1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2008,2010 Intel Corporation 4 */ 5 6 #include <linux/dma-resv.h> 7 #include <linux/highmem.h> 8 #include <linux/sync_file.h> 9 #include <linux/uaccess.h> 10 11 #include <drm/drm_auth.h> 12 #include <drm/drm_print.h> 13 #include <drm/drm_syncobj.h> 14 15 #include "gem/i915_gem_ioctls.h" 16 #include "gt/intel_context.h" 17 #include "gt/intel_gpu_commands.h" 18 #include "gt/intel_gt.h" 19 #include "gt/intel_gt_buffer_pool.h" 20 #include "gt/intel_gt_pm.h" 21 #include "gt/intel_ring.h" 22 23 #include "pxp/intel_pxp.h" 24 25 #include "i915_cmd_parser.h" 26 #include "i915_drv.h" 27 #include "i915_file_private.h" 28 #include "i915_gem_clflush.h" 29 #include "i915_gem_context.h" 30 #include "i915_gem_evict.h" 31 #include "i915_gem_ioctls.h" 32 #include "i915_reg.h" 33 #include "i915_trace.h" 34 #include "i915_user_extensions.h" 35 36 struct eb_vma { 37 struct i915_vma *vma; 38 unsigned int flags; 39 40 /** This vma's place in the execbuf reservation list */ 41 struct drm_i915_gem_exec_object2 *exec; 42 struct list_head bind_link; 43 struct list_head reloc_link; 44 45 struct hlist_node node; 46 u32 handle; 47 }; 48 49 enum { 50 FORCE_CPU_RELOC = 1, 51 FORCE_GTT_RELOC, 52 FORCE_GPU_RELOC, 53 #define DBG_FORCE_RELOC 0 /* choose one of the above! */ 54 }; 55 56 /* __EXEC_OBJECT_ flags > BIT(29) defined in i915_vma.h */ 57 #define __EXEC_OBJECT_HAS_PIN BIT(29) 58 #define __EXEC_OBJECT_HAS_FENCE BIT(28) 59 #define __EXEC_OBJECT_USERPTR_INIT BIT(27) 60 #define __EXEC_OBJECT_NEEDS_MAP BIT(26) 61 #define __EXEC_OBJECT_NEEDS_BIAS BIT(25) 62 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 25) /* all of the above + */ 63 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) 64 65 #define __EXEC_HAS_RELOC BIT(31) 66 #define __EXEC_ENGINE_PINNED BIT(30) 67 #define __EXEC_USERPTR_USED BIT(29) 68 #define __EXEC_INTERNAL_FLAGS (~0u << 29) 69 #define UPDATE PIN_OFFSET_FIXED 70 71 #define BATCH_OFFSET_BIAS (256*1024) 72 73 #define __I915_EXEC_ILLEGAL_FLAGS \ 74 (__I915_EXEC_UNKNOWN_FLAGS | \ 75 I915_EXEC_CONSTANTS_MASK | \ 76 I915_EXEC_RESOURCE_STREAMER) 77 78 /* Catch emission of unexpected errors for CI! */ 79 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 80 #undef EINVAL 81 #define EINVAL ({ \ 82 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 83 22; \ 84 }) 85 #endif 86 87 /** 88 * DOC: User command execution 89 * 90 * Userspace submits commands to be executed on the GPU as an instruction 91 * stream within a GEM object we call a batchbuffer. This instructions may 92 * refer to other GEM objects containing auxiliary state such as kernels, 93 * samplers, render targets and even secondary batchbuffers. Userspace does 94 * not know where in the GPU memory these objects reside and so before the 95 * batchbuffer is passed to the GPU for execution, those addresses in the 96 * batchbuffer and auxiliary objects are updated. This is known as relocation, 97 * or patching. To try and avoid having to relocate each object on the next 98 * execution, userspace is told the location of those objects in this pass, 99 * but this remains just a hint as the kernel may choose a new location for 100 * any object in the future. 101 * 102 * At the level of talking to the hardware, submitting a batchbuffer for the 103 * GPU to execute is to add content to a buffer from which the HW 104 * command streamer is reading. 105 * 106 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. 107 * Execlists, this command is not placed on the same buffer as the 108 * remaining items. 109 * 110 * 2. Add a command to invalidate caches to the buffer. 111 * 112 * 3. Add a batchbuffer start command to the buffer; the start command is 113 * essentially a token together with the GPU address of the batchbuffer 114 * to be executed. 115 * 116 * 4. Add a pipeline flush to the buffer. 117 * 118 * 5. Add a memory write command to the buffer to record when the GPU 119 * is done executing the batchbuffer. The memory write writes the 120 * global sequence number of the request, ``i915_request::global_seqno``; 121 * the i915 driver uses the current value in the register to determine 122 * if the GPU has completed the batchbuffer. 123 * 124 * 6. Add a user interrupt command to the buffer. This command instructs 125 * the GPU to issue an interrupt when the command, pipeline flush and 126 * memory write are completed. 127 * 128 * 7. Inform the hardware of the additional commands added to the buffer 129 * (by updating the tail pointer). 130 * 131 * Processing an execbuf ioctl is conceptually split up into a few phases. 132 * 133 * 1. Validation - Ensure all the pointers, handles and flags are valid. 134 * 2. Reservation - Assign GPU address space for every object 135 * 3. Relocation - Update any addresses to point to the final locations 136 * 4. Serialisation - Order the request with respect to its dependencies 137 * 5. Construction - Construct a request to execute the batchbuffer 138 * 6. Submission (at some point in the future execution) 139 * 140 * Reserving resources for the execbuf is the most complicated phase. We 141 * neither want to have to migrate the object in the address space, nor do 142 * we want to have to update any relocations pointing to this object. Ideally, 143 * we want to leave the object where it is and for all the existing relocations 144 * to match. If the object is given a new address, or if userspace thinks the 145 * object is elsewhere, we have to parse all the relocation entries and update 146 * the addresses. Userspace can set the I915_EXEC_NO_RELOC flag to hint that 147 * all the target addresses in all of its objects match the value in the 148 * relocation entries and that they all match the presumed offsets given by the 149 * list of execbuffer objects. Using this knowledge, we know that if we haven't 150 * moved any buffers, all the relocation entries are valid and we can skip 151 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU 152 * hang.) The requirement for using I915_EXEC_NO_RELOC are: 153 * 154 * The addresses written in the objects must match the corresponding 155 * reloc.presumed_offset which in turn must match the corresponding 156 * execobject.offset. 157 * 158 * Any render targets written to in the batch must be flagged with 159 * EXEC_OBJECT_WRITE. 160 * 161 * To avoid stalling, execobject.offset should match the current 162 * address of that object within the active context. 163 * 164 * The reservation is done is multiple phases. First we try and keep any 165 * object already bound in its current location - so as long as meets the 166 * constraints imposed by the new execbuffer. Any object left unbound after the 167 * first pass is then fitted into any available idle space. If an object does 168 * not fit, all objects are removed from the reservation and the process rerun 169 * after sorting the objects into a priority order (more difficult to fit 170 * objects are tried first). Failing that, the entire VM is cleared and we try 171 * to fit the execbuf once last time before concluding that it simply will not 172 * fit. 173 * 174 * A small complication to all of this is that we allow userspace not only to 175 * specify an alignment and a size for the object in the address space, but 176 * we also allow userspace to specify the exact offset. This objects are 177 * simpler to place (the location is known a priori) all we have to do is make 178 * sure the space is available. 179 * 180 * Once all the objects are in place, patching up the buried pointers to point 181 * to the final locations is a fairly simple job of walking over the relocation 182 * entry arrays, looking up the right address and rewriting the value into 183 * the object. Simple! ... The relocation entries are stored in user memory 184 * and so to access them we have to copy them into a local buffer. That copy 185 * has to avoid taking any pagefaults as they may lead back to a GEM object 186 * requiring the vm->mutex (i.e. recursive deadlock). So once again we split 187 * the relocation into multiple passes. First we try to do everything within an 188 * atomic context (avoid the pagefaults) which requires that we never wait. If 189 * we detect that we may wait, or if we need to fault, then we have to fallback 190 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm 191 * bells yet?) Dropping the mutex means that we lose all the state we have 192 * built up so far for the execbuf and we must reset any global data. However, 193 * we do leave the objects pinned in their final locations - which is a 194 * potential issue for concurrent execbufs. Once we have left the mutex, we can 195 * allocate and copy all the relocation entries into a large array at our 196 * leisure, reacquire the mutex, reclaim all the objects and other state and 197 * then proceed to update any incorrect addresses with the objects. 198 * 199 * As we process the relocation entries, we maintain a record of whether the 200 * object is being written to. Using NORELOC, we expect userspace to provide 201 * this information instead. We also check whether we can skip the relocation 202 * by comparing the expected value inside the relocation entry with the target's 203 * final address. If they differ, we have to map the current object and rewrite 204 * the 4 or 8 byte pointer within. 205 * 206 * Serialising an execbuf is quite simple according to the rules of the GEM 207 * ABI. Execution within each context is ordered by the order of submission. 208 * Writes to any GEM object are in order of submission and are exclusive. Reads 209 * from a GEM object are unordered with respect to other reads, but ordered by 210 * writes. A write submitted after a read cannot occur before the read, and 211 * similarly any read submitted after a write cannot occur before the write. 212 * Writes are ordered between engines such that only one write occurs at any 213 * time (completing any reads beforehand) - using semaphores where available 214 * and CPU serialisation otherwise. Other GEM access obey the same rules, any 215 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU 216 * reads before starting, and any read (either using set-domain or pread) must 217 * flush all GPU writes before starting. (Note we only employ a barrier before, 218 * we currently rely on userspace not concurrently starting a new execution 219 * whilst reading or writing to an object. This may be an advantage or not 220 * depending on how much you trust userspace not to shoot themselves in the 221 * foot.) Serialisation may just result in the request being inserted into 222 * a DAG awaiting its turn, but most simple is to wait on the CPU until 223 * all dependencies are resolved. 224 * 225 * After all of that, is just a matter of closing the request and handing it to 226 * the hardware (well, leaving it in a queue to be executed). However, we also 227 * offer the ability for batchbuffers to be run with elevated privileges so 228 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) 229 * Before any batch is given extra privileges we first must check that it 230 * contains no nefarious instructions, we check that each instruction is from 231 * our whitelist and all registers are also from an allowed list. We first 232 * copy the user's batchbuffer to a shadow (so that the user doesn't have 233 * access to it, either by the CPU or GPU as we scan it) and then parse each 234 * instruction. If everything is ok, we set a flag telling the hardware to run 235 * the batchbuffer in trusted mode, otherwise the ioctl is rejected. 236 */ 237 238 struct eb_fence { 239 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */ 240 struct dma_fence *dma_fence; 241 u64 value; 242 struct dma_fence_chain *chain_fence; 243 }; 244 245 struct i915_execbuffer { 246 struct drm_i915_private *i915; /** i915 backpointer */ 247 struct drm_file *file; /** per-file lookup tables and limits */ 248 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ 249 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ 250 struct eb_vma *vma; 251 252 struct intel_gt *gt; /* gt for the execbuf */ 253 struct intel_context *context; /* logical state for the request */ 254 struct i915_gem_context *gem_context; /** caller's context */ 255 intel_wakeref_t wakeref; 256 intel_wakeref_t wakeref_gt0; 257 258 /** our requests to build */ 259 struct i915_request *requests[MAX_ENGINE_INSTANCE + 1]; 260 /** identity of the batch obj/vma */ 261 struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1]; 262 struct i915_vma *trampoline; /** trampoline used for chaining */ 263 264 /** used for excl fence in dma_resv objects when > 1 BB submitted */ 265 struct dma_fence *composite_fence; 266 267 /** actual size of execobj[] as we may extend it for the cmdparser */ 268 unsigned int buffer_count; 269 270 /* number of batches in execbuf IOCTL */ 271 unsigned int num_batches; 272 273 /** list of vma not yet bound during reservation phase */ 274 struct list_head unbound; 275 276 /** list of vma that have execobj.relocation_count */ 277 struct list_head relocs; 278 279 struct i915_gem_ww_ctx ww; 280 281 /** 282 * Track the most recently used object for relocations, as we 283 * frequently have to perform multiple relocations within the same 284 * obj/page 285 */ 286 struct reloc_cache { 287 struct drm_mm_node node; /** temporary GTT binding */ 288 unsigned long vaddr; /** Current kmap address */ 289 unsigned long page; /** Currently mapped page index */ 290 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */ 291 bool use_64bit_reloc : 1; 292 bool has_llc : 1; 293 bool has_fence : 1; 294 bool needs_unfenced : 1; 295 } reloc_cache; 296 297 u64 invalid_flags; /** Set of execobj.flags that are invalid */ 298 299 /** Length of batch within object */ 300 u64 batch_len[MAX_ENGINE_INSTANCE + 1]; 301 u32 batch_start_offset; /** Location within object of batch */ 302 u32 batch_flags; /** Flags composed for emit_bb_start() */ 303 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */ 304 305 /** 306 * Indicate either the size of the hashtable used to resolve 307 * relocation handles, or if negative that we are using a direct 308 * index into the execobj[]. 