1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2008,2010 Intel Corporation 4 */ 5 6 #include <linux/dma-resv.h> 7 #include <linux/highmem.h> 8 #include <linux/sync_file.h> 9 #include <linux/uaccess.h> 10 11 #include <drm/drm_auth.h> 12 #include <drm/drm_print.h> 13 #include <drm/drm_syncobj.h> 14 15 #include "gem/i915_gem_ioctls.h" 16 #include "gt/intel_context.h" 17 #include "gt/intel_gpu_commands.h" 18 #include "gt/intel_gt.h" 19 #include "gt/intel_gt_buffer_pool.h" 20 #include "gt/intel_gt_pm.h" 21 #include "gt/intel_ring.h" 22 23 #include "pxp/intel_pxp.h" 24 25 #include "i915_cmd_parser.h" 26 #include "i915_drv.h" 27 #include "i915_file_private.h" 28 #include "i915_gem_clflush.h" 29 #include "i915_gem_context.h" 30 #include "i915_gem_evict.h" 31 #include "i915_gem_ioctls.h" 32 #include "i915_reg.h" 33 #include "i915_trace.h" 34 #include "i915_user_extensions.h" 35 36 struct eb_vma { 37 struct i915_vma *vma; 38 unsigned int flags; 39 40 /** This vma's place in the execbuf reservation list */ 41 struct drm_i915_gem_exec_object2 *exec; 42 struct list_head bind_link; 43 struct list_head reloc_link; 44 45 struct hlist_node node; 46 u32 handle; 47 }; 48 49 enum { 50 FORCE_CPU_RELOC = 1, 51 FORCE_GTT_RELOC, 52 FORCE_GPU_RELOC, 53 #define DBG_FORCE_RELOC 0 /* choose one of the above! */ 54 }; 55 56 /* __EXEC_OBJECT_ flags > BIT(29) defined in i915_vma.h */ 57 #define __EXEC_OBJECT_HAS_PIN BIT(29) 58 #define __EXEC_OBJECT_HAS_FENCE BIT(28) 59 #define __EXEC_OBJECT_USERPTR_INIT BIT(27) 60 #define __EXEC_OBJECT_NEEDS_MAP BIT(26) 61 #define __EXEC_OBJECT_NEEDS_BIAS BIT(25) 62 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 25) /* all of the above + */ 63 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) 64 65 #define __EXEC_HAS_RELOC BIT(31) 66 #define __EXEC_ENGINE_PINNED BIT(30) 67 #define __EXEC_USERPTR_USED BIT(29) 68 #define __EXEC_INTERNAL_FLAGS (~0u << 29) 69 #define UPDATE PIN_OFFSET_FIXED 70 71 #define BATCH_OFFSET_BIAS (256*1024) 72 73 #define __I915_EXEC_ILLEGAL_FLAGS \ 74 (__I915_EXEC_UNKNOWN_FLAGS | \ 75 I915_EXEC_CONSTANTS_MASK | \ 76 I915_EXEC_RESOURCE_STREAMER) 77 78 /* Catch emission of unexpected errors for CI! */ 79 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 80 #undef EINVAL 81 #define EINVAL ({ \ 82 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 83 22; \ 84 }) 85 #endif 86 87 /** 88 * DOC: User command execution 89 * 90 * Userspace submits commands to be executed on the GPU as an instruction 91 * stream within a GEM object we call a batchbuffer. This instructions may 92 * refer to other GEM objects containing auxiliary state such as kernels, 93 * samplers, render targets and even secondary batchbuffers. Userspace does 94 * not know where in the GPU memory these objects reside and so before the 95 * batchbuffer is passed to the GPU for execution, those addresses in the 96 * batchbuffer and auxiliary objects are updated. This is known as relocation, 97 * or patching. To try and avoid having to relocate each object on the next 98 * execution, userspace is told the location of those objects in this pass, 99 * but this remains just a hint as the kernel may choose a new location for 100 * any object in the future. 101 * 102 * At the level of talking to the hardware, submitting a batchbuffer for the 103 * GPU to execute is to add content to a buffer from which the HW 104 * command streamer is reading. 105 * 106 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. 107 * Execlists, this command is not placed on the same buffer as the 108 * remaining items. 109 * 110 * 2. Add a command to invalidate caches to the buffer. 111 * 112 * 3. Add a batchbuffer start command to the buffer; the start command is 113 * essentially a token together with the GPU address of the batchbuffer 114 * to be executed. 115 * 116 * 4. Add a pipeline flush to the buffer. 117 * 118 * 5. Add a memory write command to the buffer to record when the GPU 119 * is done executing the batchbuffer. The memory write writes the 120 * global sequence number of the request, ``i915_request::global_seqno``; 121 * the i915 driver uses the current value in the register to determine 122 * if the GPU has completed the batchbuffer. 123 * 124 * 6. Add a user interrupt command to the buffer. This command instructs 125 * the GPU to issue an interrupt when the command, pipeline flush and 126 * memory write are completed. 127 * 128 * 7. Inform the hardware of the additional commands added to the buffer 129 * (by updating the tail pointer). 130 * 131 * Processing an execbuf ioctl is conceptually split up into a few phases. 132 * 133 * 1. Validation - Ensure all the pointers, handles and flags are valid. 134 * 2. Reservation - Assign GPU address space for every object 135 * 3. Relocation - Update any addresses to point to the final locations 136 * 4. Serialisation - Order the request with respect to its dependencies 137 * 5. Construction - Construct a request to execute the batchbuffer 138 * 6. Submission (at some point in the future execution) 139 * 140 * Reserving resources for the execbuf is the most complicated phase. We 141 * neither want to have to migrate the object in the address space, nor do 142 * we want to have to update any relocations pointing to this object. Ideally, 143 * we want to leave the object where it is and for all the existing relocations 144 * to match. If the object is given a new address, or if userspace thinks the 145 * object is elsewhere, we have to parse all the relocation entries and update 146 * the addresses. Userspace can set the I915_EXEC_NO_RELOC flag to hint that 147 * all the target addresses in all of its objects match the value in the 148 * relocation entries and that they all match the presumed offsets given by the 149 * list of execbuffer objects. Using this knowledge, we know that if we haven't 150 * moved any buffers, all the relocation entries are valid and we can skip 151 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU 152 * hang.) The requirement for using I915_EXEC_NO_RELOC are: 153 * 154 * The addresses written in the objects must match the corresponding 155 * reloc.presumed_offset which in turn must match the corresponding 156 * execobject.offset. 157 * 158 * Any render targets written to in the batch must be flagged with 159 * EXEC_OBJECT_WRITE. 160 * 161 * To avoid stalling, execobject.offset should match the current 162 * address of that object within the active context. 163 * 164 * The reservation is done is multiple phases. First we try and keep any 165 * object already bound in its current location - so as long as meets the 166 * constraints imposed by the new execbuffer. Any object left unbound after the 167 * first pass is then fitted into any available idle space. If an object does 168 * not fit, all objects are removed from the reservation and the process rerun 169 * after sorting the objects into a priority order (more difficult to fit 170 * objects are tried first). Failing that, the entire VM is cleared and we try 171 * to fit the execbuf once last time before concluding that it simply will not 172 * fit. 173 * 174 * A small complication to all of this is that we allow userspace not only to 175 * specify an alignment and a size for the object in the address space, but 176 * we also allow userspace to specify the exact offset. This objects are 177 * simpler to place (the location is known a priori) all we have to do is make 178 * sure the space is available. 