 			return -ENODEV;
2684 
2685 		/* Return -EPERM to trigger fallback code on old binaries. */
2686 		if (!HAS_SECURE_BATCHES(i915))
2687 			return -EPERM;
2688 
2689 		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2690 			return -EPERM;
2691 
2692 		eb.batch_flags |= I915_DISPATCH_SECURE;
2693 	}
2694 	if (args->flags & I915_EXEC_IS_PINNED)
2695 		eb.batch_flags |= I915_DISPATCH_PINNED;
2696 
2697 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
2698 	if (args->flags & IN_FENCES) {
2699 		if ((args->flags & IN_FENCES) == IN_FENCES)
2700 			return -EINVAL;
2701 
2702 		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2703 		if (!in_fence)
2704 			return -EINVAL;
2705 	}
2706 #undef IN_FENCES
2707 
2708 	if (args->flags & I915_EXEC_FENCE_OUT) {
2709 		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2710 		if (out_fence_fd < 0) {
2711 			err = out_fence_fd;
2712 			goto err_in_fence;
2713 		}
2714 	}
2715 
2716 	err = eb_create(&eb);
2717 	if (err)
2718 		goto err_out_fence;
2719 
2720 	GEM_BUG_ON(!eb.lut_size);
2721 
2722 	err = eb_select_context(&eb);
2723 	if (unlikely(err))
2724 		goto err_destroy;
2725 
2726 	err = eb_pin_engine(&eb, file, args);
2727 	if (unlikely(err))
2728 		goto err_context;
2729 
2730 	err = eb_relocate(&eb);
2731 	if (err) {
2732 		/*
2733 		 * If the user expects the execobject.offset and
2734 		 * reloc.presumed_offset to be an exact match,
2735 		 * as for using NO_RELOC, then we cannot update
2736 		 * the execobject.offset until we have completed
2737 		 * relocation.
2738 		 */
2739 		args->flags &= ~__EXEC_HAS_RELOC;
2740 		goto err_vma;
2741 	}
2742 
2743 	if (unlikely(eb.batch->flags & EXEC_OBJECT_WRITE)) {
2744 		drm_dbg(&i915->drm,
2745 			"Attempting to use self-modifying batch buffer\n");
2746 		err = -EINVAL;
2747 		goto err_vma;
2748 	}
2749 
2750 	if (range_overflows_t(u64,
2751 			      eb.batch_start_offset, eb.batch_len,
2752 			      eb.batch->vma->size)) {
2753 		drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
2754 		err = -EINVAL;
2755 		goto err_vma;
2756 	}
2757 
2758 	if (eb.batch_len == 0)
2759 		eb.batch_len = eb.batch->vma->size - eb.batch_start_offset;
2760 
2761 	err = eb_parse(&eb);
2762 	if (err)
2763 		goto err_vma;
2764 
2765 	/*
2766 	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2767 	 * batch" bit. Hence we need to pin secure batches into the global gtt.
2768 	 * hsw should have this fixed, but bdw mucks it up again. */
2769 	batch = eb.batch->vma;
2770 	if (eb.batch_flags & I915_DISPATCH_SECURE) {
2771 		struct i915_vma *vma;
2772 
2773 		/*
2774 		 * So on first glance it looks freaky that we pin the batch here
2775 		 * outside of the reservation loop. But:
2776 		 * - The batch is already pinned into the relevant ppgtt, so we
2777 		 *   already have the backing storage fully allocated.
2778 		 * - No other BO uses the global gtt (well contexts, but meh),
2779 		 *   so we don't really have issues with multiple objects not
2780 		 *   fitting due to fragmentation.
2781 		 * So this is actually safe.
2782 		 */
2783 		vma = i915_gem_object_ggtt_pin(batch->obj, NULL, 0, 0, 0);
2784 		if (IS_ERR(vma)) {
2785 			err = PTR_ERR(vma);
2786 			goto err_parse;
2787 		}
2788 
2789 		batch = vma;
2790 	}
2791 
2792 	/* All GPU relocation batches must be submitted prior to the user rq */
2793 	GEM_BUG_ON(eb.reloc_cache.rq);
2794 
2795 	/* Allocate a request for this batch buffer nice and early. */
2796 	eb.request = i915_request_create(eb.context);
2797 	if (IS_ERR(eb.request)) {
2798 		err = PTR_ERR(eb.request);
2799 		goto err_batch_unpin;
2800 	}
2801 
2802 	if (in_fence) {
2803 		if (args->flags & I915_EXEC_FENCE_SUBMIT)
2804 			err = i915_request_await_execution(eb.request,
2805 							   in_fence,
2806 							   eb.engine->bond_execute);
2807 		else
2808 			err = i915_request_await_dma_fence(eb.request,
2809 							   in_fence);
2810 		if (err < 0)
2811 			goto err_request;
2812 	}
2813 
2814 	if (fences) {
2815 		err = await_fence_array(&eb, fences);
2816 		if (err)
2817 			goto err_request;
2818 	}
2819 
2820 	if (out_fence_fd != -1) {
2821 		out_fence = sync_file_create(&eb.request->fence);
2822 		if (!out_fence) {
2823 			err = -ENOMEM;
2824 			goto err_request;
2825 		}
2826 	}
2827 
2828 	/*
2829 	 * Whilst this request exists, batch_obj will be on the
2830 	 * active_list, and so will hold the active reference. Only when this
2831 	 * request is retired will the the batch_obj be moved onto the
2832 	 * inactive_list and lose its active reference. Hence we do not need
2833 	 * to explicitly hold another reference here.