309 */ 310 int lut_size; 311 struct hlist_head *buckets; /** ht for relocation handles */ 312 313 struct eb_fence *fences; 314 unsigned long num_fences; 315 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 316 struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1]; 317 #endif 318 }; 319 320 static int eb_parse(struct i915_execbuffer *eb); 321 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle); 322 static void eb_unpin_engine(struct i915_execbuffer *eb); 323 static void eb_capture_release(struct i915_execbuffer *eb); 324 325 static bool eb_use_cmdparser(const struct i915_execbuffer *eb) 326 { 327 return intel_engine_requires_cmd_parser(eb->context->engine) || 328 (intel_engine_using_cmd_parser(eb->context->engine) && 329 eb->args->batch_len); 330 } 331 332 static int eb_create(struct i915_execbuffer *eb) 333 { 334 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { 335 unsigned int size = 1 + ilog2(eb->buffer_count); 336 337 /* 338 * Without a 1:1 association between relocation handles and 339 * the execobject[] index, we instead create a hashtable. 340 * We size it dynamically based on available memory, starting 341 * first with 1:1 associative hash and scaling back until 342 * the allocation succeeds. 343 * 344 * Later on we use a positive lut_size to indicate we are 345 * using this hashtable, and a negative value to indicate a 346 * direct lookup. 347 */ 348 do { 349 gfp_t flags; 350 351 /* While we can still reduce the allocation size, don't 352 * raise a warning and allow the allocation to fail. 353 * On the last pass though, we want to try as hard 354 * as possible to perform the allocation and warn 355 * if it fails. 356 */ 357 flags = GFP_KERNEL; 358 if (size > 1) 359 flags |= __GFP_NORETRY | __GFP_NOWARN; 360 361 eb->buckets = kzalloc(sizeof(struct hlist_head) << size, 362 flags); 363 if (eb->buckets) 364 break; 365 } while (--size); 366 367 if (unlikely(!size)) 368 return -ENOMEM; 369 370 eb->lut_size = size; 371 } else { 372 eb->lut_size = -eb->buffer_count; 373 } 374 375 return 0; 376 } 377 378 static bool 379 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, 380 const struct i915_vma *vma, 381 unsigned int flags) 382 { 383 const u64 start = i915_vma_offset(vma); 384 const u64 size = i915_vma_size(vma); 385 386 if (size < entry->pad_to_size) 387 return true; 388 389 if (entry->alignment && !IS_ALIGNED(start, entry->alignment)) 390 return true; 391 392 if (flags & EXEC_OBJECT_PINNED && 393 start != entry->offset) 394 return true; 395 396 if (flags & __EXEC_OBJECT_NEEDS_BIAS && 397 start < BATCH_OFFSET_BIAS) 398 return true; 399 400 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && 401 (start + size + 4095) >> 32) 402 return true; 403 404 if (flags & __EXEC_OBJECT_NEEDS_MAP && 405 !i915_vma_is_map_and_fenceable(vma)) 406 return true; 407 408 return false; 409 } 410 411 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry, 412 unsigned int exec_flags) 413 { 414 u64 pin_flags = 0; 415 416 if (exec_flags & EXEC_OBJECT_NEEDS_GTT) 417 pin_flags |= PIN_GLOBAL; 418 419 /* 420 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, 421 * limit address to the first 4GBs for unflagged objects. 422 */ 423 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 424 pin_flags |= PIN_ZONE_4G; 425 426 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) 427 pin_flags |= PIN_MAPPABLE; 428 429 if (exec_flags & EXEC_OBJECT_PINNED) 430 pin_flags |= entry->offset | PIN_OFFSET_FIXED; 431 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) 432 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; 433 434 return pin_flags; 435 } 436 437 static int 438 eb_pin_vma(struct i915_execbuffer *eb, 439 const struct drm_i915_gem_exec_object2 *entry, 440 struct eb_vma *ev) 441 { 442 struct i915_vma *vma = ev->vma; 443 u64 pin_flags; 444 int err; 445 446 if (vma->node.size) 447 pin_flags = __i915_vma_offset(vma); 448 else 449 pin_flags = entry->offset & PIN_OFFSET_MASK; 450 451 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE; 452 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT)) 453 pin_flags |= PIN_GLOBAL; 454 455 /* Attempt to reuse the current location if available */ 456 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags); 457 if (err == -EDEADLK) 458 return err; 459 460 if (unlikely(err)) { 461 if (entry->flags & EXEC_OBJECT_PINNED) 462 return err; 463 464 /* Failing that pick any _free_ space if suitable */ 465 err = i915_vma_pin_ww(vma, &eb->ww, 466 entry->pad_to_size, 467 entry->alignment, 468 eb_pin_flags(entry, ev->flags) | 469 PIN_USER | PIN_NOEVICT | PIN_VALIDATE); 470 if (unlikely(err)) 471 return err; 472 } 473 474 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 475 err = i915_vma_pin_fence(vma); 476 if (unlikely(err)) 477 return err; 478 479 if (vma->fence) 480 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 481 } 482 483 ev->flags |= __EXEC_OBJECT_HAS_PIN; 484 if (eb_vma_misplaced(entry, vma, ev->flags)) 485 return -EBADSLT; 486 487 return 0; 488 } 489 490 static void 491 eb_unreserve_vma(struct eb_vma *ev) 492 { 493 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE)) 494 __i915_vma_unpin_fence(ev->vma); 495 496 ev->flags &= ~__EXEC_OBJECT_RESERVED; 497 } 498 499 static int 500 eb_validate_vma(struct i915_execbuffer *eb, 501 struct drm_i915_gem_exec_object2 *entry, 502 struct i915_vma *vma) 503 { 504 /* Relocations are disallowed for all platforms after TGL-LP. This 505 * also covers all platforms with local memory. 506 */ 507 if (entry->relocation_count && 508 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915)) 509 return -EINVAL; 510 511 if (unlikely(entry->flags & eb->invalid_flags)) 512 return -EINVAL; 513 514 if (unlikely(entry->alignment && 515 !is_power_of_2_u64(entry->alignment))) 516 return -EINVAL; 517 518 /* 519 * Offset can be used as input (EXEC_OBJECT_PINNED), reject 520 * any non-page-aligned or non-canonical addresses. 521 */ 522 if (unlikely(entry->flags & EXEC_OBJECT_PINNED && 523 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) 524 return -EINVAL; 525 526 /* pad_to_size was once a reserved field, so sanitize it */ 527 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { 528 if (unlikely(offset_in_page(entry->pad_to_size))) 529 return -EINVAL; 530 } else { 531 entry->pad_to_size = 0; 532 } 533 /* 534 * From drm_mm perspective address space is continuous, 535 * so from this point we're always using non-canonical 536 * form internally. 537 */ 538 entry->offset = gen8_noncanonical_addr(entry->offset); 539 540 if (!eb->reloc_cache.has_fence) { 541 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; 542 } else { 543 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || 544 eb->reloc_cache.needs_unfenced) && 545 i915_gem_object_is_tiled(vma->obj)) 546 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; 547 } 548 549 return 0; 550 } 551 552 static bool 553 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx) 554 { 555 return eb->args->flags & I915_EXEC_BATCH_FIRST ? 556 buffer_idx < eb->num_batches : 557 buffer_idx >= eb->args->buffer_count - eb->num_batches; 558 } 559 560 static int 561 eb_add_vma(struct i915_execbuffer *eb, 562 unsigned int *current_batch, 563 unsigned int i, 564 struct i915_vma *vma) 565 { 566 struct drm_i915_private *i915 = eb->i915; 567 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 568 struct eb_vma *ev = &eb->vma[i]; 569 570 ev->vma = vma; 571 ev->exec = entry; 572 ev->flags = entry->flags; 573 574 if (eb->lut_size > 0) { 575 ev->handle = entry->handle; 576 hlist_add_head(&ev->node, 577 &eb->buckets[hash_32(entry->handle, 578 eb->lut_size)]); 579 } 580 581 if (entry->relocation_count) 582 list_add_tail(&ev->reloc_link, &eb->relocs); 583 584 /* 585 * SNA is doing fancy tricks with compressing batch buffers, which leads 586 * to negative relocation deltas. Usually that works out ok since the 587 * relocate address is still positive, except when the batch is placed 588 * very low in the GTT. Ensure this doesn't happen. 589 * 590 * Note that actual hangs have only been observed on gen7, but for 591 * paranoia do it everywhere. 592 */ 593 if (is_batch_buffer(eb, i)) { 594 if (entry->relocation_count && 595 !(ev->flags & EXEC_OBJECT_PINNED)) 596 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS; 597 if (eb->reloc_cache.has_fence) 598 ev->flags |= EXEC_OBJECT_NEEDS_FENCE; 599 600 eb->batches[*current_batch] = ev; 601 602 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) { 603 drm_dbg(&i915->drm, 604 "Attempting to use self-modifying batch buffer\n"); 605 return -EINVAL; 606 } 607 608 if (range_overflows_t(u64, 609 eb->batch_start_offset, 610 eb->args->batch_len, 611 ev->vma->size)) { 612 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n"); 613 return -EINVAL; 614 } 615 616 if (eb->args->batch_len == 0) 617 eb->batch_len[*current_batch] = ev->vma->size - 618 eb->batch_start_offset; 619 else 620 eb->batch_len[*current_batch] = eb->args->batch_len; 621 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */ 622 drm_dbg(&i915->drm, "Invalid batch length\n"); 623 return -EINVAL; 624 } 625 626 ++*current_batch; 627 } 628 629 return 0; 630 } 631 632 static int use_cpu_reloc(const struct reloc_cache *cache, 633 const struct drm_i915_gem_object *obj) 634 { 635 if (!i915_gem_object_has_struct_page(obj)) 636 return false; 637 638 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) 639 return true; 640 641 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) 642 return false; 643 644 /* 645 * For objects created by userspace through GEM_CREATE with pat_index 646 * set by set_pat extension, i915_gem_object_has_cache_level() always 647 * return true, otherwise the call would fall back to checking whether 648 * the object is un-cached. 649 */ 650 return (cache->has_llc || 651 obj->cache_dirty || 652 !i915_gem_object_has_cache_level(obj, I915_CACHE_NONE)); 653 } 654 655 static int eb_reserve_vma(struct i915_execbuffer *eb, 656 struct eb_vma *ev, 657 u64 pin_flags) 658 { 659 struct drm_i915_gem_exec_object2 *entry = ev->exec; 660 struct i915_vma *vma = ev->vma; 661 int err; 662 663 if (drm_mm_node_allocated(&vma->node) && 664 eb_vma_misplaced(entry, vma, ev->flags)) { 665 err = i915_vma_unbind(vma); 666 if (err) 667 return err; 668 } 669 670 err = i915_vma_pin_ww(vma, &eb->ww, 671 entry->pad_to_size, entry->alignment, 672 eb_pin_flags(entry, ev->flags) | pin_flags); 673 if (err) 674 return err; 675 676 if (entry->offset != i915_vma_offset(vma)) { 677 entry->offset = i915_vma_offset(vma) | UPDATE; 678 eb->args->flags |= __EXEC_HAS_RELOC; 679 } 680 681 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 682 err = i915_vma_pin_fence(vma); 683 if (unlikely(err)) 684 return err; 685 686 if (vma->fence) 687 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 688 } 689 690 ev->flags |= __EXEC_OBJECT_HAS_PIN; 691 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags)); 692 693 return 0; 694 } 695 696 static bool eb_unbind(struct i915_execbuffer *eb, bool force) 697 { 698 const unsigned int count = eb->buffer_count; 699 unsigned int i; 700 struct list_head last; 701 bool unpinned = false; 702 703 /* Resort *all* the objects into priority order */ 704 INIT_LIST_HEAD(&eb->unbound); 705 INIT_LIST_HEAD(&last); 706 707 for (i = 0; i < count; i++) { 708 struct eb_vma *ev = &eb->vma[i]; 709 unsigned int flags = ev->flags; 710 711 if (!force && flags & EXEC_OBJECT_PINNED && 712 flags & __EXEC_OBJECT_HAS_PIN) 713 continue; 714 715 unpinned = true; 716 eb_unreserve_vma(ev); 717 718 if (flags & EXEC_OBJECT_PINNED) 719 /* Pinned must have their slot */ 720 list_add(&ev->bind_link, &eb->unbound); 721 else if (flags & __EXEC_OBJECT_NEEDS_MAP) 722 /* Map require the lowest 256MiB (aperture) */ 723 list_add_tail(&ev->bind_link, &eb->unbound); 724 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 725 /* Prioritise 4GiB region for restricted bo */ 726 list_add(&ev->bind_link, &last); 727 else 728 list_add_tail(&ev->bind_link, &last); 729 } 730 731 list_splice_tail(&last, &eb->unbound); 732 return unpinned; 733 } 734 735 static int eb_reserve(struct i915_execbuffer *eb) 736 { 737 struct eb_vma *ev; 738 unsigned int pass; 739 int err = 0; 740 741 /* 742 * We have one more buffers that we couldn't bind, which could be due to 743 * various reasons. To resolve this we have 4 passes, with every next 744 * level turning the screws tighter: 745 * 746 * 0. Unbind all objects that do not match the GTT constraints for the 747 * execbuffer (fenceable, mappable, alignment etc). Bind all new 748 * objects. This avoids unnecessary unbinding of later objects in order 749 * to make room for the earlier objects *unless* we need to defragment. 