179 * 180 * Once all the objects are in place, patching up the buried pointers to point 181 * to the final locations is a fairly simple job of walking over the relocation 182 * entry arrays, looking up the right address and rewriting the value into 183 * the object. Simple! ... The relocation entries are stored in user memory 184 * and so to access them we have to copy them into a local buffer. That copy 185 * has to avoid taking any pagefaults as they may lead back to a GEM object 186 * requiring the vm->mutex (i.e. recursive deadlock). So once again we split 187 * the relocation into multiple passes. First we try to do everything within an 188 * atomic context (avoid the pagefaults) which requires that we never wait. If 189 * we detect that we may wait, or if we need to fault, then we have to fallback 190 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm 191 * bells yet?) Dropping the mutex means that we lose all the state we have 192 * built up so far for the execbuf and we must reset any global data. However, 193 * we do leave the objects pinned in their final locations - which is a 194 * potential issue for concurrent execbufs. Once we have left the mutex, we can 195 * allocate and copy all the relocation entries into a large array at our 196 * leisure, reacquire the mutex, reclaim all the objects and other state and 197 * then proceed to update any incorrect addresses with the objects. 198 * 199 * As we process the relocation entries, we maintain a record of whether the 200 * object is being written to. Using NORELOC, we expect userspace to provide 201 * this information instead. We also check whether we can skip the relocation 202 * by comparing the expected value inside the relocation entry with the target's 203 * final address. If they differ, we have to map the current object and rewrite 204 * the 4 or 8 byte pointer within. 205 * 206 * Serialising an execbuf is quite simple according to the rules of the GEM 207 * ABI. Execution within each context is ordered by the order of submission. 208 * Writes to any GEM object are in order of submission and are exclusive. Reads 209 * from a GEM object are unordered with respect to other reads, but ordered by 210 * writes. A write submitted after a read cannot occur before the read, and 211 * similarly any read submitted after a write cannot occur before the write. 212 * Writes are ordered between engines such that only one write occurs at any 213 * time (completing any reads beforehand) - using semaphores where available 214 * and CPU serialisation otherwise. Other GEM access obey the same rules, any 215 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU 216 * reads before starting, and any read (either using set-domain or pread) must 217 * flush all GPU writes before starting. (Note we only employ a barrier before, 218 * we currently rely on userspace not concurrently starting a new execution 219 * whilst reading or writing to an object. This may be an advantage or not 220 * depending on how much you trust userspace not to shoot themselves in the 221 * foot.) Serialisation may just result in the request being inserted into 222 * a DAG awaiting its turn, but most simple is to wait on the CPU until 223 * all dependencies are resolved. 224 * 225 * After all of that, is just a matter of closing the request and handing it to 226 * the hardware (well, leaving it in a queue to be executed). However, we also 227 * offer the ability for batchbuffers to be run with elevated privileges so 228 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) 229 * Before any batch is given extra privileges we first must check that it 230 * contains no nefarious instructions, we check that each instruction is from 231 * our whitelist and all registers are also from an allowed list. We first 232 * copy the user's batchbuffer to a shadow (so that the user doesn't have 233 * access to it, either by the CPU or GPU as we scan it) and then parse each 234 * instruction. If everything is ok, we set a flag telling the hardware to run 235 * the batchbuffer in trusted mode, otherwise the ioctl is rejected. 236 */ 237 238 struct eb_fence { 239 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */ 240 struct dma_fence *dma_fence; 241 u64 value; 242 struct dma_fence_chain *chain_fence; 243 }; 244 245 struct i915_execbuffer { 246 struct drm_i915_private *i915; /** i915 backpointer */ 247 struct drm_file *file; /** per-file lookup tables and limits */ 248 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ 249 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ 250 struct eb_vma *vma; 251 252 struct intel_gt *gt; /* gt for the execbuf */ 253 struct intel_context *context; /* logical state for the request */ 254 struct i915_gem_context *gem_context; /** caller's context */ 255 intel_wakeref_t wakeref; 256 intel_wakeref_t wakeref_gt0; 257 258 /** our requests to build */ 259 struct i915_request *requests[MAX_ENGINE_INSTANCE + 1]; 260 /** identity of the batch obj/vma */ 261 struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1]; 262 struct i915_vma *trampoline; /** trampoline used for chaining */ 263 264 /** used for excl fence in dma_resv objects when > 1 BB submitted */ 265 struct dma_fence *composite_fence; 266 267 /** actual size of execobj[] as we may extend it for the cmdparser */ 268 unsigned int buffer_count; 269 270 /* number of batches in execbuf IOCTL */ 271 unsigned int num_batches; 272 273 /** list of vma not yet bound during reservation phase */ 274 struct list_head unbound; 275 276 /** list of vma that have execobj.relocation_count */ 277 struct list_head relocs; 278 279 struct i915_gem_ww_ctx ww; 280 281 /** 282 * Track the most recently used object for relocations, as we 283 * frequently have to perform multiple relocations within the same 284 * obj/page 285 */ 286 struct reloc_cache { 287 struct drm_mm_node node; /** temporary GTT binding */ 288 unsigned long vaddr; /** Current kmap address */ 289 unsigned long page; /** Currently mapped page index */ 290 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */ 291 bool use_64bit_reloc : 1; 292 bool has_llc : 1; 293 bool has_fence : 1; 294 bool needs_unfenced : 1; 295 } reloc_cache; 296 297 u64 invalid_flags; /** Set of execobj.flags that are invalid */ 298 299 /** Length of batch within object */ 300 u64 batch_len[MAX_ENGINE_INSTANCE + 1]; 301 u32 batch_start_offset; /** Location within object of batch */ 302 u32 batch_flags; /** Flags composed for emit_bb_start() */ 303 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */ 304 305 /** 306 * Indicate either the size of the hashtable used to resolve 307 * relocation handles, or if negative that we are using a direct 308 * index into the execobj[]. 309 */ 310 int lut_size; 311 struct hlist_head *buckets; /** ht for relocation handles */ 312 313 struct eb_fence *fences; 314 unsigned long num_fences; 315 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 316 struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1]; 317 #endif 318 }; 319 320 static int eb_parse(struct i915_execbuffer *eb); 321 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle); 322 static void eb_unpin_engine(struct i915_execbuffer *eb); 323 static void eb_capture_release(struct i915_execbuffer *eb); 324 325 static bool eb_use_cmdparser(const struct i915_execbuffer *eb) 326 { 327 return intel_engine_requires_cmd_parser(eb->context->engine) || 328 (intel_engine_using_cmd_parser(eb->context->engine) && 329 eb->args->batch_len); 330 } 331 332 static int eb_create(struct i915_execbuffer *eb) 333 { 334 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { 335 unsigned int size = 1 + ilog2(eb->buffer_count); 336 337 /* 338 * Without a 1:1 association between relocation handles and 339 * the execobject[] index, we instead create a hashtable. 