2834 	 */
2835 	eb.request->batch = batch;
2836 	if (batch->private)
2837 		intel_gt_buffer_pool_mark_active(batch->private, eb.request);
2838 
2839 	trace_i915_request_queue(eb.request, eb.batch_flags);
2840 	err = eb_submit(&eb, batch);
2841 err_request:
2842 	add_to_client(eb.request, file);
2843 	i915_request_get(eb.request);
2844 	eb_request_add(&eb);
2845 
2846 	if (fences)
2847 		signal_fence_array(&eb, fences);
2848 
2849 	if (out_fence) {
2850 		if (err == 0) {
2851 			fd_install(out_fence_fd, out_fence->file);
2852 			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2853 			args->rsvd2 |= (u64)out_fence_fd << 32;
2854 			out_fence_fd = -1;
2855 		} else {
2856 			fput(out_fence->file);
2857 		}
2858 	}
2859 	i915_request_put(eb.request);
2860 
2861 err_batch_unpin:
2862 	if (eb.batch_flags & I915_DISPATCH_SECURE)
2863 		i915_vma_unpin(batch);
2864 err_parse:
2865 	if (batch->private)
2866 		intel_gt_buffer_pool_put(batch->private);
2867 err_vma:
2868 	if (eb.trampoline)
2869 		i915_vma_unpin(eb.trampoline);
2870 	eb_unpin_engine(&eb);
2871 err_context:
2872 	i915_gem_context_put(eb.gem_context);
2873 err_destroy:
2874 	eb_destroy(&eb);
2875 err_out_fence:
2876 	if (out_fence_fd != -1)
2877 		put_unused_fd(out_fence_fd);
2878 err_in_fence:
2879 	dma_fence_put(in_fence);
2880 	return err;
2881 }
2882 
2883 static size_t eb_element_size(void)
2884 {
2885 	return sizeof(struct drm_i915_gem_exec_object2);
2886 }
2887 
2888 static bool check_buffer_count(size_t count)
2889 {
2890 	const size_t sz = eb_element_size();
2891 
2892 	/*
2893 	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2894 	 * array size (see eb_create()). Otherwise, we can accept an array as
2895 	 * large as can be addressed (though use large arrays at your peril)!
2896 	 */
2897 
2898 	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
2899 }
2900 
2901 /*
2902  * Legacy execbuffer just creates an exec2 list from the original exec object
2903  * list array and passes it to the real function.
2904  */
2905 int
2906 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2907 			  struct drm_file *file)
2908 {
2909 	struct drm_i915_private *i915 = to_i915(dev);
2910 	struct drm_i915_gem_execbuffer *args = data;
2911 	struct drm_i915_gem_execbuffer2 exec2;
2912 	struct drm_i915_gem_exec_object *exec_list = NULL;
2913 	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2914 	const size_t count = args->buffer_count;
2915 	unsigned int i;
2916 	int err;
2917 
2918 	if (!check_buffer_count(count)) {
2919 		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
2920 		return -EINVAL;
2921 	}
2922 
2923 	exec2.buffers_ptr = args->buffers_ptr;
2924 	exec2.buffer_count = args->buffer_count;
2925 	exec2.batch_start_offset = args->batch_start_offset;
2926 	exec2.batch_len = args->batch_len;
2927 	exec2.DR1 = args->DR1;
2928 	exec2.DR4 = args->DR4;
2929 	exec2.num_cliprects = args->num_cliprects;
2930 	exec2.cliprects_ptr = args->cliprects_ptr;
2931 	exec2.flags = I915_EXEC_RENDER;
2932 	i915_execbuffer2_set_context_id(exec2, 0);
2933 
2934 	err = i915_gem_check_execbuffer(&exec2);
2935 	if (err)
2936 		return err;
2937 
2938 	/* Copy in the exec list from userland */
2939 	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2940 				   __GFP_NOWARN | GFP_KERNEL);
2941 	exec2_list = kvmalloc_array(count, eb_element_size(),
2942 				    __GFP_NOWARN | GFP_KERNEL);
2943 	if (exec_list == NULL || exec2_list == NULL) {
2944 		drm_dbg(&i915->drm,
2945 			"Failed to allocate exec list for %d buffers\n",
2946 			args->buffer_count);
2947 		kvfree(exec_list);
2948 		kvfree(exec2_list);
2949 		return -ENOMEM;
2950 	}
2951 	err = copy_from_user(exec_list,
2952 			     u64_to_user_ptr(args->buffers_ptr),
2953 			     sizeof(*exec_list) * count);
2954 	if (err) {
2955 		drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
2956 			args->buffer_count, err);
2957 		kvfree(exec_list);
2958 		kvfree(exec2_list);
2959 		return -EFAULT;
2960 	}
2961 
2962 	for (i = 0; i < args->buffer_count; i++) {
2963 		exec2_list[i].handle = exec_list[i].handle;
2964 		exec2_list[i].relocation_count = exec_list[i].relocation_count;