750 * 751 * 1. Reorder the buffers, where objects with the most restrictive 752 * placement requirements go first (ignoring fixed location buffers for 753 * now). For example, objects needing the mappable aperture (the first 754 * 256M of GTT), should go first vs objects that can be placed just 755 * about anywhere. Repeat the previous pass. 756 * 757 * 2. Consider buffers that are pinned at a fixed location. Also try to 758 * evict the entire VM this time, leaving only objects that we were 759 * unable to lock. Try again to bind the buffers. (still using the new 760 * buffer order). 761 * 762 * 3. We likely have object lock contention for one or more stubborn 763 * objects in the VM, for which we need to evict to make forward 764 * progress (perhaps we are fighting the shrinker?). When evicting the 765 * VM this time around, anything that we can't lock we now track using 766 * the busy_bo, using the full lock (after dropping the vm->mutex to 767 * prevent deadlocks), instead of trylock. We then continue to evict the 768 * VM, this time with the stubborn object locked, which we can now 769 * hopefully unbind (if still bound in the VM). Repeat until the VM is 770 * evicted. Finally we should be able bind everything. 771 */ 772 for (pass = 0; pass <= 3; pass++) { 773 int pin_flags = PIN_USER | PIN_VALIDATE; 774 775 if (pass == 0) 776 pin_flags |= PIN_NONBLOCK; 777 778 if (pass >= 1) 779 eb_unbind(eb, pass >= 2); 780 781 if (pass == 2) { 782 err = mutex_lock_interruptible(&eb->context->vm->mutex); 783 if (!err) { 784 err = i915_gem_evict_vm(eb->context->vm, &eb->ww, NULL); 785 mutex_unlock(&eb->context->vm->mutex); 786 } 787 if (err) 788 return err; 789 } 790 791 if (pass == 3) { 792 retry: 793 err = mutex_lock_interruptible(&eb->context->vm->mutex); 794 if (!err) { 795 struct drm_i915_gem_object *busy_bo = NULL; 796 797 err = i915_gem_evict_vm(eb->context->vm, &eb->ww, &busy_bo); 798 mutex_unlock(&eb->context->vm->mutex); 799 if (err && busy_bo) { 800 err = i915_gem_object_lock(busy_bo, &eb->ww); 801 i915_gem_object_put(busy_bo); 802 if (!err) 803 goto retry; 804 } 805 } 806 if (err) 807 return err; 808 } 809 810 list_for_each_entry(ev, &eb->unbound, bind_link) { 811 err = eb_reserve_vma(eb, ev, pin_flags); 812 if (err) 813 break; 814 } 815 816 if (err != -ENOSPC) 817 break; 818 } 819 820 return err; 821 } 822 823 static int eb_select_context(struct i915_execbuffer *eb) 824 { 825 struct i915_gem_context *ctx; 826 827 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); 828 if (IS_ERR(ctx)) 829 return PTR_ERR(ctx); 830 831 eb->gem_context = ctx; 832 if (i915_gem_context_has_full_ppgtt(ctx)) 833 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; 834 835 return 0; 836 } 837 838 static int __eb_add_lut(struct i915_execbuffer *eb, 839 u32 handle, struct i915_vma *vma) 840 { 841 struct i915_gem_context *ctx = eb->gem_context; 842 struct i915_lut_handle *lut; 843 int err; 844 845 lut = i915_lut_handle_alloc(); 846 if (unlikely(!lut)) 847 return -ENOMEM; 848 849 i915_vma_get(vma); 850 if (!atomic_fetch_inc(&vma->open_count)) 851 i915_vma_reopen(vma); 852 lut->handle = handle; 853 lut->ctx = ctx; 854 855 /* Check that the context hasn't been closed in the meantime */ 856 err = -EINTR; 857 if (!mutex_lock_interruptible(&ctx->lut_mutex)) { 858 if (likely(!i915_gem_context_is_closed(ctx))) 859 err = radix_tree_insert(&ctx->handles_vma, handle, vma); 860 else 861 err = -ENOENT; 862 if (err == 0) { /* And nor has this handle */ 863 struct drm_i915_gem_object *obj = vma->obj; 864 865 spin_lock(&obj->lut_lock); 866 if (idr_find(&eb->file->object_idr, handle) == obj) { 867 list_add(&lut->obj_link, &obj->lut_list); 868 } else { 869 radix_tree_delete(&ctx->handles_vma, handle); 870 err = -ENOENT; 871 } 872 spin_unlock(&obj->lut_lock); 873 } 874 mutex_unlock(&ctx->lut_mutex); 875 } 876 if (unlikely(err)) 877 goto err; 878 879 return 0; 880 881 err: 882 i915_vma_close(vma); 883 i915_vma_put(vma); 884 i915_lut_handle_free(lut); 885 return err; 886 } 887 888 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle) 889 { 890 struct i915_address_space *vm = eb->context->vm; 891 892 do { 893 struct drm_i915_gem_object *obj; 894 struct i915_vma *vma; 895 int err; 896 897 rcu_read_lock(); 898 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle); 899 if (likely(vma && vma->vm == vm)) 900 vma = i915_vma_tryget(vma); 901 rcu_read_unlock(); 902 if (likely(vma)) 903 return vma; 904 905 obj = i915_gem_object_lookup(eb->file, handle); 906 if (unlikely(!obj)) 907 return ERR_PTR(-ENOENT); 908 909 /* 910 * If the user has opted-in for protected-object tracking, make 911 * sure the object encryption can be used. 912 * We only need to do this when the object is first used with 913 * this context, because the context itself will be banned when 914 * the protected objects become invalid. 915 */ 916 if (i915_gem_context_uses_protected_content(eb->gem_context) && 917 i915_gem_object_is_protected(obj)) { 918 err = intel_pxp_key_check(intel_bo_to_drm_bo(obj), true); 919 if (err) { 920 i915_gem_object_put(obj); 921 return ERR_PTR(err); 922 } 923 } 924 925 vma = i915_vma_instance(obj, vm, NULL); 926 if (IS_ERR(vma)) { 927 i915_gem_object_put(obj); 928 return vma; 929 } 930 931 err = __eb_add_lut(eb, handle, vma); 932 if (likely(!err)) 933 return vma; 934 935 i915_gem_object_put(obj); 936 if (err != -EEXIST) 937 return ERR_PTR(err); 938 } while (1); 939 } 940 941 static int eb_lookup_vmas(struct i915_execbuffer *eb) 942 { 943 unsigned int i, current_batch = 0; 944 int err = 0; 945 946 INIT_LIST_HEAD(&eb->relocs); 947 948 for (i = 0; i < eb->buffer_count; i++) { 949 struct i915_vma *vma; 950 951 vma = eb_lookup_vma(eb, eb->exec[i].handle); 952 if (IS_ERR(vma)) { 953 err = PTR_ERR(vma); 954 goto err; 955 } 956 957 err = eb_validate_vma(eb, &eb->exec[i], vma); 958 if (unlikely(err)) { 959 i915_vma_put(vma); 960 goto err; 961 } 962 963 err = eb_add_vma(eb, ¤t_batch, i, vma); 964 if (err) 965 return err; 966 967 if (i915_gem_object_is_userptr(vma->obj)) { 968 err = i915_gem_object_userptr_submit_init(vma->obj); 969 if (err) { 970 if (i + 1 < eb->buffer_count) { 971 /* 972 * Execbuffer code expects last vma entry to be NULL, 973 * since we already initialized this entry, 974 * set the next value to NULL or we mess up 975 * cleanup handling. 976 */ 977 eb->vma[i + 1].vma = NULL; 978 } 979 980 return err; 981 } 982 983 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT; 984 eb->args->flags |= __EXEC_USERPTR_USED; 985 } 986 } 987 988 return 0; 989 990 err: 991 eb->vma[i].vma = NULL; 992 return err; 993 } 994 995 static int eb_lock_vmas(struct i915_execbuffer *eb) 996 { 997 unsigned int i; 998 int err; 999 1000 for (i = 0; i < eb->buffer_count; i++) { 1001 struct eb_vma *ev = &eb->vma[i]; 1002 struct i915_vma *vma = ev->vma; 1003 1004 err = i915_gem_object_lock(vma->obj, &eb->ww); 1005 if (err) 1006 return err; 1007 } 1008 1009 return 0; 1010 } 1011 1012 static int eb_validate_vmas(struct i915_execbuffer *eb) 1013 { 1014 unsigned int i; 1015 int err; 1016 1017 INIT_LIST_HEAD(&eb->unbound); 1018 1019 err = eb_lock_vmas(eb); 1020 if (err) 1021 return err; 1022 1023 for (i = 0; i < eb->buffer_count; i++) { 1024 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 1025 struct eb_vma *ev = &eb->vma[i]; 1026 struct i915_vma *vma = ev->vma; 1027 1028 err = eb_pin_vma(eb, entry, ev); 1029 if (err == -EDEADLK) 1030 return err; 1031 1032 if (!err) { 1033 if (entry->offset != i915_vma_offset(vma)) { 1034 entry->offset = i915_vma_offset(vma) | UPDATE; 1035 eb->args->flags |= __EXEC_HAS_RELOC; 1036 } 1037 } else { 1038 eb_unreserve_vma(ev); 1039 1040 list_add_tail(&ev->bind_link, &eb->unbound); 1041 if (drm_mm_node_allocated(&vma->node)) { 1042 err = i915_vma_unbind(vma); 1043 if (err) 1044 return err; 1045 } 1046 } 1047 1048 /* Reserve enough slots to accommodate composite fences */ 1049 err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches); 1050 if (err) 1051 return err; 1052 1053 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && 1054 eb_vma_misplaced(&eb->exec[i], vma, ev->flags)); 1055 } 1056 1057 if (!list_empty(&eb->unbound)) 1058 return eb_reserve(eb); 1059 1060 return 0; 1061 } 1062 1063 static struct eb_vma * 1064 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) 1065 { 1066 if (eb->lut_size < 0) { 1067 if (handle >= -eb->lut_size) 1068 return NULL; 1069 return &eb->vma[handle]; 1070 } else { 1071 struct hlist_head *head; 1072 struct eb_vma *ev; 1073 1074 head = &eb->buckets[hash_32(handle, eb->lut_size)]; 1075 hlist_for_each_entry(ev, head, node) { 1076 if (ev->handle == handle) 1077 return ev; 1078 } 1079 return NULL; 1080 } 1081 } 1082 1083 static void eb_release_vmas(struct i915_execbuffer *eb, bool final) 1084 { 1085 const unsigned int count = eb->buffer_count; 1086 unsigned int i; 1087 1088 for (i = 0; i < count; i++) { 1089 struct eb_vma *ev = &eb->vma[i]; 1090 struct i915_vma *vma = ev->vma; 1091 1092 if (!vma) 1093 break; 1094 1095 eb_unreserve_vma(ev); 1096 1097 if (final) 1098 i915_vma_put(vma); 1099 } 1100 1101 eb_capture_release(eb); 1102 eb_unpin_engine(eb); 1103 } 1104 1105 static void eb_destroy(const struct i915_execbuffer *eb) 1106 { 1107 if (eb->lut_size > 0) 1108 kfree(eb->buckets); 1109 } 1110 1111 static u64 1112 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, 1113 const struct i915_vma *target) 1114 { 1115 return gen8_canonical_addr((int)reloc->delta + i915_vma_offset(target)); 1116 } 1117 1118 static void reloc_cache_init(struct reloc_cache *cache, 1119 struct drm_i915_private *i915) 1120 { 1121 cache->page = -1; 1122 cache->vaddr = 0; 1123 /* Must be a variable in the struct to allow GCC to unroll. */ 1124 cache->graphics_ver = GRAPHICS_VER(i915); 1125 cache->has_llc = HAS_LLC(i915); 1126 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); 1127 cache->has_fence = cache->graphics_ver < 4; 1128 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; 1129 cache->node.flags = 0; 1130 } 1131 1132 static void *unmask_page(unsigned long p) 1133 { 1134 return (void *)(uintptr_t)(p & PAGE_MASK); 1135 } 1136 1137 static unsigned int unmask_flags(unsigned long p) 1138 { 1139 return p & ~PAGE_MASK; 1140 } 1141 1142 #define KMAP 0x4 /* after CLFLUSH_FLAGS */ 1143 1144 static struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) 1145 { 1146 struct drm_i915_private *i915 = 1147 container_of(cache, struct i915_execbuffer, reloc_cache)->i915; 1148 return to_gt(i915)->ggtt; 1149 } 1150 1151 static void reloc_cache_unmap(struct reloc_cache *cache) 1152 { 1153 void *vaddr; 1154 1155 if (!cache->vaddr) 1156 return; 1157 1158 vaddr = unmask_page(cache->vaddr); 1159 if (cache->vaddr & KMAP) 1160 kunmap_local(vaddr); 1161 else 1162 io_mapping_unmap_atomic((void __iomem *)vaddr); 1163 } 1164 1165 static void reloc_cache_remap(struct reloc_cache *cache, 1166 struct drm_i915_gem_object *obj) 1167 { 1168 void *vaddr; 1169 1170 if (!cache->vaddr) 1171 return; 1172 1173 if (cache->vaddr & KMAP) { 1174 struct page *page = i915_gem_object_get_page(obj, cache->page); 1175 1176 vaddr = kmap_local_page(page); 1177 cache->vaddr = unmask_flags(cache->vaddr) | 1178 (unsigned long)vaddr; 1179 } else { 1180 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1181 unsigned long offset; 1182 1183 offset = cache->node.start; 1184 if (!drm_mm_node_allocated(&cache->node)) 1185 offset += cache->page << PAGE_SHIFT; 1186 1187 cache->vaddr = (unsigned long) 1188 io_mapping_map_atomic_wc(&ggtt->iomap, offset); 1189 } 1190 } 1191 1192 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb) 1193 { 1194 void *vaddr; 1195 1196 if (!cache->vaddr) 1197 return; 1198 1199 vaddr = unmask_page(cache->vaddr); 1200 if (cache->vaddr & KMAP) { 1201 struct drm_i915_gem_object *obj = 1202 (struct drm_i915_gem_object *)cache->node.mm; 1203 if (cache->vaddr & CLFLUSH_AFTER) 1204 mb(); 1205 1206 kunmap_local(vaddr); 1207 i915_gem_object_finish_access(obj); 1208 } else { 1209 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1210 1211 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1212 io_mapping_unmap_atomic((void __iomem *)vaddr); 1213 1214 if (drm_mm_node_allocated(&cache->node)) { 1215 ggtt->vm.clear_range(&ggtt->vm, 1216 cache->node.start, 1217 cache->node.size); 1218 mutex_lock(&ggtt->vm.mutex); 1219 drm_mm_remove_node(&cache->node); 1220 mutex_unlock(&ggtt->vm.mutex); 1221 } else { 1222 i915_vma_unpin((struct i915_vma *)cache->node.mm); 1223 } 1224 } 1225 1226 cache->vaddr = 0; 1227 cache->page = -1; 1228 } 1229 1230 static void *reloc_kmap(struct drm_i915_gem_object *obj, 1231 struct reloc_cache *cache, 1232 unsigned long pageno) 1233 { 1234 void *vaddr; 1235 struct page *page; 1236 1237 if (cache->vaddr) { 1238 kunmap_local(unmask_page(cache->vaddr)); 1239 } else { 1240 unsigned int flushes; 1241 int err; 1242 1243 err = i915_gem_object_prepare_write(obj, &flushes); 1244 if (err) 1245 return ERR_PTR(err); 1246 1247 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); 1248 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); 1249 1250 cache->vaddr = flushes | KMAP; 1251 cache->node.mm = (void *)obj; 1252 if (flushes) 1253 mb(); 1254 } 1255 1256 page = i915_gem_object_get_page(obj, pageno); 1257 if (!obj->mm.dirty) 1258 set_page_dirty(page); 1259 1260 vaddr = kmap_local_page(page); 1261 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; 1262 cache->page = pageno; 1263 1264 return vaddr; 1265 } 1266 1267 static void *reloc_iomap(struct i915_vma *batch, 1268 struct i915_execbuffer *eb, 1269 unsigned long page) 1270 { 1271 struct drm_i915_gem_object *obj = batch->obj; 1272 struct reloc_cache *cache = &eb->reloc_cache; 1273 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1274 unsigned long offset; 1275 void *vaddr; 1276 1277 if (cache->vaddr) { 1278 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1279 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); 1280 } else { 1281 struct i915_vma *vma = ERR_PTR(-ENODEV); 1282 int err; 1283 1284 if (i915_gem_object_is_tiled(obj)) 1285 return ERR_PTR(-EINVAL); 1286 1287 if (use_cpu_reloc(cache, obj)) 1288 return NULL; 1289 1290 err = i915_gem_object_set_to_gtt_domain(obj, true); 1291 if (err) 1292 return ERR_PTR(err); 1293 1294 /* 1295 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch 1296 * VMA from the object list because we no longer pin. 1297 * 1298 * Only attempt to pin the batch buffer to ggtt if the current batch 1299 * is not inside ggtt, or the batch buffer is not misplaced. 