340 * We size it dynamically based on available memory, starting 341 * first with 1:1 associative hash and scaling back until 342 * the allocation succeeds. 343 * 344 * Later on we use a positive lut_size to indicate we are 345 * using this hashtable, and a negative value to indicate a 346 * direct lookup. 347 */ 348 do { 349 gfp_t flags; 350 351 /* While we can still reduce the allocation size, don't 352 * raise a warning and allow the allocation to fail. 353 * On the last pass though, we want to try as hard 354 * as possible to perform the allocation and warn 355 * if it fails. 356 */ 357 flags = GFP_KERNEL; 358 if (size > 1) 359 flags |= __GFP_NORETRY | __GFP_NOWARN; 360 361 eb->buckets = kzalloc(sizeof(struct hlist_head) << size, 362 flags); 363 if (eb->buckets) 364 break; 365 } while (--size); 366 367 if (unlikely(!size)) 368 return -ENOMEM; 369 370 eb->lut_size = size; 371 } else { 372 eb->lut_size = -eb->buffer_count; 373 } 374 375 return 0; 376 } 377 378 static bool 379 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, 380 const struct i915_vma *vma, 381 unsigned int flags) 382 { 383 const u64 start = i915_vma_offset(vma); 384 const u64 size = i915_vma_size(vma); 385 386 if (size < entry->pad_to_size) 387 return true; 388 389 if (entry->alignment && !IS_ALIGNED(start, entry->alignment)) 390 return true; 391 392 if (flags & EXEC_OBJECT_PINNED && 393 start != entry->offset) 394 return true; 395 396 if (flags & __EXEC_OBJECT_NEEDS_BIAS && 397 start < BATCH_OFFSET_BIAS) 398 return true; 399 400 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && 401 (start + size + 4095) >> 32) 402 return true; 403 404 if (flags & __EXEC_OBJECT_NEEDS_MAP && 405 !i915_vma_is_map_and_fenceable(vma)) 406 return true; 407 408 return false; 409 } 410 411 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry, 412 unsigned int exec_flags) 413 { 414 u64 pin_flags = 0; 415 416 if (exec_flags & EXEC_OBJECT_NEEDS_GTT) 417 pin_flags |= PIN_GLOBAL; 418 419 /* 420 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, 421 * limit address to the first 4GBs for unflagged objects. 422 */ 423 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 424 pin_flags |= PIN_ZONE_4G; 425 426 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) 427 pin_flags |= PIN_MAPPABLE; 428 429 if (exec_flags & EXEC_OBJECT_PINNED) 430 pin_flags |= entry->offset | PIN_OFFSET_FIXED; 431 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) 432 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; 433 434 return pin_flags; 435 } 436 437 static int 438 eb_pin_vma(struct i915_execbuffer *eb, 439 const struct drm_i915_gem_exec_object2 *entry, 440 struct eb_vma *ev) 441 { 442 struct i915_vma *vma = ev->vma; 443 u64 pin_flags; 444 int err; 445 446 if (vma->node.size) 447 pin_flags = __i915_vma_offset(vma); 448 else 449 pin_flags = entry->offset & PIN_OFFSET_MASK; 450 451 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE; 452 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT)) 453 pin_flags |= PIN_GLOBAL; 454 455 /* Attempt to reuse the current location if available */ 456 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags); 457 if (err == -EDEADLK) 458 return err; 459 460 if (unlikely(err)) { 461 if (entry->flags & EXEC_OBJECT_PINNED) 462 return err; 463 464 /* Failing that pick any _free_ space if suitable */ 465 err = i915_vma_pin_ww(vma, &eb->ww, 466 entry->pad_to_size, 467 entry->alignment, 468 eb_pin_flags(entry, ev->flags) | 469 PIN_USER | PIN_NOEVICT | PIN_VALIDATE); 470 if (unlikely(err)) 471 return err; 472 } 473 474 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 475 err = i915_vma_pin_fence(vma); 476 if (unlikely(err)) 477 return err; 478 479 if (vma->fence) 480 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 481 } 482 483 ev->flags |= __EXEC_OBJECT_HAS_PIN; 484 if (eb_vma_misplaced(entry, vma, ev->flags)) 485 return -EBADSLT; 486 487 return 0; 488 } 489 490 static void 491 eb_unreserve_vma(struct eb_vma *ev) 492 { 493 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE)) 494 __i915_vma_unpin_fence(ev->vma); 495 496 ev->flags &= ~__EXEC_OBJECT_RESERVED; 497 } 498 499 static int 500 eb_validate_vma(struct i915_execbuffer *eb, 501 struct drm_i915_gem_exec_object2 *entry, 502 struct i915_vma *vma) 503 { 504 /* Relocations are disallowed for all platforms after TGL-LP. This 505 * also covers all platforms with local memory. 506 */ 507 if (entry->relocation_count && 508 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915)) 509 return -EINVAL; 510 511 if (unlikely(entry->flags & eb->invalid_flags)) 512 return -EINVAL; 513 514 if (unlikely(entry->alignment && 515 !is_power_of_2_u64(entry->alignment))) 516 return -EINVAL; 517 518 /* 519 * Offset can be used as input (EXEC_OBJECT_PINNED), reject 520 * any non-page-aligned or non-canonical addresses. 521 */ 522 if (unlikely(entry->flags & EXEC_OBJECT_PINNED && 523 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) 524 return -EINVAL; 525 526 /* pad_to_size was once a reserved field, so sanitize it */ 527 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { 528 if (unlikely(offset_in_page(entry->pad_to_size))) 529 return -EINVAL; 530 } else { 531 entry->pad_to_size = 0; 532 } 533 /* 534 * From drm_mm perspective address space is continuous, 535 * so from this point we're always using non-canonical 536 * form internally. 537 */ 538 entry->offset = gen8_noncanonical_addr(entry->offset); 539 540 if (!eb->reloc_cache.has_fence) { 541 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; 542 } else { 543 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || 544 eb->reloc_cache.needs_unfenced) && 545 i915_gem_object_is_tiled(vma->obj)) 546 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; 547 } 548 549 return 0; 550 } 551 552 static bool 553 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx) 554 { 555 return eb->args->flags & I915_EXEC_BATCH_FIRST ? 556 buffer_idx < eb->num_batches : 557 buffer_idx >= eb->args->buffer_count - eb->num_batches; 558 } 559 560 static int 561 eb_add_vma(struct i915_execbuffer *eb, 562 unsigned int *current_batch, 563 unsigned int i, 564 struct i915_vma *vma) 565 { 566 struct drm_i915_private *i915 = eb->i915; 567 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 568 struct eb_vma *ev = &eb->vma[i]; 569 570 ev->vma = vma; 571 ev->exec = entry; 572 ev->flags = entry->flags; 573 574 if (eb->lut_size > 0) { 575 ev->handle = entry->handle; 576 hlist_add_head(&ev->node, 577 &eb->buckets[hash_32(entry->handle, 578 eb->lut_size)]); 579 } 580 581 if (entry->relocation_count) 582 list_add_tail(&ev->reloc_link, &eb->relocs); 583 584 /* 585 * SNA is doing fancy tricks with compressing batch buffers, which leads 586 * to negative relocation deltas. Usually that works out ok since the 587 * relocate address is still positive, except when the batch is placed 588 * very low in the GTT. Ensure this doesn't happen. 589 * 590 * Note that actual hangs have only been observed on gen7, but for 591 * paranoia do it everywhere. 592 */ 593 if (is_batch_buffer(eb, i)) { 594 if (entry->relocation_count && 595 !