2965 		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2966 		exec2_list[i].alignment = exec_list[i].alignment;
2967 		exec2_list[i].offset = exec_list[i].offset;
2968 		if (INTEL_GEN(to_i915(dev)) < 4)
2969 			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2970 		else
2971 			exec2_list[i].flags = 0;
2972 	}
2973 
2974 	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2975 	if (exec2.flags & __EXEC_HAS_RELOC) {
2976 		struct drm_i915_gem_exec_object __user *user_exec_list =
2977 			u64_to_user_ptr(args->buffers_ptr);
2978 
2979 		/* Copy the new buffer offsets back to the user's exec list. */
2980 		for (i = 0; i < args->buffer_count; i++) {
2981 			if (!(exec2_list[i].offset & UPDATE))
2982 				continue;
2983 
2984 			exec2_list[i].offset =
2985 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2986 			exec2_list[i].offset &= PIN_OFFSET_MASK;
2987 			if (__copy_to_user(&user_exec_list[i].offset,
2988 					   &exec2_list[i].offset,
2989 					   sizeof(user_exec_list[i].offset)))
2990 				break;
2991 		}
2992 	}
2993 
2994 	kvfree(exec_list);
2995 	kvfree(exec2_list);
2996 	return err;
2997 }
2998 
2999 int
3000 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3001 			   struct drm_file *file)
3002 {
3003 	struct drm_i915_private *i915 = to_i915(dev);
3004 	struct drm_i915_gem_execbuffer2 *args = data;
3005 	struct drm_i915_gem_exec_object2 *exec2_list;
3006 	struct drm_syncobj **fences = NULL;
3007 	const size_t count = args->buffer_count;
3008 	int err;
3009 
3010 	if (!check_buffer_count(count)) {
3011 		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3012 		return -EINVAL;
3013 	}
3014 
3015 	err = i915_gem_check_execbuffer(args);
3016 	if (err)
3017 		return err;
3018 
3019 	exec2_list = kvmalloc_array(count, eb_element_size(),
3020 				    __GFP_NOWARN | GFP_KERNEL);
3021 	if (exec2_list == NULL) {
3022 		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3023 			count);
3024 		return -ENOMEM;
3025 	}
3026 	if (copy_from_user(exec2_list,
3027 			   u64_to_user_ptr(args->buffers_ptr),
3028 			   sizeof(*exec2_list) * count)) {
3029 		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3030 		kvfree(exec2_list);
3031 		return -EFAULT;
3032 	}
3033 
3034 	if (args->flags & I915_EXEC_FENCE_ARRAY) {
3035 		fences = get_fence_array(args, file);
3036 		if (IS_ERR(fences)) {
3037 			kvfree(exec2_list);
3038 			return PTR_ERR(fences);
3039 		}
3040 	}
3041 
3042 	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
3043 
3044 	/*
3045 	 * Now that we have begun execution of the batchbuffer, we ignore
3046 	 * any new error after this point. Also given that we have already
3047 	 * updated the associated relocations, we try to write out the current
3048 	 * object locations irrespective of any error.
3049 	 */
3050 	if (args->flags & __EXEC_HAS_RELOC) {
3051 		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3052 			u64_to_user_ptr(args->buffers_ptr);
3053 		unsigned int i;
3054 
3055 		/* Copy the new buffer offsets back to the user's exec list. */
3056 		/*
3057 		 * Note: count * sizeof(*user_exec_list) does not overflow,
3058 		 * because we checked 'count' in check_buffer_count().
3059 		 *
3060 		 * And this range already got effectively checked earlier
3061 		 * when we did the "copy_from_user()" above.
3062 		 */
3063 		if (!user_write_access_begin(user_exec_list,
3064 					     count * sizeof(*user_exec_list)))
3065 			goto end;
3066 
3067 		for (i = 0; i < args->buffer_count; i++) {
3068 			if (!(exec2_list[i].offset & UPDATE))
3069 				continue;
3070 
3071 			exec2_list[i].offset =
3072 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3073 			unsafe_put_user(exec2_list[i].offset,
3074 					&user_exec_list[i].offset,
3075 					end_user);
3076 		}
3077 end_user:
3078 		user_write_access_end();
3079 end:;
3080 	}
3081 
3082 	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3083 	put_fence_array(args, fences);
3084 	kvfree(exec2_list);
3085 	return err;
3086 }
3087 
3088 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3089 #include "selftests/i915_gem_execbuffer.c"
3090 #endif
3091