1300 */ 1301 if (!i915_is_ggtt(batch->vm) || 1302 !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) { 1303 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0, 1304 PIN_MAPPABLE | 1305 PIN_NONBLOCK /* NOWARN */ | 1306 PIN_NOEVICT); 1307 } 1308 1309 if (vma == ERR_PTR(-EDEADLK)) 1310 return vma; 1311 1312 if (IS_ERR(vma)) { 1313 memset(&cache->node, 0, sizeof(cache->node)); 1314 mutex_lock(&ggtt->vm.mutex); 1315 err = drm_mm_insert_node_in_range 1316 (&ggtt->vm.mm, &cache->node, 1317 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 1318 0, ggtt->mappable_end, 1319 DRM_MM_INSERT_LOW); 1320 mutex_unlock(&ggtt->vm.mutex); 1321 if (err) /* no inactive aperture space, use cpu reloc */ 1322 return NULL; 1323 } else { 1324 cache->node.start = i915_ggtt_offset(vma); 1325 cache->node.mm = (void *)vma; 1326 } 1327 } 1328 1329 offset = cache->node.start; 1330 if (drm_mm_node_allocated(&cache->node)) { 1331 ggtt->vm.insert_page(&ggtt->vm, 1332 i915_gem_object_get_dma_address(obj, page), 1333 offset, 1334 i915_gem_get_pat_index(ggtt->vm.i915, 1335 I915_CACHE_NONE), 1336 0); 1337 } else { 1338 offset += page << PAGE_SHIFT; 1339 } 1340 1341 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, 1342 offset); 1343 cache->page = page; 1344 cache->vaddr = (unsigned long)vaddr; 1345 1346 return vaddr; 1347 } 1348 1349 static void *reloc_vaddr(struct i915_vma *vma, 1350 struct i915_execbuffer *eb, 1351 unsigned long page) 1352 { 1353 struct reloc_cache *cache = &eb->reloc_cache; 1354 void *vaddr; 1355 1356 if (cache->page == page) { 1357 vaddr = unmask_page(cache->vaddr); 1358 } else { 1359 vaddr = NULL; 1360 if ((cache->vaddr & KMAP) == 0) 1361 vaddr = reloc_iomap(vma, eb, page); 1362 if (!vaddr) 1363 vaddr = reloc_kmap(vma->obj, cache, page); 1364 } 1365 1366 return vaddr; 1367 } 1368 1369 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) 1370 { 1371 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { 1372 if (flushes & CLFLUSH_BEFORE) 1373 drm_clflush_virt_range(addr, sizeof(*addr)); 1374 1375 *addr = value; 1376 1377 /* 1378 * Writes to the same cacheline are serialised by the CPU 1379 * (including clflush). On the write path, we only require 1380 * that it hits memory in an orderly fashion and place 1381 * mb barriers at the start and end of the relocation phase 1382 * to ensure ordering of clflush wrt to the system. 1383 */ 1384 if (flushes & CLFLUSH_AFTER) 1385 drm_clflush_virt_range(addr, sizeof(*addr)); 1386 } else { 1387 *addr = value; 1388 } 1389 } 1390 1391 static u64 1392 relocate_entry(struct i915_vma *vma, 1393 const struct drm_i915_gem_relocation_entry *reloc, 1394 struct i915_execbuffer *eb, 1395 const struct i915_vma *target) 1396 { 1397 u64 target_addr = relocation_target(reloc, target); 1398 u64 offset = reloc->offset; 1399 bool wide = eb->reloc_cache.use_64bit_reloc; 1400 void *vaddr; 1401 1402 repeat: 1403 vaddr = reloc_vaddr(vma, eb, 1404 offset >> PAGE_SHIFT); 1405 if (IS_ERR(vaddr)) 1406 return PTR_ERR(vaddr); 1407 1408 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32))); 1409 clflush_write32(vaddr + offset_in_page(offset), 1410 lower_32_bits(target_addr), 1411 eb->reloc_cache.vaddr); 1412 1413 if (wide) { 1414 offset += sizeof(u32); 1415 target_addr >>= 32; 1416 wide = false; 1417 goto repeat; 1418 } 1419 1420 return target->node.start | UPDATE; 1421 } 1422 1423 static u64 1424 eb_relocate_entry(struct i915_execbuffer *eb, 1425 struct eb_vma *ev, 1426 const struct drm_i915_gem_relocation_entry *reloc) 1427 { 1428 struct drm_i915_private *i915 = eb->i915; 1429 struct eb_vma *target; 1430 int err; 1431 1432 /* we've already hold a reference to all valid objects */ 1433 target = eb_get_vma(eb, reloc->target_handle); 1434 if (unlikely(!target)) 1435 return -ENOENT; 1436 1437 /* Validate that the target is in a valid r/w GPU domain */ 1438 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 1439 drm_dbg(&i915->drm, "reloc with multiple write domains: " 1440 "target %d offset %d " 1441 "read %08x write %08x\n", 1442 reloc->target_handle, 1443 (int) reloc->offset, 1444 reloc->read_domains, 1445 reloc->write_domain); 1446 return -EINVAL; 1447 } 1448 if (unlikely((reloc->write_domain | reloc->read_domains) 1449 & ~I915_GEM_GPU_DOMAINS)) { 1450 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: " 1451 "target %d offset %d " 1452 "read %08x write %08x\n", 1453 reloc->target_handle, 1454 (int) reloc->offset, 1455 reloc->read_domains, 1456 reloc->write_domain); 1457 return -EINVAL; 1458 } 1459 1460 if (reloc->write_domain) { 1461 target->flags |= EXEC_OBJECT_WRITE; 1462 1463 /* 1464 * Sandybridge PPGTT errata: We need a global gtt mapping 1465 * for MI and pipe_control writes because the gpu doesn't 1466 * properly redirect them through the ppgtt for non_secure 1467 * batchbuffers. 1468 */ 1469 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && 1470 GRAPHICS_VER(eb->i915) == 6 && 1471 !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) { 1472 struct i915_vma *vma = target->vma; 1473 1474 reloc_cache_unmap(&eb->reloc_cache); 1475 mutex_lock(&vma->vm->mutex); 1476 err = i915_vma_bind(target->vma, 1477 target->vma->obj->pat_index, 1478 PIN_GLOBAL, NULL, NULL); 1479 mutex_unlock(&vma->vm->mutex); 1480 reloc_cache_remap(&eb->reloc_cache, ev->vma->obj); 1481 if (err) 1482 return err; 1483 } 1484 } 1485 1486 /* 1487 * If the relocation already has the right value in it, no 1488 * more work needs to be done. 1489 */ 1490 if (!DBG_FORCE_RELOC && 1491 gen8_canonical_addr(i915_vma_offset(target->vma)) == reloc->presumed_offset) 1492 return 0; 1493 1494 /* Check that the relocation address is valid... */ 1495 if (unlikely(reloc->offset > 1496 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { 1497 drm_dbg(&i915->drm, "Relocation beyond object bounds: " 1498 "target %d offset %d size %d.\n", 1499 reloc->target_handle, 1500 (int)reloc->offset, 1501 (int)ev->vma->size); 1502 return -EINVAL; 1503 } 1504 if (unlikely(reloc->offset & 3)) { 1505 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: " 1506 "target %d offset %d.\n", 1507 reloc->target_handle, 1508 (int)reloc->offset); 1509 return -EINVAL; 1510 } 1511 1512 /* 1513 * If we write into the object, we need to force the synchronisation 1514 * barrier, either with an asynchronous clflush or if we executed the 1515 * patching using the GPU (though that should be serialised by the 1516 * timeline). To be completely sure, and since we are required to 1517 * do relocations we are already stalling, disable the user's opt 1518 * out of our synchronisation. 1519 */ 1520 ev->flags &= ~EXEC_OBJECT_ASYNC; 1521 1522 /* and update the user's relocation entry */ 1523 return relocate_entry(ev->vma, reloc, eb, target->vma); 1524 } 1525 1526 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev) 1527 { 1528 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) 1529 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; 1530 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1531 struct drm_i915_gem_relocation_entry __user *urelocs = 1532 u64_to_user_ptr(entry->relocs_ptr); 1533 unsigned long remain = entry->relocation_count; 1534 1535 if (unlikely(remain > N_RELOC(INT_MAX))) 1536 return -EINVAL; 1537 1538 /* 1539 * We must check that the entire relocation array is safe 1540 * to read. However, if the array is not writable the user loses 1541 * the updated relocation values. 1542 */ 1543 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs)))) 1544 return -EFAULT; 1545 1546 do { 1547 struct drm_i915_gem_relocation_entry *r = stack; 1548 unsigned int count = 1549 min_t(unsigned long, remain, ARRAY_SIZE(stack)); 1550 unsigned int copied; 1551 1552 /* 1553 * This is the fast path and we cannot handle a pagefault 1554 * whilst holding the struct mutex lest the user pass in the 1555 * relocations contained within a mmaped bo. For in such a case 1556 * we, the page fault handler would call i915_gem_fault() and 1557 * we would try to acquire the struct mutex again. Obviously 1558 * this is bad and so lockdep complains vehemently. 1559 */ 1560 pagefault_disable(); 1561 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); 1562 pagefault_enable(); 1563 if (unlikely(copied)) { 1564 remain = -EFAULT; 1565 goto out; 1566 } 1567 1568 remain -= count; 1569 do { 1570 u64 offset = eb_relocate_entry(eb, ev, r); 1571 1572 if (likely(offset == 0)) 1573 continue; 1574 1575 if ((s64)offset < 0) { 1576 remain = (int)offset; 1577 goto out; 1578 } 1579 /* 1580 * Note that reporting an error now 1581 * leaves everything in an inconsistent 1582 * state as we have *already* changed 1583 * the relocation value inside the 1584 * object. As we have not changed the 1585 * reloc.presumed_offset or will not 1586 * change the execobject.offset, on the 1587 * call we may not rewrite the value 1588 * inside the object, leaving it 1589 * dangling and causing a GPU hang. Unless 1590 * userspace dynamically rebuilds the 1591 * relocations on each execbuf rather than 1592 * presume a static tree. 1593 * 1594 * We did previously check if the relocations 1595 * were writable (access_ok), an error now 1596 * would be a strange race with mprotect, 1597 * having already demonstrated that we 1598 * can read from this userspace address. 1599 */ 1600 offset = gen8_canonical_addr(offset & ~UPDATE); 1601 __put_user(offset, &urelocs[r - stack].presumed_offset); 1602 } while (r++, --count); 1603 urelocs += ARRAY_SIZE(stack); 1604 } while (remain); 1605 out: 1606 reloc_cache_reset(&eb->reloc_cache, eb); 1607 return remain; 1608 } 1609 1610 static int 1611 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev) 1612 { 1613 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1614 struct drm_i915_gem_relocation_entry *relocs = 1615 u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1616 unsigned int i; 1617 int err; 1618 1619 for (i = 0; i < entry->relocation_count; i++) { 1620 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]); 1621 1622 if ((s64)offset < 0) { 1623 err = (int)offset; 1624 goto err; 1625 } 1626 } 1627 err = 0; 1628 err: 1629 reloc_cache_reset(&eb->reloc_cache, eb); 1630 return err; 1631 } 1632 1633 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) 1634 { 1635 const char __user *addr, *end; 1636 unsigned long size; 1637 char __maybe_unused c; 1638 1639 size = entry->relocation_count; 1640 if (size == 0) 1641 return 0; 1642 1643 if (size > N_RELOC(INT_MAX)) 1644 return -EINVAL; 1645 1646 addr = u64_to_user_ptr(entry->relocs_ptr); 1647 size *= sizeof(struct drm_i915_gem_relocation_entry); 1648 if (!access_ok(addr, size)) 1649 return -EFAULT; 1650 1651 end = addr + size; 1652 for (; addr < end; addr += PAGE_SIZE) { 1653 int err = __get_user(c, addr); 1654 if (err) 1655 return err; 1656 } 1657 return __get_user(c, end - 1); 1658 } 1659 1660 static int eb_copy_relocations(const struct i915_execbuffer *eb) 1661 { 1662 struct drm_i915_gem_relocation_entry *relocs; 1663 const unsigned int count = eb->buffer_count; 1664 unsigned int i; 1665 int err; 1666 1667 for (i = 0; i < count; i++) { 1668 const unsigned int nreloc = eb->exec[i].relocation_count; 1669 struct drm_i915_gem_relocation_entry __user *urelocs; 1670 unsigned long size; 1671 unsigned long copied; 1672 1673 if (nreloc == 0) 1674 continue; 1675 1676 err = check_relocations(&eb->exec[i]); 1677 if (err) 1678 goto err; 1679 1680 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); 1681 size = nreloc * sizeof(*relocs); 1682 1683 relocs = kvmalloc_array(1, size, GFP_KERNEL); 1684 if (!relocs) { 1685 err = -ENOMEM; 1686 goto err; 1687 } 1688 1689 /* copy_from_user is limited to < 4GiB */ 1690 copied = 0; 1691 do { 1692 unsigned int len = 1693 min_t(u64, BIT_ULL(31), size - copied); 1694 1695 if (__copy_from_user((char *)relocs + copied, 1696 (char __user *)urelocs + copied, 1697 len)) 1698 goto end; 1699 1700 copied += len; 1701 } while (copied < size); 1702 1703 /* 1704 * As we do not update the known relocation offsets after 1705 * relocating (due to the complexities in lock handling), 1706 * we need to mark them as invalid now so that we force the 1707 * relocation processing next time. Just in case the target 1708 * object is evicted and then rebound into its old 1709 * presumed_offset before the next execbuffer - if that 1710 * happened we would make the mistake of assuming that the 1711 * relocations were valid. 