(ev->flags & EXEC_OBJECT_PINNED)) 596 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS; 597 if (eb->reloc_cache.has_fence) 598 ev->flags |= EXEC_OBJECT_NEEDS_FENCE; 599 600 eb->batches[*current_batch] = ev; 601 602 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) { 603 drm_dbg(&i915->drm, 604 "Attempting to use self-modifying batch buffer\n"); 605 return -EINVAL; 606 } 607 608 if (range_overflows_t(u64, 609 eb->batch_start_offset, 610 eb->args->batch_len, 611 ev->vma->size)) { 612 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n"); 613 return -EINVAL; 614 } 615 616 if (eb->args->batch_len == 0) 617 eb->batch_len[*current_batch] = ev->vma->size - 618 eb->batch_start_offset; 619 else 620 eb->batch_len[*current_batch] = eb->args->batch_len; 621 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */ 622 drm_dbg(&i915->drm, "Invalid batch length\n"); 623 return -EINVAL; 624 } 625 626 ++*current_batch; 627 } 628 629 return 0; 630 } 631 632 static int use_cpu_reloc(const struct reloc_cache *cache, 633 const struct drm_i915_gem_object *obj) 634 { 635 if (!i915_gem_object_has_struct_page(obj)) 636 return false; 637 638 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) 639 return true; 640 641 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) 642 return false; 643 644 /* 645 * For objects created by userspace through GEM_CREATE with pat_index 646 * set by set_pat extension, i915_gem_object_has_cache_level() always 647 * return true, otherwise the call would fall back to checking whether 648 * the object is un-cached. 649 */ 650 return (cache->has_llc || 651 obj->cache_dirty || 652 !i915_gem_object_has_cache_level(obj, I915_CACHE_NONE)); 653 } 654 655 static int eb_reserve_vma(struct i915_execbuffer *eb, 656 struct eb_vma *ev, 657 u64 pin_flags) 658 { 659 struct drm_i915_gem_exec_object2 *entry = ev->exec; 660 struct i915_vma *vma = ev->vma; 661 int err; 662 663 if (drm_mm_node_allocated(&vma->node) && 664 eb_vma_misplaced(entry, vma, ev->flags)) { 665 err = i915_vma_unbind(vma); 666 if (err) 667 return err; 668 } 669 670 err = i915_vma_pin_ww(vma, &eb->ww, 671 entry->pad_to_size, entry->alignment, 672 eb_pin_flags(entry, ev->flags) | pin_flags); 673 if (err) 674 return err; 675 676 if (entry->offset != i915_vma_offset(vma)) { 677 entry->offset = i915_vma_offset(vma) | UPDATE; 678 eb->args->flags |= __EXEC_HAS_RELOC; 679 } 680 681 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 682 err = i915_vma_pin_fence(vma); 683 if (unlikely(err)) 684 return err; 685 686 if (vma->fence) 687 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 688 } 689 690 ev->flags |= __EXEC_OBJECT_HAS_PIN; 691 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags)); 692 693 return 0; 694 } 695 696 static bool eb_unbind(struct i915_execbuffer *eb, bool force) 697 { 698 const unsigned int count = eb->buffer_count; 699 unsigned int i; 700 struct list_head last; 701 bool unpinned = false; 702 703 /* Resort *all* the objects into priority order */ 704 INIT_LIST_HEAD(&eb->unbound); 705 INIT_LIST_HEAD(&last); 706 707 for (i = 0; i < count; i++) { 708 struct eb_vma *ev = &eb->vma[i]; 709 unsigned int flags = ev->flags; 710 711 if (!force && flags & EXEC_OBJECT_PINNED && 712 flags & __EXEC_OBJECT_HAS_PIN) 713 continue; 714 715 unpinned = true; 716 eb_unreserve_vma(ev); 717 718 if (flags & EXEC_OBJECT_PINNED) 719 /* Pinned must have their slot */ 720 list_add(&ev->bind_link, &eb->unbound); 721 else if (flags & __EXEC_OBJECT_NEEDS_MAP) 722 /* Map require the lowest 256MiB (aperture) */ 723 list_add_tail(&ev->bind_link, &eb->unbound); 724 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 725 /* Prioritise 4GiB region for restricted bo */ 726 list_add(&ev->bind_link, &last); 727 else 728 list_add_tail(&ev->bind_link, &last); 729 } 730 731 list_splice_tail(&last, &eb->unbound); 732 return unpinned; 733 } 734 735 static int eb_reserve(struct i915_execbuffer *eb) 736 { 737 struct eb_vma *ev; 738 unsigned int pass; 739 int err = 0; 740 741 /* 742 * We have one more buffers that we couldn't bind, which could be due to 743 * various reasons. To resolve this we have 4 passes, with every next 744 * level turning the screws tighter: 745 * 746 * 0. Unbind all objects that do not match the GTT constraints for the 747 * execbuffer (fenceable, mappable, alignment etc). Bind all new 748 * objects. This avoids unnecessary unbinding of later objects in order 749 * to make room for the earlier objects *unless* we need to defragment. 750 * 751 * 1. Reorder the buffers, where objects with the most restrictive 752 * placement requirements go first (ignoring fixed location buffers for 753 * now). For example, objects needing the mappable aperture (the first 754 * 256M of GTT), should go first vs objects that can be placed just 755 * about anywhere. Repeat the previous pass. 756 * 757 * 2. Consider buffers that are pinned at a fixed location. Also try to 758 * evict the entire VM this time, leaving only objects that we were 759 * unable to lock. Try again to bind the buffers. (still using the new 760 * buffer order). 761 * 762 * 3. We likely have object lock contention for one or more stubborn 763 * objects in the VM, for which we need to evict to make forward 764 * progress (perhaps we are fighting the shrinker?). When evicting the 765 * VM this time around, anything that we can't lock we now track using 766 * the busy_bo, using the full lock (after dropping the vm->mutex to 767 * prevent deadlocks), instead of trylock. We then continue to evict the 768 * VM, this time with the stubborn object locked, which we can now 769 * hopefully unbind (if still bound in the VM). Repeat until the VM is 770 * evicted. Finally we should be able bind everything. 771 */ 772 for (pass = 0; pass <= 3; pass++) { 773 int pin_flags = PIN_USER | PIN_VALIDATE; 774 775 if (pass == 0) 776 pin_flags |= PIN_NONBLOCK; 777 778 if (pass >= 1) 779 eb_unbind(eb, pass >= 2); 780 781 if (pass == 2) { 782 err = mutex_lock_interruptible(&eb->context->vm->mutex); 783 if (!err) { 784 err = i915_gem_evict_vm(eb->context->vm, &eb->ww, NULL); 785 mutex_unlock(&eb->context->vm->mutex); 786 } 787 if (err) 788 return err; 789 } 790 791 if (pass == 3) { 792 retry: 793 err = mutex_lock_interruptible(&eb->context->vm->mutex); 794 if (!err) { 795 struct drm_i915_gem_object *busy_bo = NULL; 796 797 err = i915_gem_evict_vm(eb->context->vm, &eb->ww, &busy_bo); 798 mutex_unlock(&eb->context->vm->mutex); 799 if (err && busy_bo) { 800 err = i915_gem_object_lock(busy_bo, &eb->ww); 801 i915_gem_object_put(busy_bo); 802 if (!err) 803 goto retry; 804 } 805 } 806 if (err) 807 return err; 808 } 809 810 list_for_each_entry(ev, &eb->unbound, bind_link) { 811 err = eb_reserve_vma(eb, ev, pin_flags); 812 if (err) 813 break; 814 } 815 816 if (err != -ENOSPC) 817 break; 818 } 819 820 return err; 821 } 822 823 static int eb_select_context(struct i915_execbuffer *eb) 824 { 825 struct i915_gem_context *ctx; 826 827 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); 828 if (IS_ERR(ctx)) 829 return PTR_ERR(ctx); 830 831 eb->gem_context = ctx; 832 if (i915_gem_context_has_full_ppgtt(ctx)) 833 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; 834 835 return 0; 836 } 837 838 static int __eb_add_lut(struct i915_execbuffer *eb, 839 u32 handle, struct i915_vma *vma) 840 { 841 struct i915_gem_context *ctx = eb->gem_context; 842 struct i915_lut_handle *lut; 843 int err; 844 845 lut = i915_lut_handle_alloc(); 846 if (unlikely(!lut)) 847 return -ENOMEM; 848 849 i915_vma_get(vma); 850 if (!atomic_fetch_inc(&vma->open_count)) 851 i915_vma_reopen(vma); 852 lut->handle = handle; 853 lut->ctx = ctx; 854 855 /* Check that the context hasn't been closed in the meantime */ 856 err = -EINTR; 857 if (!mutex_lock_interruptible(&ctx->lut_mutex)) { 858 if (likely(!i915_gem_context_is_closed(ctx))) 859 err = radix_tree_insert(&ctx->handles_vma, handle, vma); 860 else 861 err = -ENOENT; 862 if (err == 0) { /* And nor has this handle */ 863 struct