1712 */ 1713 if (!user_access_begin(urelocs, size)) 1714 goto end; 1715 1716 for (copied = 0; copied < nreloc; copied++) 1717 unsafe_put_user(-1, 1718 &urelocs[copied].presumed_offset, 1719 end_user); 1720 user_access_end(); 1721 1722 eb->exec[i].relocs_ptr = (uintptr_t)relocs; 1723 } 1724 1725 return 0; 1726 1727 end_user: 1728 user_access_end(); 1729 end: 1730 kvfree(relocs); 1731 err = -EFAULT; 1732 err: 1733 while (i--) { 1734 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); 1735 if (eb->exec[i].relocation_count) 1736 kvfree(relocs); 1737 } 1738 return err; 1739 } 1740 1741 static int eb_prefault_relocations(const struct i915_execbuffer *eb) 1742 { 1743 const unsigned int count = eb->buffer_count; 1744 unsigned int i; 1745 1746 for (i = 0; i < count; i++) { 1747 int err; 1748 1749 err = check_relocations(&eb->exec[i]); 1750 if (err) 1751 return err; 1752 } 1753 1754 return 0; 1755 } 1756 1757 static int eb_reinit_userptr(struct i915_execbuffer *eb) 1758 { 1759 const unsigned int count = eb->buffer_count; 1760 unsigned int i; 1761 int ret; 1762 1763 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED))) 1764 return 0; 1765 1766 for (i = 0; i < count; i++) { 1767 struct eb_vma *ev = &eb->vma[i]; 1768 1769 if (!i915_gem_object_is_userptr(ev->vma->obj)) 1770 continue; 1771 1772 ret = i915_gem_object_userptr_submit_init(ev->vma->obj); 1773 if (ret) 1774 return ret; 1775 1776 ev->flags |= __EXEC_OBJECT_USERPTR_INIT; 1777 } 1778 1779 return 0; 1780 } 1781 1782 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb) 1783 { 1784 bool have_copy = false; 1785 struct eb_vma *ev; 1786 int err = 0; 1787 1788 repeat: 1789 if (signal_pending(current)) { 1790 err = -ERESTARTSYS; 1791 goto out; 1792 } 1793 1794 /* We may process another execbuffer during the unlock... */ 1795 eb_release_vmas(eb, false); 1796 i915_gem_ww_ctx_fini(&eb->ww); 1797 1798 /* 1799 * We take 3 passes through the slowpatch. 1800 * 1801 * 1 - we try to just prefault all the user relocation entries and 1802 * then attempt to reuse the atomic pagefault disabled fast path again. 1803 * 1804 * 2 - we copy the user entries to a local buffer here outside of the 1805 * local and allow ourselves to wait upon any rendering before 1806 * relocations 1807 * 1808 * 3 - we already have a local copy of the relocation entries, but 1809 * were interrupted (EAGAIN) whilst waiting for the objects, try again. 1810 */ 1811 if (!err) { 1812 err = eb_prefault_relocations(eb); 1813 } else if (!have_copy) { 1814 err = eb_copy_relocations(eb); 1815 have_copy = err == 0; 1816 } else { 1817 cond_resched(); 1818 err = 0; 1819 } 1820 1821 if (!err) 1822 err = eb_reinit_userptr(eb); 1823 1824 i915_gem_ww_ctx_init(&eb->ww, true); 1825 if (err) 1826 goto out; 1827 1828 /* reacquire the objects */ 1829 repeat_validate: 1830 err = eb_pin_engine(eb, false); 1831 if (err) 1832 goto err; 1833 1834 err = eb_validate_vmas(eb); 1835 if (err) 1836 goto err; 1837 1838 GEM_BUG_ON(!eb->batches[0]); 1839 1840 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1841 if (!have_copy) { 1842 err = eb_relocate_vma(eb, ev); 1843 if (err) 1844 break; 1845 } else { 1846 err = eb_relocate_vma_slow(eb, ev); 1847 if (err) 1848 break; 1849 } 1850 } 1851 1852 if (err == -EDEADLK) 1853 goto err; 1854 1855 if (err && !have_copy) 1856 goto repeat; 1857 1858 if (err) 1859 goto err; 1860 1861 /* as last step, parse the command buffer */ 1862 err = eb_parse(eb); 1863 if (err) 1864 goto err; 1865 1866 /* 1867 * Leave the user relocations as are, this is the painfully slow path, 1868 * and we want to avoid the complication of dropping the lock whilst 1869 * having buffers reserved in the aperture and so causing spurious 1870 * ENOSPC for random operations. 1871 */ 1872 1873 err: 1874 if (err == -EDEADLK) { 1875 eb_release_vmas(eb, false); 1876 err = i915_gem_ww_ctx_backoff(&eb->ww); 1877 if (!err) 1878 goto repeat_validate; 1879 } 1880 1881 if (err == -EAGAIN) 1882 goto repeat; 1883 1884 out: 1885 if (have_copy) { 1886 const unsigned int count = eb->buffer_count; 1887 unsigned int i; 1888 1889 for (i = 0; i < count; i++) { 1890 const struct drm_i915_gem_exec_object2 *entry = 1891 &eb->exec[i]; 1892 struct drm_i915_gem_relocation_entry *relocs; 1893 1894 if (!entry->relocation_count) 1895 continue; 1896 1897 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1898 kvfree(relocs); 1899 } 1900 } 1901 1902 return err; 1903 } 1904 1905 static int eb_relocate_parse(struct i915_execbuffer *eb) 1906 { 1907 int err; 1908 bool throttle = true; 1909 1910 retry: 1911 err = eb_pin_engine(eb, throttle); 1912 if (err) { 1913 if (err != -EDEADLK) 1914 return err; 1915 1916 goto err; 1917 } 1918 1919 /* only throttle once, even if we didn't need to throttle */ 1920 throttle = false; 1921 1922 err = eb_validate_vmas(eb); 1923 if (err == -EAGAIN) 1924 goto slow; 1925 else if (err) 1926 goto err; 1927 1928 /* The objects are in their final locations, apply the relocations. */ 1929 if (eb->args->flags & __EXEC_HAS_RELOC) { 1930 struct eb_vma *ev; 1931 1932 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1933 err = eb_relocate_vma(eb, ev); 1934 if (err) 1935 break; 1936 } 1937 1938 if (err == -EDEADLK) 1939 goto err; 1940 else if (err) 1941 goto slow; 1942 } 1943 1944 if (!err) 1945 err = eb_parse(eb); 1946 1947 err: 1948 if (err == -EDEADLK) { 1949 eb_release_vmas(eb, false); 1950 err = i915_gem_ww_ctx_backoff(&eb->ww); 1951 if (!err) 1952 goto retry; 1953 } 1954 1955 return err; 1956 1957 slow: 1958 err = eb_relocate_parse_slow(eb); 1959 if (err) 1960 /* 1961 * If the user expects the execobject.offset and 1962 * reloc.presumed_offset to be an exact match, 1963 * as for using NO_RELOC, then we cannot update 1964 * the execobject.offset until we have completed 1965 * relocation. 1966 */ 1967 eb->args->flags &= ~__EXEC_HAS_RELOC; 1968 1969 return err; 1970 } 1971 1972 /* 1973 * Using two helper loops for the order of which requests / batches are created 1974 * and added the to backend. Requests are created in order from the parent to 1975 * the last child. Requests are added in the reverse order, from the last child 1976 * to parent. This is done for locking reasons as the timeline lock is acquired 1977 * during request creation and released when the request is added to the 1978 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be 1979 * the ordering. 1980 */ 1981 #define for_each_batch_create_order(_eb, _i) \ 1982 for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i)) 1983 #define for_each_batch_add_order(_eb, _i) \ 1984 BUILD_BUG_ON(!typecheck(int, _i)); \ 1985 for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i)) 1986 1987 static struct i915_request * 1988 eb_find_first_request_added(struct i915_execbuffer *eb) 1989 { 1990 int i; 1991 1992 for_each_batch_add_order(eb, i) 1993 if (eb->requests[i]) 1994 return eb->requests[i]; 1995 1996 GEM_BUG_ON("Request not found"); 1997 1998 return NULL; 1999 } 2000 2001 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 2002 2003 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */ 2004 static int eb_capture_stage(struct i915_execbuffer *eb) 2005 { 2006 const unsigned int count = eb->buffer_count; 2007 unsigned int i = count, j; 2008 2009 while (i--) { 2010 struct eb_vma *ev = &eb->vma[i]; 2011 struct i915_vma *vma = ev->vma; 2012 unsigned int flags = ev->flags; 2013 2014 if (!(flags & EXEC_OBJECT_CAPTURE)) 2015 continue; 2016 2017 if (i915_gem_context_is_recoverable(eb->gem_context) && 2018 (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0))) 2019 return -EINVAL; 2020 2021 for_each_batch_create_order(eb, j) { 2022 struct i915_capture_list *capture; 2023 2024 capture = kmalloc(sizeof(*capture), GFP_KERNEL); 2025 if (!capture) 2026 continue; 2027 2028 capture->next = eb->capture_lists[j]; 2029 capture->vma_res = i915_vma_resource_get(vma->resource); 2030 eb->capture_lists[j] = capture; 2031 } 2032 } 2033 2034 return 0; 2035 } 2036 2037 /* Commit once we're in the critical path */ 2038 static void eb_capture_commit(struct i915_execbuffer *eb) 2039 { 2040 unsigned int j; 2041 2042 for_each_batch_create_order(eb, j) { 2043 struct i915_request *rq = eb->requests[j]; 2044 2045 if (!rq) 2046 break; 2047 2048 rq->capture_list = eb->capture_lists[j]; 2049 eb->capture_lists[j] = NULL; 2050 } 2051 } 2052 2053 /* 2054 * Release anything that didn't get committed due to errors. 2055 * The capture_list will otherwise be freed at request retire. 2056 */ 2057 static void eb_capture_release(struct i915_execbuffer *eb) 2058 { 2059 unsigned int j; 2060 2061 for_each_batch_create_order(eb, j) { 2062 if (eb->capture_lists[j]) { 2063 i915_request_free_capture_list(eb->capture_lists[j]); 2064 eb->capture_lists[j] = NULL; 2065 } 2066 } 2067 } 2068 2069 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2070 { 2071 memset(eb->capture_lists, 0, sizeof(eb->capture_lists)); 2072 } 2073 2074 #else 2075 2076 static int eb_capture_stage(struct i915_execbuffer *eb) 2077 { 2078 return 0; 2079 } 2080 2081 static void eb_capture_commit(struct i915_execbuffer *eb) 2082 { 2083 } 2084 2085 static void eb_capture_release(struct i915_execbuffer *eb) 2086 { 2087 } 2088 2089 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2090 { 2091 } 2092 2093 #endif 2094 2095 static int eb_move_to_gpu(struct i915_execbuffer *eb) 2096 { 2097 const unsigned int count = eb->buffer_count; 2098 unsigned int i = count; 2099 int err = 0, j; 2100 2101 while (i--) { 2102 struct eb_vma *ev = &eb->vma[i]; 2103 struct i915_vma *vma = ev->vma; 2104 unsigned int flags = ev->flags; 2105 struct drm_i915_gem_object *obj = vma->obj; 2106 2107 assert_vma_held(vma); 2108 2109 /* 2110 * If the GPU is not _reading_ through the CPU cache, we need 2111 * to make sure that any writes (both previous GPU writes from 2112 * before a change in snooping levels and normal CPU writes) 2113 * caught in that cache are flushed to main memory. 2114 * 2115 * We want to say 2116 * obj->cache_dirty && 2117 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) 2118 * but gcc's optimiser doesn't handle that as well and emits 2119 * two jumps instead of one. Maybe one day... 2120 * 2121 * FIXME: There is also sync flushing in set_pages(), which 2122 * serves a different purpose(some of the time at least). 2123 * 2124 * We should consider: 2125 * 2126 * 1. Rip out the async flush code. 2127 * 2128 * 2. Or make the sync flushing use the async clflush path 2129 * using mandatory fences underneath. Currently the below 2130 * async flush happens after we bind the object. 2131 */ 2132 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { 2133 if (i915_gem_clflush_object(obj, 0)) 2134 flags &= ~EXEC_OBJECT_ASYNC; 2135 } 2136 2137 /* We only need to await on the first request */ 2138 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { 2139 err = i915_request_await_object 2140 (eb_find_first_request_added(eb), obj, 2141 flags & EXEC_OBJECT_WRITE); 2142 } 2143 2144 for_each_batch_add_order(eb, j) { 2145 if (err) 2146 break; 2147 if (!eb->requests[j]) 2148 continue; 2149 2150 err = _i915_vma_move_to_active(vma, eb->requests[j], 2151 j ? NULL : 2152 eb->composite_fence ? 