drm_i915_gem_object *obj = vma->obj; 864 865 spin_lock(&obj->lut_lock); 866 if (idr_find(&eb->file->object_idr, handle) == obj) { 867 list_add(&lut->obj_link, &obj->lut_list); 868 } else { 869 radix_tree_delete(&ctx->handles_vma, handle); 870 err = -ENOENT; 871 } 872 spin_unlock(&obj->lut_lock); 873 } 874 mutex_unlock(&ctx->lut_mutex); 875 } 876 if (unlikely(err)) 877 goto err; 878 879 return 0; 880 881 err: 882 i915_vma_close(vma); 883 i915_vma_put(vma); 884 i915_lut_handle_free(lut); 885 return err; 886 } 887 888 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle) 889 { 890 struct i915_address_space *vm = eb->context->vm; 891 892 do { 893 struct drm_i915_gem_object *obj; 894 struct i915_vma *vma; 895 int err; 896 897 rcu_read_lock(); 898 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle); 899 if (likely(vma && vma->vm == vm)) 900 vma = i915_vma_tryget(vma); 901 rcu_read_unlock(); 902 if (likely(vma)) 903 return vma; 904 905 obj = i915_gem_object_lookup(eb->file, handle); 906 if (unlikely(!obj)) 907 return ERR_PTR(-ENOENT); 908 909 /* 910 * If the user has opted-in for protected-object tracking, make 911 * sure the object encryption can be used. 912 * We only need to do this when the object is first used with 913 * this context, because the context itself will be banned when 914 * the protected objects become invalid. 915 */ 916 if (i915_gem_context_uses_protected_content(eb->gem_context) && 917 i915_gem_object_is_protected(obj)) { 918 err = intel_pxp_key_check(intel_bo_to_drm_bo(obj), true); 919 if (err) { 920 i915_gem_object_put(obj); 921 return ERR_PTR(err); 922 } 923 } 924 925 vma = i915_vma_instance(obj, vm, NULL); 926 if (IS_ERR(vma)) { 927 i915_gem_object_put(obj); 928 return vma; 929 } 930 931 err = __eb_add_lut(eb, handle, vma); 932 if (likely(!err)) 933 return vma; 934 935 i915_gem_object_put(obj); 936 if (err != -EEXIST) 937 return ERR_PTR(err); 938 } while (1); 939 } 940 941 static int eb_lookup_vmas(struct i915_execbuffer *eb) 942 { 943 unsigned int i, current_batch = 0; 944 int err = 0; 945 946 INIT_LIST_HEAD(&eb->relocs); 947 948 for (i = 0; i < eb->buffer_count; i++) { 949 struct i915_vma *vma; 950 951 vma = eb_lookup_vma(eb, eb->exec[i].handle); 952 if (IS_ERR(vma)) { 953 err = PTR_ERR(vma); 954 return err; 955 } 956 957 err = eb_validate_vma(eb, &eb->exec[i], vma); 958 if (unlikely(err)) { 959 i915_vma_put(vma); 960 return err; 961 } 962 963 err = eb_add_vma(eb, ¤t_batch, i, vma); 964 if (err) 965 return err; 966 967 if (i915_gem_object_is_userptr(vma->obj)) { 968 err = i915_gem_object_userptr_submit_init(vma->obj); 969 if (err) 970 return err; 971 972 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT; 973 eb->args->flags |= __EXEC_USERPTR_USED; 974 } 975 } 976 977 return 0; 978 } 979 980 static int eb_lock_vmas(struct i915_execbuffer *eb) 981 { 982 unsigned int i; 983 int err; 984 985 for (i = 0; i < eb->buffer_count; i++) { 986 struct eb_vma *ev = &eb->vma[i]; 987 struct i915_vma *vma = ev->vma; 988 989 err = i915_gem_object_lock(vma->obj, &eb->ww); 990 if (err) 991 return err; 992 } 993 994 return 0; 995 } 996 997 static int eb_validate_vmas(struct i915_execbuffer *eb) 998 { 999 unsigned int i; 1000 int err; 1001 1002 INIT_LIST_HEAD(&eb->unbound); 1003 1004 err = eb_lock_vmas(eb); 1005 if (err) 1006 return err; 1007 1008 for (i = 0; i < eb->buffer_count; i++) { 1009 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 1010 struct eb_vma *ev = &eb->vma[i]; 1011 struct i915_vma *vma = ev->vma; 1012 1013 err = eb_pin_vma(eb, entry, ev); 1014 if (err == -EDEADLK) 1015 return err; 1016 1017 if (!err) { 1018 if (entry->offset != i915_vma_offset(vma)) { 1019 entry->offset = i915_vma_offset(vma) | UPDATE; 1020 eb->args->flags |= __EXEC_HAS_RELOC; 1021 } 1022 } else { 1023 eb_unreserve_vma(ev); 1024 1025 list_add_tail(&ev->bind_link, &eb->unbound); 1026 if (drm_mm_node_allocated(&vma->node)) { 1027 err = i915_vma_unbind(vma); 1028 if (err) 1029 return err; 1030 } 1031 } 1032 1033 /* Reserve enough slots to accommodate composite fences */ 1034 err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches); 1035 if (err) 1036 return err; 1037 1038 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && 1039 eb_vma_misplaced(&eb->exec[i], vma, ev->flags)); 1040 } 1041 1042 if (!list_empty(&eb->unbound)) 1043 return eb_reserve(eb); 1044 1045 return 0; 1046 } 1047 1048 static struct eb_vma * 1049 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) 1050 { 1051 if (eb->lut_size < 0) { 1052 if (handle >= -eb->lut_size) 1053 return NULL; 1054 return &eb->vma[handle]; 1055 } else { 1056 struct hlist_head *head; 1057 struct eb_vma *ev; 1058 1059 head = &eb->buckets[hash_32(handle, eb->lut_size)]; 1060 hlist_for_each_entry(ev, head, node) { 1061 if (ev->handle == handle) 1062 return ev; 1063 } 1064 return NULL; 1065 } 1066 } 1067 1068 static void eb_release_vmas(struct i915_execbuffer *eb, bool final) 1069 { 1070 const unsigned int count = eb->buffer_count; 1071 unsigned int i; 1072 1073 for (i = 0; i < count; i++) { 1074 struct eb_vma *ev = &eb->vma[i]; 1075 struct i915_vma *vma = ev->vma; 1076 1077 if (!vma) 1078 break; 1079 1080 eb_unreserve_vma(ev); 1081 1082 if (final) 1083 i915_vma_put(vma); 1084 } 1085 1086 eb_capture_release(eb); 1087 eb_unpin_engine(eb); 1088 } 1089 1090 static void eb_destroy(const struct i915_execbuffer *eb) 1091 { 1092 if (eb->lut_size > 0) 1093 kfree(eb->buckets); 1094 } 1095 1096 static u64 1097 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, 1098 const struct i915_vma *target) 1099 { 1100 return gen8_canonical_addr((int)reloc->delta + i915_vma_offset(target)); 1101 } 1102 1103 static void reloc_cache_init(struct reloc_cache *cache, 1104 struct drm_i915_private *i915) 1105 { 1106 cache->page = -1; 1107 cache->vaddr = 0; 1108 /* Must be a variable in the struct to allow GCC to unroll. */ 1109 cache->graphics_ver = GRAPHICS_VER(i915); 1110 cache->has_llc = HAS_LLC(i915); 1111 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); 1112 cache->has_fence = cache->graphics_ver < 4; 1113 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; 1114 cache->node.flags = 0; 1115 } 1116 1117 static void *unmask_page(unsigned long p) 1118 { 1119 return (void *)(uintptr_t)(p & PAGE_MASK); 1120 } 1121 1122 static unsigned int unmask_flags(unsigned long p) 1123 { 1124 return p & ~PAGE_MASK; 1125 } 1126 1127 #define KMAP 0x4 /* after CLFLUSH_FLAGS */ 1128 1129 static struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) 1130 { 1131 struct drm_i915_private *i915 = 1132 container_of(cache, struct i915_execbuffer, reloc_cache)->i915; 1133 return to_gt(i915)->ggtt; 1134 } 1135 1136 static void reloc_cache_unmap(struct reloc_cache *cache) 1137 { 1138 void *vaddr; 1139 1140 if (!cache->vaddr) 1141 return; 1142 1143 vaddr = unmask_page(cache->vaddr); 1144 if (cache->vaddr & KMAP) 1145 kunmap_local(vaddr); 1146 else 1147 io_mapping_unmap_atomic((void __iomem *)vaddr); 1148 } 1149 1150 static void reloc_cache_remap(struct reloc_cache *cache, 1151 struct drm_i915_gem_object *obj) 1152 { 1153 void *vaddr; 1154 1155 if (!cache->vaddr) 1156 return; 1157 1158 if (cache->vaddr & KMAP) { 1159 struct page *page = i915_gem_object_get_page(obj, cache->page); 1160 1161 vaddr = kmap_local_page(page); 1162 cache->vaddr = unmask_flags(cache->vaddr) | 1163 (unsigned long)vaddr; 1164 } else { 1165 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1166 unsigned long offset; 1167 1168 offset = cache->node.start; 1169 if (!drm_mm_node_allocated(&cache->node)) 1170 offset += cache->page << PAGE_SHIFT; 1171 1172 cache->vaddr = (unsigned