2153 eb->composite_fence : 2154 &eb->requests[j]->fence, 2155 flags | __EXEC_OBJECT_NO_RESERVE | 2156 __EXEC_OBJECT_NO_REQUEST_AWAIT); 2157 } 2158 } 2159 2160 #ifdef CONFIG_MMU_NOTIFIER 2161 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) { 2162 for (i = 0; i < count; i++) { 2163 struct eb_vma *ev = &eb->vma[i]; 2164 struct drm_i915_gem_object *obj = ev->vma->obj; 2165 2166 if (!i915_gem_object_is_userptr(obj)) 2167 continue; 2168 2169 err = i915_gem_object_userptr_submit_done(obj); 2170 if (err) 2171 break; 2172 } 2173 } 2174 #endif 2175 2176 if (unlikely(err)) 2177 goto err_skip; 2178 2179 /* Unconditionally flush any chipset caches (for streaming writes). */ 2180 intel_gt_chipset_flush(eb->gt); 2181 eb_capture_commit(eb); 2182 2183 return 0; 2184 2185 err_skip: 2186 for_each_batch_create_order(eb, j) { 2187 if (!eb->requests[j]) 2188 break; 2189 2190 i915_request_set_error_once(eb->requests[j], err); 2191 } 2192 return err; 2193 } 2194 2195 static int i915_gem_check_execbuffer(struct drm_i915_private *i915, 2196 struct drm_i915_gem_execbuffer2 *exec) 2197 { 2198 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) 2199 return -EINVAL; 2200 2201 /* Kernel clipping was a DRI1 misfeature */ 2202 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY | 2203 I915_EXEC_USE_EXTENSIONS))) { 2204 if (exec->num_cliprects || exec->cliprects_ptr) 2205 return -EINVAL; 2206 } 2207 2208 if (exec->DR4 == 0xffffffff) { 2209 drm_dbg(&i915->drm, "UXA submitting garbage DR4, fixing up\n"); 2210 exec->DR4 = 0; 2211 } 2212 if (exec->DR1 || exec->DR4) 2213 return -EINVAL; 2214 2215 if ((exec->batch_start_offset | exec->batch_len) & 0x7) 2216 return -EINVAL; 2217 2218 return 0; 2219 } 2220 2221 static int i915_reset_gen7_sol_offsets(struct i915_request *rq) 2222 { 2223 u32 *cs; 2224 int i; 2225 2226 if (GRAPHICS_VER(rq->i915) != 7 || rq->engine->id != RCS0) { 2227 drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n"); 2228 return -EINVAL; 2229 } 2230 2231 cs = intel_ring_begin(rq, 4 * 2 + 2); 2232 if (IS_ERR(cs)) 2233 return PTR_ERR(cs); 2234 2235 *cs++ = MI_LOAD_REGISTER_IMM(4); 2236 for (i = 0; i < 4; i++) { 2237 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); 2238 *cs++ = 0; 2239 } 2240 *cs++ = MI_NOOP; 2241 intel_ring_advance(rq, cs); 2242 2243 return 0; 2244 } 2245 2246 static struct i915_vma * 2247 shadow_batch_pin(struct i915_execbuffer *eb, 2248 struct drm_i915_gem_object *obj, 2249 struct i915_address_space *vm, 2250 unsigned int flags) 2251 { 2252 struct i915_vma *vma; 2253 int err; 2254 2255 vma = i915_vma_instance(obj, vm, NULL); 2256 if (IS_ERR(vma)) 2257 return vma; 2258 2259 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE); 2260 if (err) 2261 return ERR_PTR(err); 2262 2263 return vma; 2264 } 2265 2266 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma) 2267 { 2268 /* 2269 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 2270 * batch" bit. Hence we need to pin secure batches into the global gtt. 2271 * hsw should have this fixed, but bdw mucks it up again. */ 2272 if (eb->batch_flags & I915_DISPATCH_SECURE) 2273 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE); 2274 2275 return NULL; 2276 } 2277 2278 static int eb_parse(struct i915_execbuffer *eb) 2279 { 2280 struct drm_i915_private *i915 = eb->i915; 2281 struct intel_gt_buffer_pool_node *pool = eb->batch_pool; 2282 struct i915_vma *shadow, *trampoline, *batch; 2283 unsigned long len; 2284 int err; 2285 2286 if (!eb_use_cmdparser(eb)) { 2287 batch = eb_dispatch_secure(eb, eb->batches[0]->vma); 2288 if (IS_ERR(batch)) 2289 return PTR_ERR(batch); 2290 2291 goto secure_batch; 2292 } 2293 2294 if (intel_context_is_parallel(eb->context)) 2295 return -EINVAL; 2296 2297 len = eb->batch_len[0]; 2298 if (!CMDPARSER_USES_GGTT(eb->i915)) { 2299 /* 2300 * ppGTT backed shadow buffers must be mapped RO, to prevent 2301 * post-scan tampering 2302 */ 2303 if (!eb->context->vm->has_read_only) { 2304 drm_dbg(&i915->drm, 2305 "Cannot prevent post-scan tampering without RO capable vm\n"); 2306 return -EINVAL; 2307 } 2308 } else { 2309 len += I915_CMD_PARSER_TRAMPOLINE_SIZE; 2310 } 2311 if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */ 2312 return -EINVAL; 2313 2314 if (!pool) { 2315 pool = intel_gt_get_buffer_pool(eb->gt, len, 2316 I915_MAP_WB); 2317 if (IS_ERR(pool)) 2318 return PTR_ERR(pool); 2319 eb->batch_pool = pool; 2320 } 2321 2322 err = i915_gem_object_lock(pool->obj, &eb->ww); 2323 if (err) 2324 return err; 2325 2326 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER); 2327 if (IS_ERR(shadow)) 2328 return PTR_ERR(shadow); 2329 2330 intel_gt_buffer_pool_mark_used(pool); 2331 i915_gem_object_set_readonly(shadow->obj); 2332 shadow->private = pool; 2333 2334 trampoline = NULL; 2335 if (CMDPARSER_USES_GGTT(eb->i915)) { 2336 trampoline = shadow; 2337 2338 shadow = shadow_batch_pin(eb, pool->obj, 2339 &eb->gt->ggtt->vm, 2340 PIN_GLOBAL); 2341 if (IS_ERR(shadow)) 2342 return PTR_ERR(shadow); 2343 2344 shadow->private = pool; 2345 2346 eb->batch_flags |= I915_DISPATCH_SECURE; 2347 } 2348 2349 batch = eb_dispatch_secure(eb, shadow); 2350 if (IS_ERR(batch)) 2351 return PTR_ERR(batch); 2352 2353 err = dma_resv_reserve_fences(shadow->obj->base.resv, 1); 2354 if (err) 2355 return err; 2356 2357 err = intel_engine_cmd_parser(eb->context->engine, 2358 eb->batches[0]->vma, 2359 eb->batch_start_offset, 2360 eb->batch_len[0], 2361 shadow, trampoline); 2362 if (err) 2363 return err; 2364 2365 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2366 eb->batches[0]->vma = i915_vma_get(shadow); 2367 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2368 2369 eb->trampoline = trampoline; 2370 eb->batch_start_offset = 0; 2371 2372 secure_batch: 2373 if (batch) { 2374 if (intel_context_is_parallel(eb->context)) 2375 return -EINVAL; 2376 2377 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2378 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2379 eb->batches[0]->vma = i915_vma_get(batch); 2380 } 2381 return 0; 2382 } 2383 2384 static int eb_request_submit(struct i915_execbuffer *eb, 2385 struct i915_request *rq, 2386 struct i915_vma *batch, 2387 u64 batch_len) 2388 { 2389 int err; 2390 2391 if (intel_context_nopreempt(rq->context)) 2392 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags); 2393 2394 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { 2395 err = i915_reset_gen7_sol_offsets(rq); 2396 if (err) 2397 return err; 2398 } 2399 2400 /* 2401 * After we completed waiting for other engines (using HW semaphores) 2402 * then we can signal that this request/batch is ready to run. This 2403 * allows us to determine if the batch is still waiting on the GPU 2404 * or actually running by checking the breadcrumb. 2405 */ 2406 if (rq->context->engine->emit_init_breadcrumb) { 2407 err = rq->context->engine->emit_init_breadcrumb(rq); 2408 if (err) 2409 return err; 2410 } 2411 2412 err = rq->context->engine->emit_bb_start(rq, 2413 i915_vma_offset(batch) + 2414 eb->batch_start_offset, 2415 batch_len, 2416 eb->batch_flags); 2417 if (err) 2418 return err; 2419 2420 if (eb->trampoline) { 2421 GEM_BUG_ON(intel_context_is_parallel(rq->context)); 2422 GEM_BUG_ON(eb->batch_start_offset); 2423 err = rq->context->engine->emit_bb_start(rq, 2424 i915_vma_offset(eb->trampoline) + 2425 batch_len, 0, 0); 2426 if (err) 2427 return err; 2428 } 2429 2430 return 0; 2431 } 2432 2433 static int eb_submit(struct i915_execbuffer *eb) 2434 { 2435 unsigned int i; 2436 int err; 2437 2438 err = eb_move_to_gpu(eb); 2439 2440 for_each_batch_create_order(eb, i) { 2441 if (!eb->requests[i]) 2442 break; 2443 2444 trace_i915_request_queue(eb->requests[i], eb->batch_flags); 2445 if (!err) 2446 err = eb_request_submit(eb, eb->requests[i], 2447 eb->batches[i]->vma, 2448 eb->batch_len[i]); 2449 } 2450 2451 return err; 2452 } 2453 2454 /* 2455 * Find one BSD ring to dispatch the corresponding BSD command. 2456 * The engine index is returned. 2457 */ 2458 static unsigned int 2459 gen8_dispatch_bsd_engine(struct drm_i915_private *i915, 2460 struct drm_file *file) 2461 { 2462 struct drm_i915_file_private *file_priv = file->driver_priv; 2463 2464 /* Check whether the file_priv has already selected one ring. */ 2465 if ((int)file_priv->bsd_engine < 0) 2466 file_priv->bsd_engine = 2467 get_random_u32_below(i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO]); 2468 2469 return file_priv->bsd_engine; 2470 } 2471 2472 static const enum intel_engine_id user_ring_map[] = { 2473 [I915_EXEC_DEFAULT] = RCS0, 2474 [I915_EXEC_RENDER] = RCS0, 2475 [I915_EXEC_BLT] = BCS0, 2476 [I915_EXEC_BSD] = VCS0, 2477 [I915_EXEC_VEBOX] = VECS0 2478 }; 2479 2480 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce) 2481 { 2482 struct intel_ring *ring = ce->ring; 2483 struct intel_timeline *tl = ce->timeline; 2484 struct i915_request *rq; 2485 2486 /* 2487 * Completely unscientific finger-in-the-air estimates for suitable 2488 * maximum user request size (to avoid blocking) and then backoff. 2489 */ 2490 if (intel_ring_update_space(ring) >= PAGE_SIZE) 2491 return NULL; 2492 2493 /* 2494 * Find a request that after waiting upon, there will be at least half 2495 * the ring available. The hysteresis allows us to compete for the 2496 * shared ring and should mean that we sleep less often prior to 2497 * claiming our resources, but not so long that the ring completely 2498 * drains before we can submit our next request. 2499 */ 2500 list_for_each_entry(rq, &tl->requests, link) { 2501 if (rq->ring != ring) 2502 continue; 2503 2504 if (__intel_ring_space(rq->postfix, 2505 ring->emit, ring->size) > ring->size / 2) 2506 break; 2507 } 2508 if (&rq->link == &tl->requests) 2509 return NULL; /* weird, we will check again later for real */ 2510 2511 return i915_request_get(rq); 2512 } 2513 2514 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce, 2515 bool throttle) 2516 { 2517 struct intel_timeline *tl; 2518 struct i915_request *rq = NULL; 2519 2520 /* 2521 * Take a local wakeref for preparing to dispatch the execbuf as 2522 * we expect to access the hardware fairly frequently in the 2523 * process, and require the engine to be kept awake between accesses. 2524 * Upon dispatch, we acquire another prolonged wakeref that we hold 2525 * until the timeline is idle, which in turn releases the wakeref 2526 * taken on the engine, and the parent device. 2527 */ 2528 tl = intel_context_timeline_lock(ce); 2529 if (IS_ERR(tl)) 2530 return PTR_ERR(tl); 2531 2532 intel_context_enter(ce); 2533 if (throttle) 2534 rq = eb_throttle(eb, ce); 2535 intel_context_timeline_unlock(tl); 2536 2537 if (rq) { 2538 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK; 2539 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT; 2540 2541 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 2542 timeout) < 0) { 2543 i915_request_put(rq); 2544 2545 /* 2546 * Error path, cannot use intel_context_timeline_lock as 2547 * that is user interruptible and this clean up step 2548 * must be done. 2549 */ 2550 mutex_lock(&ce->timeline->mutex); 2551 intel_context_exit(ce); 2552 mutex_unlock(&ce->timeline->mutex); 2553 2554 if (nonblock) 2555 return -EWOULDBLOCK; 2556 else 2557 return -EINTR; 2558 } 2559 i915_request_put(rq); 2560 } 2561 2562 return 0; 2563 } 2564 2565 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle) 2566 { 2567 struct intel_context *ce = eb->context, *child; 2568 int err; 2569 int i = 0, j = 0; 2570 2571 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED); 2572 2573 if (unlikely(intel_context_is_banned(ce))) 2574 return -EIO; 2575 2576 /* 2577 * Pinning the contexts may generate requests in order to acquire 2578 * GGTT space, so do this first before we reserve a seqno for 2579 * ourselves. 2580 */ 2581 err = intel_context_pin_ww(ce, &eb->ww); 2582 if (err) 2583 return err; 2584 for_each_child(ce, child) { 2585 err = intel_context_pin_ww(child, &eb->ww); 2586 GEM_BUG_ON(err); /* perma-pinned should incr a counter */ 2587 } 2588 2589 for_each_child(ce, child) { 2590 err = eb_pin_timeline(eb, child, throttle); 2591 if (err) 2592 goto unwind; 2593 ++i; 2594 } 2595 err = eb_pin_timeline(eb, ce, throttle); 2596 if (err) 2597 goto unwind; 2598 2599 eb->args->flags |= __EXEC_ENGINE_PINNED; 2600 return 0; 2601 2602 unwind: 2603 for_each_child(ce, child) { 2604 if (j++ < i) { 2605 mutex_lock(&child->timeline->mutex); 2606 intel_context_exit(child); 2607 mutex_unlock(&child->timeline->mutex); 2608 } 2609 } 2610 for_each_child(ce, child) 2611 intel_context_unpin(child); 2612 intel_context_unpin(ce); 2613 return err; 2614 } 2615 2616 static void eb_unpin_engine(struct i915_execbuffer *eb) 2617 { 2618 struct intel_context *ce = eb->context, *child; 2619 2620 if (!(eb->args->flags & __EXEC_ENGINE_PINNED)) 2621 return; 2622 2623 eb->args->flags &= ~__EXEC_ENGINE_PINNED; 2624 2625 for_each_child(ce, child) { 2626 mutex_lock(&child->timeline->mutex); 2627 intel_context_exit(child); 2628 mutex_unlock(&child->timeline->mutex); 2629 2630 intel_context_unpin(child); 2631 } 2632 2633 mutex_lock(&ce->timeline->mutex); 2634 intel_context_exit(ce); 2635 mutex_unlock(&ce->timeline->mutex); 2636 2637 intel_context_unpin(ce); 2638 } 2639 2640 static unsigned int 2641 eb_select_legacy_ring(struct i915_execbuffer *eb) 2642 { 2643 struct drm_i915_private *i915 = eb->i915; 2644 struct drm_i915_gem_execbuffer2 *args = eb->args; 2645 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; 2646 2647 if (user_ring_id != I915_EXEC_BSD && 2648 (args->flags & I915_EXEC_BSD_MASK)) { 2649 drm_dbg(&i915->drm, 2650 "execbuf with non bsd ring but with invalid " 2651 "bsd dispatch flags: %d\n", (int)(args->flags)); 2652 return -1; 2653 } 2654 2655 if (user_ring_id == I915_EXEC_BSD && 2656 i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO] > 1) { 2657 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; 2658 2659 if (bsd_idx == I915_EXEC_BSD_DEFAULT) { 2660 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file); 2661 } else if (bsd_idx >= I915_EXEC_BSD_RING1 && 2662 bsd_idx <= I915_EXEC_BSD_RING2) { 2663 bsd_idx >>= I915_EXEC_BSD_SHIFT; 2664 bsd_idx--; 2665 } else { 2666 drm_dbg(&i915->drm, 2667 "execbuf with unknown bsd ring: %u\n", 2668 bsd_idx); 2669 return -1; 2670 } 2671 2672 return _VCS(bsd_idx); 2673 } 2674 2675 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { 2676 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n", 2677 user_ring_id); 2678 return -1; 2679 } 2680 2681 return user_ring_map[user_ring_id]; 2682 } 2683 2684 static int 2685 eb_select_engine(struct i915_execbuffer *eb) 2686 { 2687 struct intel_context *ce, *child; 2688 struct intel_gt *gt; 2689 unsigned int idx; 2690 int err; 2691 2692 if (i915_gem_context_user_engines(eb->gem_context)) 2693 idx = eb->args->flags & I915_EXEC_RING_MASK; 2694 else 2695 idx = eb_select_legacy_ring(eb); 2696 2697 ce = i915_gem_context_get_engine(eb->gem_context, idx); 2698 if (IS_ERR(ce)) 2699 return PTR_ERR(ce); 2700 2701 if (intel_context_is_parallel(ce)) { 2702 if (eb->buffer_count < ce->parallel.number_children + 1) { 2703 intel_context_put(ce); 2704 return -EINVAL; 2705 } 2706 if (eb->batch_start_offset || eb->args->batch_len) { 2707 intel_context_put(ce); 2708 return -EINVAL; 2709 } 2710 } 2711 eb->num_batches = ce->parallel.number_children + 1; 2712 gt = ce->engine->gt; 2713 2714 for_each_child(ce, child) 2715 intel_context_get(child); 2716 eb->wakeref = intel_gt_pm_get(ce->engine->gt); 2717 /* 2718 * Keep GT0 active on MTL so that i915_vma_parked() doesn't 2719 * free VMAs while execbuf ioctl is validating VMAs. 2720 */ 2721 if (gt->info.id) 2722 eb->wakeref_gt0 = intel_gt_pm_get(to_gt(gt->i915)); 2723 2724 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) { 2725 err = intel_context_alloc_state(ce); 2726 if (err) 2727 goto err; 2728 } 2729 for_each_child(ce, child) { 2730 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) { 2731 err = intel_context_alloc_state(child); 2732 if (err) 2733 goto err; 2734 } 2735 } 2736 2737 /* 2738 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 2739 * EIO if the GPU is already wedged. 2740 */ 2741 err = intel_gt_terminally_wedged(ce->engine->gt); 2742 if (err) 2743 goto err; 2744 2745 if (!i915_vm_tryget(ce->vm)) { 2746 err = -ENOENT; 2747 goto err; 2748 } 2749 2750 eb->context = ce; 2751 eb->gt = ce->engine->gt; 2752 2753 /* 2754 * Make sure engine pool stays alive even if we call intel_context_put 2755 * during ww handling. The pool is destroyed when last pm reference 2756 * is dropped, which breaks our -EDEADLK handling. 2757 */ 2758 return err; 2759 2760 err: 2761 if (gt->info.id) 2762 intel_gt_pm_put(to_gt(gt->i915), eb->wakeref_gt0); 2763 2764 intel_gt_pm_put(ce->engine->gt, eb->wakeref); 2765 for_each_child(ce, child) 2766 intel_context_put(child); 2767 intel_context_put(ce); 2768 return err; 2769 } 2770 2771 static void 2772 eb_put_engine(struct i915_execbuffer *eb) 2773 { 2774 struct intel_context *child; 2775 2776 i915_vm_put(eb->context->vm); 2777 /* 2778 * This works in conjunction with eb_select_engine() to prevent 2779 * i915_vma_parked() from interfering while execbuf validates vmas. 2780 */ 2781 if (eb->gt->info.id) 2782 intel_gt_pm_put(to_gt(eb->gt->i915), eb->wakeref_gt0); 2783 intel_gt_pm_put(eb->context->engine->gt, eb->wakeref); 2784 for_each_child(eb->context, child) 2785 intel_context_put(child); 2786 intel_context_put(eb->context); 2787 } 2788 2789 static void 2790 __free_fence_array(struct eb_fence *fences, unsigned int n) 2791 { 2792 while (n--) { 2793 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2)); 2794 dma_fence_put(fences[n].dma_fence); 2795 dma_fence_chain_free(fences[n].chain_fence); 2796 } 2797 kvfree(fences); 2798 } 2799 2800 static int 2801 add_timeline_fence_array(struct i915_execbuffer *eb, 2802 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences) 2803 { 2804 struct drm_i915_gem_exec_fence __user *user_fences; 2805 u64 __user *user_values; 2806 struct eb_fence *f; 2807 u64 nfences; 2808 int err = 0; 2809 2810 nfences = timeline_fences->fence_count; 2811 if (!nfences) 2812 return 0; 2813 2814 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2815 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2816 if (nfences > min_t(unsigned long, 2817 ULONG_MAX / sizeof(*user_fences), 2818 SIZE_MAX / sizeof(*f)) - eb->num_fences) 2819 return -EINVAL; 2820 2821 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr); 2822 if (!access_ok(user_fences, nfences * sizeof(*user_fences))) 2823 return -EFAULT; 2824 2825 user_values = u64_to_user_ptr(timeline_fences->values_ptr); 2826 if (!access_ok(user_values, nfences * sizeof(*user_values))) 2827 return -EFAULT; 2828 2829 f = krealloc(eb->fences, 2830 (eb->num_fences + nfences) * sizeof(*f), 2831 __GFP_NOWARN | GFP_KERNEL); 2832 if (!f) 2833 return -ENOMEM; 2834 2835 eb->fences = f; 2836 f += eb->num_fences; 2837 2838 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2839 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2840 2841 while (nfences--) { 2842 struct drm_i915_gem_exec_fence user_fence; 2843 struct drm_syncobj *syncobj; 2844 struct dma_fence *fence = NULL; 2845 u64 point; 2846 2847 if (__copy_from_user(&user_fence, 2848 user_fences++, 2849 sizeof(user_fence))) 2850 return -EFAULT; 2851 2852 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2853 return -EINVAL; 2854 2855 if (__get_user(point, user_values++)) 2856 return -EFAULT; 2857 2858 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2859 if (!syncobj) { 2860 drm_dbg(&eb->i915->drm, 2861 "Invalid syncobj handle provided\n"); 2862 return -ENOENT; 2863 } 2864 2865 fence = drm_syncobj_fence_get(syncobj); 2866 2867 if (!fence && user_fence.flags && 2868 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2869 drm_dbg(&eb->i915->drm, 2870 "Syncobj handle has no fence\n"); 2871 drm_syncobj_put(syncobj); 2872 return -EINVAL; 2873 } 2874 2875 if (fence) 2876 err = dma_fence_chain_find_seqno(&fence, point); 2877 2878 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2879 drm_dbg(&eb->i915->drm, 2880 "Syncobj handle missing requested point %llu\n", 2881 point); 2882 dma_fence_put(fence); 2883 drm_syncobj_put(syncobj); 2884 return err; 2885 } 2886 2887 /* 2888 * A point might have been signaled already and 2889 * garbage collected from the timeline. In this case 2890 * just ignore the point and carry on. 2891 */ 2892 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2893 drm_syncobj_put(syncobj); 2894 continue; 2895 } 2896 2897 /* 2898 * For timeline syncobjs we need to preallocate chains for 2899 * later signaling. 2900 */ 2901 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) { 2902 /* 2903 * Waiting and signaling the same point (when point != 2904 * 0) would break the timeline. 2905 */ 2906 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2907 drm_dbg(&eb->i915->drm, 2908 "Trying to wait & signal the same timeline point.\n"); 2909 dma_fence_put(fence); 2910 drm_syncobj_put(syncobj); 2911 return -EINVAL; 2912 } 2913 2914 f->chain_fence = dma_fence_chain_alloc(); 2915 if (!f->chain_fence) { 2916 drm_syncobj_put(syncobj); 2917 dma_fence_put(fence); 2918 return -ENOMEM; 2919 } 2920 } else { 2921 f->chain_fence = NULL; 2922 } 2923 2924 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2925 f->dma_fence = fence; 2926 f->value = point; 2927 f++; 2928 eb->num_fences++; 2929 } 2930 2931 return 0; 2932 } 2933 2934 static int add_fence_array(struct i915_execbuffer *eb) 2935 { 2936 struct drm_i915_gem_execbuffer2 *args = eb->args; 2937 struct drm_i915_gem_exec_fence __user *user; 2938 unsigned long num_fences = args->num_cliprects; 2939 struct eb_fence *f; 2940 2941 if (!(args->flags & I915_EXEC_FENCE_ARRAY)) 2942 return 0; 2943 2944 if (!num_fences) 2945 return 0; 2946 2947 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2948 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2949 if (num_fences > min_t(unsigned long, 2950 ULONG_MAX / sizeof(*user), 2951 SIZE_MAX / sizeof(*f) - eb->num_fences)) 2952 return -EINVAL; 2953 2954 user = u64_to_user_ptr(args->cliprects_ptr); 2955 if (!access_ok(user, num_fences * sizeof(*user))) 2956 return -EFAULT; 2957 2958 f = krealloc(eb->fences, 2959 (eb->num_fences + num_fences) * sizeof(*f), 2960 __GFP_NOWARN | GFP_KERNEL); 2961 if (!f) 2962 return -ENOMEM; 2963 2964 eb->fences = f; 2965 f += eb->num_fences; 2966 while (num_fences--) { 2967 struct drm_i915_gem_exec_fence user_fence; 2968 struct drm_syncobj *syncobj; 2969 struct dma_fence *fence = NULL; 2970 2971 if (__copy_from_user(&user_fence, user++, sizeof(user_fence))) 2972 return -EFAULT; 2973 2974 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2975 return -EINVAL; 2976 2977 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2978 if (!syncobj) { 2979 drm_dbg(&eb->i915->drm, 2980 "Invalid syncobj handle provided\n"); 2981 return -ENOENT; 2982 } 2983 2984 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2985 fence = drm_syncobj_fence_get(syncobj); 2986 if (!fence) { 2987 drm_dbg(&eb->i915->drm, 2988 "Syncobj handle has no fence\n"); 2989 drm_syncobj_put(syncobj); 2990 return -EINVAL; 2991 } 2992 } 2993 2994 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2995 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2996 2997 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2998 f->dma_fence = fence; 2999 f->value = 0; 3000 f->chain_fence = NULL; 3001 f++; 3002 eb->num_fences++; 3003 } 3004 3005 return 0; 3006 } 3007 3008 static void put_fence_array(struct eb_fence *fences, int num_fences) 3009 { 3010 if (fences) 3011 __free_fence_array(fences, num_fences); 3012 } 3013 3014 static int 3015 await_fence_array(struct i915_execbuffer *eb, 3016 struct i915_request *rq) 3017 { 3018 unsigned int n; 3019 int err; 3020 3021 for (n = 0; n < eb->num_fences; n++) { 3022 if (!eb->fences[n].dma_fence) 3023 continue; 3024 3025 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence); 3026 if (err < 0) 3027 return err; 3028 } 3029 3030 return 0; 3031 } 3032 3033 static void signal_fence_array(const struct i915_execbuffer *eb, 3034 struct dma_fence * const fence) 3035 { 3036 unsigned int n; 3037 3038 for (n = 0; n < eb->num_fences; n++) { 3039 struct drm_syncobj *syncobj; 3040 unsigned int flags; 3041 3042 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 3043 if (!(flags & I915_EXEC_FENCE_SIGNAL)) 3044 continue; 3045 3046 if (eb->fences[n].chain_fence) { 3047 drm_syncobj_add_point(syncobj, 3048 eb->fences[n].chain_fence, 3049 fence, 3050 eb->fences[n].value); 3051 /* 3052 * The chain's ownership is transferred to the 3053 * timeline. 3054 */ 3055 eb->fences[n].chain_fence = NULL; 3056 } else { 3057 drm_syncobj_replace_fence(syncobj, fence); 3058 } 3059 } 3060 } 3061 3062 static int 3063 parse_timeline_fences(struct i915_user_extension __user *ext, void *data) 3064 { 3065 struct i915_execbuffer *eb = data; 3066 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences; 3067 3068 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences))) 3069 return -EFAULT; 3070 3071 return add_timeline_fence_array(eb, &timeline_fences); 3072 } 3073 3074 static void retire_requests(struct intel_timeline *tl, struct i915_request *end) 3075 { 3076 struct i915_request *rq, *rn; 3077 3078 list_for_each_entry_safe(rq, rn, &tl->requests, link) 3079 if (rq == end || !i915_request_retire(rq)) 3080 break; 3081 } 3082 3083 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq, 3084 int err, bool last_parallel) 3085 { 3086 struct intel_timeline * const tl = i915_request_timeline(rq); 3087 struct i915_sched_attr attr = {}; 3088 struct i915_request *prev; 3089 3090 lockdep_assert_held(&tl->mutex); 3091 lockdep_unpin_lock(&tl->mutex, rq->cookie); 3092 3093 trace_i915_request_add(rq); 3094 3095 prev = __i915_request_commit(rq); 3096 3097 /* Check that the context wasn't destroyed before submission */ 3098 if (likely(!intel_context_is_closed(eb->context))) { 3099 attr = eb->gem_context->sched; 3100 } else { 3101 /* Serialise with context_close via the add_to_timeline */ 3102 i915_request_set_error_once(rq, -ENOENT); 3103 __i915_request_skip(rq); 3104 err = -ENOENT; /* override any transient errors */ 3105 } 3106 3107 if (intel_context_is_parallel(eb->context)) { 3108 if (err) { 3109 __i915_request_skip(rq); 3110 set_bit(I915_FENCE_FLAG_SKIP_PARALLEL, 3111 &rq->fence.flags); 3112 } 3113 if (last_parallel) 3114 set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, 3115 &rq->fence.flags); 3116 } 3117 3118 __i915_request_queue(rq, &attr); 3119 3120 /* Try to clean up the client's timeline after submitting the request */ 3121 if (prev) 3122 retire_requests(tl, prev); 3123 3124 mutex_unlock(&tl->mutex); 3125 3126 return err; 3127 } 3128 3129 static int eb_requests_add(struct i915_execbuffer *eb, int err) 3130 { 3131 int i; 3132 3133 /* 3134 * We iterate in reverse order of creation to release timeline mutexes in 3135 * same order. 3136 */ 3137 for_each_batch_add_order(eb, i) { 3138 struct i915_request *rq = eb->requests[i]; 3139 3140 if (!rq) 3141 continue; 3142 err |= eb_request_add(eb, rq, err, i == 0); 3143 } 3144 3145 return err; 3146 } 3147 3148 static const i915_user_extension_fn execbuf_extensions[] = { 3149 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences, 3150 }; 3151 3152 static int 3153 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args, 3154 struct i915_execbuffer *eb) 3155 { 3156 if (!