long) 1173 io_mapping_map_atomic_wc(&ggtt->iomap, offset); 1174 } 1175 } 1176 1177 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb) 1178 { 1179 void *vaddr; 1180 1181 if (!cache->vaddr) 1182 return; 1183 1184 vaddr = unmask_page(cache->vaddr); 1185 if (cache->vaddr & KMAP) { 1186 struct drm_i915_gem_object *obj = 1187 (struct drm_i915_gem_object *)cache->node.mm; 1188 if (cache->vaddr & CLFLUSH_AFTER) 1189 mb(); 1190 1191 kunmap_local(vaddr); 1192 i915_gem_object_finish_access(obj); 1193 } else { 1194 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1195 1196 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1197 io_mapping_unmap_atomic((void __iomem *)vaddr); 1198 1199 if (drm_mm_node_allocated(&cache->node)) { 1200 ggtt->vm.clear_range(&ggtt->vm, 1201 cache->node.start, 1202 cache->node.size); 1203 mutex_lock(&ggtt->vm.mutex); 1204 drm_mm_remove_node(&cache->node); 1205 mutex_unlock(&ggtt->vm.mutex); 1206 } else { 1207 i915_vma_unpin((struct i915_vma *)cache->node.mm); 1208 } 1209 } 1210 1211 cache->vaddr = 0; 1212 cache->page = -1; 1213 } 1214 1215 static void *reloc_kmap(struct drm_i915_gem_object *obj, 1216 struct reloc_cache *cache, 1217 unsigned long pageno) 1218 { 1219 void *vaddr; 1220 struct page *page; 1221 1222 if (cache->vaddr) { 1223 kunmap_local(unmask_page(cache->vaddr)); 1224 } else { 1225 unsigned int flushes; 1226 int err; 1227 1228 err = i915_gem_object_prepare_write(obj, &flushes); 1229 if (err) 1230 return ERR_PTR(err); 1231 1232 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); 1233 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); 1234 1235 cache->vaddr = flushes | KMAP; 1236 cache->node.mm = (void *)obj; 1237 if (flushes) 1238 mb(); 1239 } 1240 1241 page = i915_gem_object_get_page(obj, pageno); 1242 if (!obj->mm.dirty) 1243 set_page_dirty(page); 1244 1245 vaddr = kmap_local_page(page); 1246 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; 1247 cache->page = pageno; 1248 1249 return vaddr; 1250 } 1251 1252 static void *reloc_iomap(struct i915_vma *batch, 1253 struct i915_execbuffer *eb, 1254 unsigned long page) 1255 { 1256 struct drm_i915_gem_object *obj = batch->obj; 1257 struct reloc_cache *cache = &eb->reloc_cache; 1258 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1259 unsigned long offset; 1260 void *vaddr; 1261 1262 if (cache->vaddr) { 1263 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1264 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); 1265 } else { 1266 struct i915_vma *vma = ERR_PTR(-ENODEV); 1267 int err; 1268 1269 if (i915_gem_object_is_tiled(obj)) 1270 return ERR_PTR(-EINVAL); 1271 1272 if (use_cpu_reloc(cache, obj)) 1273 return NULL; 1274 1275 err = i915_gem_object_set_to_gtt_domain(obj, true); 1276 if (err) 1277 return ERR_PTR(err); 1278 1279 /* 1280 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch 1281 * VMA from the object list because we no longer pin. 1282 * 1283 * Only attempt to pin the batch buffer to ggtt if the current batch 1284 * is not inside ggtt, or the batch buffer is not misplaced. 1285 */ 1286 if (!i915_is_ggtt(batch->vm) || 1287 !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) { 1288 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0, 1289 PIN_MAPPABLE | 1290 PIN_NONBLOCK /* NOWARN */ | 1291 PIN_NOEVICT); 1292 } 1293 1294 if (vma == ERR_PTR(-EDEADLK)) 1295 return vma; 1296 1297 if (IS_ERR(vma)) { 1298 memset(&cache->node, 0, sizeof(cache->node)); 1299 mutex_lock(&ggtt->vm.mutex); 1300 err = drm_mm_insert_node_in_range 1301 (&ggtt->vm.mm, &cache->node, 1302 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 1303 0, ggtt->mappable_end, 1304 DRM_MM_INSERT_LOW); 1305 mutex_unlock(&ggtt->vm.mutex); 1306 if (err) /* no inactive aperture space, use cpu reloc */ 1307 return NULL; 1308 } else { 1309 cache->node.start = i915_ggtt_offset(vma); 1310 cache->node.mm = (void *)vma; 1311 } 1312 } 1313 1314 offset = cache->node.start; 1315 if (drm_mm_node_allocated(&cache->node)) { 1316 ggtt->vm.insert_page(&ggtt->vm, 1317 i915_gem_object_get_dma_address(obj, page), 1318 offset, 1319 i915_gem_get_pat_index(ggtt->vm.i915, 1320 I915_CACHE_NONE), 1321 0); 1322 } else { 1323 offset += page << PAGE_SHIFT; 1324 } 1325 1326 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, 1327 offset); 1328 cache->page = page; 1329 cache->vaddr = (unsigned long)vaddr; 1330 1331 return vaddr; 1332 } 1333 1334 static void *reloc_vaddr(struct i915_vma *vma, 1335 struct i915_execbuffer *eb, 1336 unsigned long page) 1337 { 1338 struct reloc_cache *cache = &eb->reloc_cache; 1339 void *vaddr; 1340 1341 if (cache->page == page) { 1342 vaddr = unmask_page(cache->vaddr); 1343 } else { 1344 vaddr = NULL; 1345 if ((cache->vaddr & KMAP) == 0) 1346 vaddr = reloc_iomap(vma, eb, page); 1347 if (!vaddr) 1348 vaddr = reloc_kmap(vma->obj, cache, page); 1349 } 1350 1351 return vaddr; 1352 } 1353 1354 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) 1355 { 1356 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { 1357 if (flushes & CLFLUSH_BEFORE) 1358 drm_clflush_virt_range(addr, sizeof(*addr)); 1359 1360 *addr = value; 1361 1362 /* 1363 * Writes to the same cacheline are serialised by the CPU 1364 * (including clflush). On the write path, we only require 1365 * that it hits memory in an orderly fashion and place 1366 * mb barriers at the start and end of the relocation phase 1367 * to ensure ordering of clflush wrt to the system. 1368 */ 1369 if (flushes & CLFLUSH_AFTER) 1370 drm_clflush_virt_range(addr, sizeof(*addr)); 1371 } else { 1372 *addr = value; 1373 } 1374 } 1375 1376 static u64 1377 relocate_entry(struct i915_vma *vma, 1378 const struct drm_i915_gem_relocation_entry *reloc, 1379 struct i915_execbuffer *eb, 1380 const struct i915_vma *target) 1381 { 1382 u64 target_addr = relocation_target(reloc, target); 1383 u64 offset = reloc->offset; 1384 bool wide = eb->reloc_cache.use_64bit_reloc; 1385 void *vaddr; 1386 1387 repeat: 1388 vaddr = reloc_vaddr(vma, eb, 1389 offset >> PAGE_SHIFT); 1390 if (IS_ERR(vaddr)) 1391 return PTR_ERR(vaddr); 1392 1393 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32))); 1394 clflush_write32(vaddr + offset_in_page(offset), 1395 lower_32_bits(target_addr), 1396 eb->reloc_cache.vaddr); 1397 1398 if (wide) { 1399 offset += sizeof(u32); 1400 target_addr >>= 32; 1401 wide = false; 1402 goto repeat; 1403 } 1404 1405 return target->node.start | UPDATE; 1406 } 1407 1408 static u64 1409 eb_relocate_entry(struct i915_execbuffer *eb, 1410 struct eb_vma *ev, 1411 const struct drm_i915_gem_relocation_entry *reloc) 1412 { 1413 struct drm_i915_private *i915 = eb->i915; 1414 struct eb_vma *target; 1415 int err; 1416 1417 /* we've already hold a reference to all valid objects */ 1418 target = eb_get_vma(eb, reloc->target_handle); 1419 if (unlikely(!target)) 1420 return -ENOENT; 1421 1422 /* Validate that the target is in a valid r/w GPU domain */ 1423 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 1424 drm_dbg(&i915->drm, "reloc with multiple write domains: " 1425 "target %d offset %d " 1426 "read %08x write %08x\n", 1427 reloc->target_handle, 1428 (int) reloc->offset, 1429 reloc->read_domains, 1430 reloc->write_domain); 1431 return -EINVAL; 1432 } 1433 if (unlikely((reloc->write_domain | reloc->read_domains) 1434 & ~I915_GEM_GPU_DOMAINS)) { 1435 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: " 1436 "target %d offset %d " 1437 "read %08x write %08x\n", 1438 reloc->target_handle, 1439 (int) reloc->offset, 1440 reloc->read_domains, 1441 reloc->write_domain); 1442 return -EINVAL; 1443 } 1444 1445 if (reloc->write_domain) { 1446 target->flags |= EXEC_OBJECT_WRITE; 1447 1448 /* 1449 * Sandybridge PPGTT errata: We need a global gtt mapping 1450 * for MI and pipe_control writes because the gpu doesn't 1451 * properly redirect them through the ppgtt for non_secure 1452 * batchbuffers. 