(args->flags & I915_EXEC_USE_EXTENSIONS)) 3157 return 0; 3158 3159 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot 3160 * have another flag also using it at the same time. 3161 */ 3162 if (eb->args->flags & I915_EXEC_FENCE_ARRAY) 3163 return -EINVAL; 3164 3165 if (args->num_cliprects != 0) 3166 return -EINVAL; 3167 3168 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr), 3169 execbuf_extensions, 3170 ARRAY_SIZE(execbuf_extensions), 3171 eb); 3172 } 3173 3174 static void eb_requests_get(struct i915_execbuffer *eb) 3175 { 3176 unsigned int i; 3177 3178 for_each_batch_create_order(eb, i) { 3179 if (!eb->requests[i]) 3180 break; 3181 3182 i915_request_get(eb->requests[i]); 3183 } 3184 } 3185 3186 static void eb_requests_put(struct i915_execbuffer *eb) 3187 { 3188 unsigned int i; 3189 3190 for_each_batch_create_order(eb, i) { 3191 if (!eb->requests[i]) 3192 break; 3193 3194 i915_request_put(eb->requests[i]); 3195 } 3196 } 3197 3198 static struct sync_file * 3199 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd) 3200 { 3201 struct sync_file *out_fence = NULL; 3202 struct dma_fence_array *fence_array; 3203 struct dma_fence **fences; 3204 unsigned int i; 3205 3206 GEM_BUG_ON(!intel_context_is_parent(eb->context)); 3207 3208 fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL); 3209 if (!fences) 3210 return ERR_PTR(-ENOMEM); 3211 3212 for_each_batch_create_order(eb, i) { 3213 fences[i] = &eb->requests[i]->fence; 3214 __set_bit(I915_FENCE_FLAG_COMPOSITE, 3215 &eb->requests[i]->fence.flags); 3216 } 3217 3218 fence_array = dma_fence_array_create(eb->num_batches, 3219 fences, 3220 eb->context->parallel.fence_context, 3221 eb->context->parallel.seqno++, 3222 false); 3223 if (!fence_array) { 3224 kfree(fences); 3225 return ERR_PTR(-ENOMEM); 3226 } 3227 3228 /* Move ownership to the dma_fence_array created above */ 3229 for_each_batch_create_order(eb, i) 3230 dma_fence_get(fences[i]); 3231 3232 if (out_fence_fd != -1) { 3233 out_fence = sync_file_create(&fence_array->base); 3234 /* sync_file now owns fence_arry, drop creation ref */ 3235 dma_fence_put(&fence_array->base); 3236 if (!out_fence) 3237 return ERR_PTR(-ENOMEM); 3238 } 3239 3240 eb->composite_fence = &fence_array->base; 3241 3242 return out_fence; 3243 } 3244 3245 static struct sync_file * 3246 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq, 3247 struct dma_fence *in_fence, int out_fence_fd) 3248 { 3249 struct sync_file *out_fence = NULL; 3250 int err; 3251 3252 if (unlikely(eb->gem_context->syncobj)) { 3253 struct dma_fence *fence; 3254 3255 fence = drm_syncobj_fence_get(eb->gem_context->syncobj); 3256 err = i915_request_await_dma_fence(rq, fence); 3257 dma_fence_put(fence); 3258 if (err) 3259 return ERR_PTR(err); 3260 } 3261 3262 if (in_fence) { 3263 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT) 3264 err = i915_request_await_execution(rq, in_fence); 3265 else 3266 err = i915_request_await_dma_fence(rq, in_fence); 3267 if (err < 0) 3268 return ERR_PTR(err); 3269 } 3270 3271 if (eb->fences) { 3272 err = await_fence_array(eb, rq); 3273 if (err) 3274 return ERR_PTR(err); 3275 } 3276 3277 if (intel_context_is_parallel(eb->context)) { 3278 out_fence = eb_composite_fence_create(eb, out_fence_fd); 3279 if (IS_ERR(out_fence)) 3280 return ERR_PTR(-ENOMEM); 3281 } else if (out_fence_fd != -1) { 3282 out_fence = sync_file_create(&rq->fence); 3283 if (!out_fence) 3284 return ERR_PTR(-ENOMEM); 3285 } 3286 3287 return out_fence; 3288 } 3289 3290 static struct intel_context * 3291 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number) 3292 { 3293 struct intel_context *child; 3294 3295 if (likely(context_number == 0)) 3296 return eb->context; 3297 3298 for_each_child(eb->context, child) 3299 if (!--context_number) 3300 return child; 3301 3302 GEM_BUG_ON("Context not found"); 3303 3304 return NULL; 3305 } 3306 3307 static struct sync_file * 3308 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence, 3309 int out_fence_fd) 3310 { 3311 struct sync_file *out_fence = NULL; 3312 unsigned int i; 3313 3314 for_each_batch_create_order(eb, i) { 3315 /* Allocate a request for this batch buffer nice and early. */ 3316 eb->requests[i] = i915_request_create(eb_find_context(eb, i)); 3317 if (IS_ERR(eb->requests[i])) { 3318 out_fence = ERR_CAST(eb->requests[i]); 3319 eb->requests[i] = NULL; 3320 return out_fence; 3321 } 3322 3323 /* 3324 * Only the first request added (committed to backend) has to 3325 * take the in fences into account as all subsequent requests 3326 * will have fences inserted inbetween them. 3327 */ 3328 if (i + 1 == eb->num_batches) { 3329 out_fence = eb_fences_add(eb, eb->requests[i], 3330 in_fence, out_fence_fd); 3331 if (IS_ERR(out_fence)) 3332 return out_fence; 3333 } 3334 3335 /* 3336 * Not really on stack, but we don't want to call 3337 * kfree on the batch_snapshot when we put it, so use the 3338 * _onstack interface. 3339 */ 3340 if (eb->batches[i]->vma) 3341 eb->requests[i]->batch_res = 3342 i915_vma_resource_get(eb->batches[i]->vma->resource); 3343 if (eb->batch_pool) { 3344 GEM_BUG_ON(intel_context_is_parallel(eb->context)); 3345 intel_gt_buffer_pool_mark_active(eb->batch_pool, 3346 eb->requests[i]); 3347 } 3348 } 3349 3350 return out_fence; 3351 } 3352 3353 static int 3354 i915_gem_do_execbuffer(struct drm_device *dev, 3355 struct drm_file *file, 3356 struct drm_i915_gem_execbuffer2 *args, 3357 struct drm_i915_gem_exec_object2 *exec) 3358 { 3359 struct drm_i915_private *i915 = to_i915(dev); 3360 struct i915_execbuffer eb; 3361 struct dma_fence *in_fence = NULL; 3362 struct sync_file *out_fence = NULL; 3363 int out_fence_fd = -1; 3364 int err; 3365 3366 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); 3367 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & 3368 ~__EXEC_OBJECT_UNKNOWN_FLAGS); 3369 3370 eb.i915 = i915; 3371 eb.file = file; 3372 eb.args = args; 3373 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) 3374 args->flags |= __EXEC_HAS_RELOC; 3375 3376 eb.exec = exec; 3377 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1); 3378 eb.vma[0].vma = NULL; 3379 eb.batch_pool = NULL; 3380 3381 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; 3382 reloc_cache_init(&eb.reloc_cache, eb.i915); 3383 3384 eb.buffer_count = args->buffer_count; 3385 eb.batch_start_offset = args->batch_start_offset; 3386 eb.trampoline = NULL; 3387 3388 eb.fences = NULL; 3389 eb.num_fences = 0; 3390 3391 eb_capture_list_clear(&eb); 3392 3393 memset(eb.requests, 0, sizeof(struct i915_request *) * 3394 ARRAY_SIZE(eb.requests)); 3395 eb.composite_fence = NULL; 3396 3397 eb.batch_flags = 0; 3398 if (args->flags & I915_EXEC_SECURE) { 3399 if (GRAPHICS_VER(i915) >= 11) 3400 return -ENODEV; 3401 3402 /* Return -EPERM to trigger fallback code on old binaries. */ 3403 if (!HAS_SECURE_BATCHES(i915)) 3404 return -EPERM; 3405 3406 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) 3407 return -EPERM; 3408 3409 eb.batch_flags |= I915_DISPATCH_SECURE; 3410 } 3411 if (args->flags & I915_EXEC_IS_PINNED) 3412 eb.batch_flags |= I915_DISPATCH_PINNED; 3413 3414 err = parse_execbuf2_extensions(args, &eb); 3415 if (err) 3416 goto err_ext; 3417 3418 err = add_fence_array(&eb); 3419 if (err) 3420 goto err_ext; 3421 3422 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT) 3423 if (args->flags & IN_FENCES) { 3424 if ((args->flags & IN_FENCES) == IN_FENCES) 3425 return -EINVAL; 3426 3427 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 3428 if (!in_fence) { 3429 err = -EINVAL; 3430 goto err_ext; 3431 } 3432 } 3433 #undef IN_FENCES 3434 3435 if (args->flags & I915_EXEC_FENCE_OUT) { 3436 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 3437 if (out_fence_fd < 0) { 3438 err = out_fence_fd; 3439 goto err_in_fence; 3440 } 3441 } 3442 3443 err = eb_create(&eb); 3444 if (err) 3445 goto err_out_fence; 3446 3447 GEM_BUG_ON(!eb.lut_size); 3448 3449 err = eb_select_context(&eb); 3450 if (unlikely(err)) 3451 goto err_destroy; 3452 3453 err = eb_select_engine(&eb); 3454 if (unlikely(err)) 3455 goto err_context; 3456 3457 err = eb_lookup_vmas(&eb); 3458 if (err) { 3459 eb_release_vmas(&eb, true); 3460 goto err_engine; 3461 } 3462 3463 i915_gem_ww_ctx_init(&eb.ww, true); 3464 3465 err = eb_relocate_parse(&eb); 3466 if (err) { 3467 /* 3468 * If the user expects the execobject.offset and 3469 * reloc.presumed_offset to be an exact match, 3470 * as for using NO_RELOC, then we cannot update 3471 * the execobject.offset until we have completed 3472 * relocation. 3473 */ 3474 args->flags &= ~__EXEC_HAS_RELOC; 3475 goto err_vma; 3476 } 3477 3478 ww_acquire_done(&eb.ww.ctx); 3479 err = eb_capture_stage(&eb); 3480 if (err) 3481 goto err_vma; 3482 3483 out_fence = eb_requests_create(&eb, in_fence, out_fence_fd); 3484 if (IS_ERR(out_fence)) { 3485 err = PTR_ERR(out_fence); 3486 out_fence = NULL; 3487 if (eb.requests[0]) 3488 goto err_request; 3489 else 3490 goto err_vma; 3491 } 3492 3493 err = eb_submit(&eb); 3494 3495 err_request: 3496 eb_requests_get(&eb); 3497 err = eb_requests_add(&eb, err); 3498 3499 if (eb.fences) 3500 signal_fence_array(&eb, eb.composite_fence ? 3501 eb.composite_fence : 3502 &eb.requests[0]->fence); 3503 3504 if (unlikely(eb.gem_context->syncobj)) { 3505 drm_syncobj_replace_fence(eb.gem_context->syncobj, 3506 eb.composite_fence ? 3507 eb.composite_fence : 3508 &eb.requests[0]->fence); 3509 } 3510 3511 if (out_fence) { 3512 if (err == 0) { 3513 fd_install(out_fence_fd, out_fence->file); 3514 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ 3515 args->rsvd2 |= (u64)out_fence_fd << 32; 3516 out_fence_fd = -1; 3517 } else { 3518 fput(out_fence->file); 3519 } 3520 } 3521 3522 if (!out_fence && eb.composite_fence) 3523 dma_fence_put(eb.composite_fence); 3524 3525 eb_requests_put(&eb); 3526 3527 err_vma: 3528 eb_release_vmas(&eb, true); 3529 WARN_ON(err == -EDEADLK); 3530 i915_gem_ww_ctx_fini(&eb.ww); 3531 3532 if (eb.batch_pool) 3533 intel_gt_buffer_pool_put(eb.batch_pool); 3534 err_engine: 3535 eb_put_engine(&eb); 3536 err_context: 3537 i915_gem_context_put(eb.gem_context); 3538 err_destroy: 3539 eb_destroy(&eb); 3540 err_out_fence: 3541 if (out_fence_fd != -1) 3542 put_unused_fd(out_fence_fd); 3543 err_in_fence: 3544 dma_fence_put(in_fence); 3545 err_ext: 3546 put_fence_array(eb.fences, eb.num_fences); 3547 return err; 3548 } 3549 3550 static size_t eb_element_size(void) 3551 { 3552 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma); 3553 } 3554 3555 static bool check_buffer_count(size_t count) 3556 { 3557 const size_t sz = eb_element_size(); 3558 3559 /* 3560 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup 3561 * array size (see eb_create()). Otherwise, we can accept an array as 3562 * large as can be addressed (though use large arrays at your peril)! 3563 */ 3564 3565 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); 3566 } 3567 3568 int 3569 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 3570 struct drm_file *file) 3571 { 3572 struct drm_i915_private *i915 = to_i915(dev); 3573 struct drm_i915_gem_execbuffer2 *args = data; 3574 struct drm_i915_gem_exec_object2 *exec2_list; 3575 const size_t count = args->buffer_count; 3576 int err; 3577 3578 if (!check_buffer_count(count)) { 3579 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 3580 return -EINVAL; 3581 } 3582 3583 err = i915_gem_check_execbuffer(i915, args); 3584 if (err) 3585 return err; 3586 3587 /* Allocate extra slots for use by the command parser */ 3588 exec2_list = kvmalloc_array(count + 2, eb_element_size(), 3589 __GFP_NOWARN | GFP_KERNEL); 3590 if (exec2_list == NULL) { 3591 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n", 3592 count); 3593 return -ENOMEM; 3594 } 3595 if (copy_from_user(exec2_list, 3596 u64_to_user_ptr(args->buffers_ptr), 3597 sizeof(*exec2_list) * count)) { 3598 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count); 3599 kvfree(exec2_list); 3600 return -EFAULT; 3601 } 3602 3603 err = i915_gem_do_execbuffer(dev, file, args, exec2_list); 3604 3605 /* 3606 * Now that we have begun execution of the batchbuffer, we ignore 3607 * any new error after this point. Also given that we have already 3608 * updated the associated relocations, we try to write out the current 3609 * object locations irrespective of any error. 3610 */ 3611 if (args->flags & __EXEC_HAS_RELOC) { 3612 struct drm_i915_gem_exec_object2 __user *user_exec_list = 3613 u64_to_user_ptr(args->buffers_ptr); 3614 unsigned int i; 3615 3616 /* Copy the new buffer offsets back to the user's exec list. */ 3617 /* 3618 * Note: count * sizeof(*user_exec_list) does not overflow, 3619 * because we checked 'count' in check_buffer_count(). 3620 * 3621 * And this range already got effectively checked earlier 3622 * when we did the "copy_from_user()" above. 3623 */ 3624 if (!user_write_access_begin(user_exec_list, 3625 count * sizeof(*user_exec_list))) 3626 goto end; 3627 3628 for (i = 0; i < args->buffer_count; i++) { 3629 if (!(exec2_list[i].offset & UPDATE)) 3630 continue; 3631 3632 exec2_list[i].offset = 3633 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 3634 unsafe_put_user(exec2_list[i].offset, 3635 &user_exec_list[i].offset, 3636 end_user); 3637 } 3638 end_user: 3639 user_write_access_end(); 3640 end:; 3641 } 3642 3643 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; 3644 kvfree(exec2_list); 3645 return err; 3646 } 3647