1453 */ 1454 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && 1455 GRAPHICS_VER(eb->i915) == 6 && 1456 !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) { 1457 struct i915_vma *vma = target->vma; 1458 1459 reloc_cache_unmap(&eb->reloc_cache); 1460 mutex_lock(&vma->vm->mutex); 1461 err = i915_vma_bind(target->vma, 1462 target->vma->obj->pat_index, 1463 PIN_GLOBAL, NULL, NULL); 1464 mutex_unlock(&vma->vm->mutex); 1465 reloc_cache_remap(&eb->reloc_cache, ev->vma->obj); 1466 if (err) 1467 return err; 1468 } 1469 } 1470 1471 /* 1472 * If the relocation already has the right value in it, no 1473 * more work needs to be done. 1474 */ 1475 if (!DBG_FORCE_RELOC && 1476 gen8_canonical_addr(i915_vma_offset(target->vma)) == reloc->presumed_offset) 1477 return 0; 1478 1479 /* Check that the relocation address is valid... */ 1480 if (unlikely(reloc->offset > 1481 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { 1482 drm_dbg(&i915->drm, "Relocation beyond object bounds: " 1483 "target %d offset %d size %d.\n", 1484 reloc->target_handle, 1485 (int)reloc->offset, 1486 (int)ev->vma->size); 1487 return -EINVAL; 1488 } 1489 if (unlikely(reloc->offset & 3)) { 1490 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: " 1491 "target %d offset %d.\n", 1492 reloc->target_handle, 1493 (int)reloc->offset); 1494 return -EINVAL; 1495 } 1496 1497 /* 1498 * If we write into the object, we need to force the synchronisation 1499 * barrier, either with an asynchronous clflush or if we executed the 1500 * patching using the GPU (though that should be serialised by the 1501 * timeline). To be completely sure, and since we are required to 1502 * do relocations we are already stalling, disable the user's opt 1503 * out of our synchronisation. 1504 */ 1505 ev->flags &= ~EXEC_OBJECT_ASYNC; 1506 1507 /* and update the user's relocation entry */ 1508 return relocate_entry(ev->vma, reloc, eb, target->vma); 1509 } 1510 1511 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev) 1512 { 1513 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) 1514 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; 1515 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1516 struct drm_i915_gem_relocation_entry __user *urelocs = 1517 u64_to_user_ptr(entry->relocs_ptr); 1518 unsigned long remain = entry->relocation_count; 1519 1520 if (unlikely(remain > N_RELOC(INT_MAX))) 1521 return -EINVAL; 1522 1523 /* 1524 * We must check that the entire relocation array is safe 1525 * to read. However, if the array is not writable the user loses 1526 * the updated relocation values. 1527 */ 1528 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs)))) 1529 return -EFAULT; 1530 1531 do { 1532 struct drm_i915_gem_relocation_entry *r = stack; 1533 unsigned int count = 1534 min_t(unsigned long, remain, ARRAY_SIZE(stack)); 1535 unsigned int copied; 1536 1537 /* 1538 * This is the fast path and we cannot handle a pagefault 1539 * whilst holding the struct mutex lest the user pass in the 1540 * relocations contained within a mmaped bo. For in such a case 1541 * we, the page fault handler would call i915_gem_fault() and 1542 * we would try to acquire the struct mutex again. Obviously 1543 * this is bad and so lockdep complains vehemently. 1544 */ 1545 pagefault_disable(); 1546 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); 1547 pagefault_enable(); 1548 if (unlikely(copied)) { 1549 remain = -EFAULT; 1550 goto out; 1551 } 1552 1553 remain -= count; 1554 do { 1555 u64 offset = eb_relocate_entry(eb, ev, r); 1556 1557 if (likely(offset == 0)) 1558 continue; 1559 1560 if ((s64)offset < 0) { 1561 remain = (int)offset; 1562 goto out; 1563 } 1564 /* 1565 * Note that reporting an error now 1566 * leaves everything in an inconsistent 1567 * state as we have *already* changed 1568 * the relocation value inside the 1569 * object. As we have not changed the 1570 * reloc.presumed_offset or will not 1571 * change the execobject.offset, on the 1572 * call we may not rewrite the value 1573 * inside the object, leaving it 1574 * dangling and causing a GPU hang. Unless 1575 * userspace dynamically rebuilds the 1576 * relocations on each execbuf rather than 1577 * presume a static tree. 1578 * 1579 * We did previously check if the relocations 1580 * were writable (access_ok), an error now 1581 * would be a strange race with mprotect, 1582 * having already demonstrated that we 1583 * can read from this userspace address. 1584 */ 1585 offset = gen8_canonical_addr(offset & ~UPDATE); 1586 __put_user(offset, &urelocs[r - stack].presumed_offset); 1587 } while (r++, --count); 1588 urelocs += ARRAY_SIZE(stack); 1589 } while (remain); 1590 out: 1591 reloc_cache_reset(&eb->reloc_cache, eb); 1592 return remain; 1593 } 1594 1595 static int 1596 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev) 1597 { 1598 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1599 struct drm_i915_gem_relocation_entry *relocs = 1600 u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1601 unsigned int i; 1602 int err; 1603 1604 for (i = 0; i < entry->relocation_count; i++) { 1605 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]); 1606 1607 if ((s64)offset < 0) { 1608 err = (int)offset; 1609 goto err; 1610 } 1611 } 1612 err = 0; 1613 err: 1614 reloc_cache_reset(&eb->reloc_cache, eb); 1615 return err; 1616 } 1617 1618 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) 1619 { 1620 const char __user *addr, *end; 1621 unsigned long size; 1622 char __maybe_unused c; 1623 1624 size = entry->relocation_count; 1625 if (size == 0) 1626 return 0; 1627 1628 if (size > N_RELOC(INT_MAX)) 1629 return -EINVAL; 1630 1631 addr = u64_to_user_ptr(entry->relocs_ptr); 1632 size *= sizeof(struct drm_i915_gem_relocation_entry); 1633 if (!access_ok(addr, size)) 1634 return -EFAULT; 1635 1636 end = addr + size; 1637 for (; addr < end; addr += PAGE_SIZE) { 1638 int err = __get_user(c, addr); 1639 if (err) 1640 return err; 1641 } 1642 return __get_user(c, end - 1); 1643 } 1644 1645 static int eb_copy_relocations(const struct i915_execbuffer *eb) 1646 { 1647 struct drm_i915_gem_relocation_entry *relocs; 1648 const unsigned int count = eb->buffer_count; 1649 unsigned int i; 1650 int err; 1651 1652 for (i = 0; i < count; i++) { 1653 const unsigned int nreloc = eb->exec[i].relocation_count; 1654 struct drm_i915_gem_relocation_entry __user *urelocs; 1655 unsigned long size; 1656 unsigned long copied; 1657 1658 if (nreloc == 0) 1659 continue; 1660 1661 err = check_relocations(&eb->exec[i]); 1662 if (err) 1663 goto err; 1664 1665 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); 1666 size = nreloc * sizeof(*relocs); 1667 1668 relocs = kvmalloc_array(1, size, GFP_KERNEL); 1669 if (!relocs) { 1670 err = -ENOMEM; 1671 goto err; 1672 } 1673 1674 /* copy_from_user is limited to < 4GiB */ 1675 copied = 0; 1676 do { 1677 unsigned int len = 1678 min_t(u64, BIT_ULL(31), size - copied); 1679 1680 if (__copy_from_user((char *)relocs + copied, 1681 (char __user *)urelocs + copied, 1682 len)) 1683 goto end; 1684 1685 copied += len; 1686 } while (copied < size); 1687 1688 /* 1689 * As we do not update the known relocation offsets after 1690 * relocating (due to the complexities in lock handling), 1691 * we need to mark them as invalid now so that we force the 1692 * relocation processing next time. Just in case the target 1693 * object is evicted and then rebound into its old 1694 * presumed_offset before the next execbuffer - if that 1695 * happened we would make the mistake of assuming that the 1696 * relocations were valid. 1697 */ 1698 if (!user_access_begin(urelocs, size)) 1699 goto end; 1700 1701 for (copied = 0; copied < nreloc; copied++) 1702 unsafe_put_user(-1, 1703 &urelocs[copied].presumed_offset, 1704 end_user); 1705 user_access_end(); 1706 1707 eb->exec[i].relocs_ptr = (uintptr_t)relocs; 1708 } 1709 1710 return 0; 1711 1712 end_user: 1713 user_access_end(); 1714 end: 1715 kvfree(relocs); 1716 err = -EFAULT; 1717 err: 1718 while (i--) { 1719 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); 1720 if (eb->exec[i].relocation_count) 1721 kvfree(relocs); 1722 } 1723 return err; 1724 } 1725 1726 static int eb_prefault_relocations(const struct i915_execbuffer *eb) 1727 { 1728 const unsigned int count = eb->buffer_count; 1729 unsigned int i; 1730 1731 for (i = 0; i < count; i++) { 1732 int err; 1733 1734 err = check_relocations(&eb->exec[i]); 1735 if (err) 1736 return err; 1737 } 1738 1739 return 0; 1740 } 1741 1742 static int eb_reinit_userptr(struct i915_execbuffer *eb) 1743 { 1744 const unsigned int count = eb->buffer_count; 1745 unsigned int i; 1746 int ret; 1747 1748 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED))) 1749 return 0; 1750 1751 for (i = 0; i < count; i++) { 1752 struct eb_vma *ev = &eb->vma[i]; 1753 1754 if (!i915_gem_object_is_userptr(ev->vma->obj)) 1755 continue; 1756 1757 ret = i915_gem_object_userptr_submit_init(ev->vma->obj); 1758 if (ret) 1759 return ret; 1760 1761 ev->flags |= __EXEC_OBJECT_USERPTR_INIT; 1762 } 1763 1764 return 0; 1765 } 1766 1767 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb) 1768 { 1769 bool have_copy = false; 1770 struct eb_vma *ev; 1771 int err = 0; 1772 1773 repeat: 1774 if (signal_pending(current)) { 1775 err = -ERESTARTSYS; 1776 goto out; 1777 } 1778 1779 /* We may process another execbuffer during the unlock... */ 1780 eb_release_vmas(eb, false); 1781 i915_gem_ww_ctx_fini(&eb->ww); 1782 1783 /* 1784 * We take 3 passes through the slowpatch. 1785 * 1786 * 1 - we try to just prefault all the user relocation entries and 1787 * then attempt to reuse the atomic pagefault disabled fast path again. 1788 * 1789 * 2 - we copy the user entries to a local buffer here outside of the 1790 * local and allow ourselves to wait upon any rendering before 1791 * relocations 1792 * 1793 * 3 - we already have a local copy of the relocation entries, but 1794 * were interrupted (EAGAIN) whilst waiting for the objects, try again. 1795 */ 1796 if (!err) { 1797 err = eb_prefault_relocations(eb); 1798 } else if (!have_copy) { 1799 err = eb_copy_relocations(eb); 1800 have_copy = err == 0; 1801 } else { 1802 cond_resched(); 1803 err = 0; 1804 } 1805 1806 if (!err) 1807 err = eb_reinit_userptr(eb); 1808 1809 i915_gem_ww_ctx_init(&eb->ww, true); 1810 if (err) 1811 goto out; 1812 1813 /* reacquire the objects */ 1814 repeat_validate: 1815 err = eb_pin_engine(eb, false); 1816 if (err) 1817 goto err; 1818 1819 err = eb_validate_vmas(eb); 1820 if (err) 1821 goto err; 1822 1823 GEM_BUG_ON(!eb->batches[0]); 1824 1825 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1826 if (!have_copy) { 1827 err = eb_relocate_vma(eb, ev); 1828 if (err) 1829 break; 1830 } else { 1831 err = eb_relocate_vma_slow(eb, ev); 1832 if (err) 1833 break; 1834 } 1835 } 1836 1837 if (err == -EDEADLK) 1838 goto err; 1839 1840 if (err && !have_copy) 1841 goto repeat; 1842 1843 if (err) 1844 goto err; 1845 1846 /* as last step, parse the command buffer */ 1847 err = eb_parse(eb); 1848 if (err) 1849 goto err; 1850 1851 /* 1852 * Leave the user relocations as are, this is the painfully slow path, 1853 * and we want to avoid the complication of dropping the lock whilst 1854 * having buffers reserved in the aperture and so causing spurious 1855 * ENOSPC for random operations. 1856 */ 1857 1858 err: 1859 if (err == -EDEADLK) { 1860 eb_release_vmas(eb, false); 1861 err = i915_gem_ww_ctx_backoff(&eb->ww); 1862 if (!err) 1863 goto repeat_validate; 1864 } 1865 1866 if (err == -EAGAIN) 1867 goto repeat; 1868 1869 out: 1870 if (have_copy) { 1871 const unsigned int count = eb->buffer_count; 1872 unsigned int i; 1873 1874 for (i = 0; i < count; i++) { 1875 const struct drm_i915_gem_exec_object2 *entry = 1876 &eb->exec[i]; 1877 struct drm_i915_gem_relocation_entry *relocs; 1878 1879 if (!entry->relocation_count) 1880 continue; 1881 1882 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1883 kvfree(relocs); 1884 } 1885 } 1886 1887 return err; 1888 } 1889 1890 static int eb_relocate_parse(struct i915_execbuffer *eb) 1891 { 1892 int err; 1893 bool throttle = true; 1894 1895 retry: 1896 err = eb_pin_engine(eb, throttle); 1897 if (err) { 1898 if (err != -EDEADLK) 1899 return err; 1900 1901 goto err; 1902 } 1903 1904 /* only throttle once, even if we didn't need to throttle */ 1905 throttle = false; 1906 1907 err = eb_validate_vmas(eb); 1908 if (err == -EAGAIN) 1909 goto slow; 1910 else if (err) 1911 goto err; 1912 1913 /* The objects are in their final locations, apply the relocations. */ 1914 if (eb->args->flags & __EXEC_HAS_RELOC) { 1915 struct eb_vma *ev; 1916 1917 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1918 err = eb_relocate_vma(eb, ev); 1919 if (err) 1920 break; 1921 } 1922 1923 if (err == -EDEADLK) 1924 goto err; 1925 else if (err) 1926 goto slow; 1927 } 1928 1929 if (!err) 1930 err = eb_parse(eb); 1931 1932 err: 1933 if (err == -EDEADLK) { 1934 eb_release_vmas(eb, false); 1935 err = i915_gem_ww_ctx_backoff(&eb->ww); 1936 if (!err) 1937 goto retry; 1938 } 1939 1940 return err; 1941 1942 slow: 1943 err = eb_relocate_parse_slow(eb); 1944 if (err) 1945 /* 1946 * If the user expects the execobject.offset and 1947 * reloc.presumed_offset to be an exact match, 1948 * as for using NO_RELOC, then we cannot update 1949 * the execobject.offset until we have completed 1950 * relocation. 1951 */ 1952 eb->args->flags &= ~__EXEC_HAS_RELOC; 1953 1954 return err; 1955 } 1956 1957 /* 1958 * Using two helper loops for the order of which requests / batches are created 1959 * and added the to backend. Requests are created in order from the parent to 1960 * the last child. Requests are added in the reverse order, from the last child 1961 * to parent. This is done for locking reasons as the timeline lock is acquired 1962 * during request creation and released when the request is added to the 1963 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be 1964 * the ordering. 1965 */ 1966 #define for_each_batch_create_order(_eb, _i) \ 1967 for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i)) 1968 #define for_each_batch_add_order(_eb, _i) \ 1969 BUILD_BUG_ON(!typecheck(int, _i)); \ 1970 for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i)) 1971 1972 static struct i915_request * 1973 eb_find_first_request_added(struct i915_execbuffer *eb) 1974 { 1975 int i; 1976 1977 for_each_batch_add_order(eb, i) 1978 if (eb->requests[i]) 1979 return eb->requests[i]; 1980 1981 GEM_BUG_ON("Request not found"); 1982 1983 return NULL; 1984 } 1985 1986 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 1987 1988 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */ 1989 static int eb_capture_stage(struct i915_execbuffer *eb) 1990 { 1991 const unsigned int count = eb->buffer_count; 1992 unsigned int i = count, j; 1993 1994 while (i--) { 1995 struct eb_vma *ev = &eb->vma[i]; 1996 struct i915_vma *vma = ev->vma; 1997 unsigned int flags = ev->flags; 1998 1999 if (!(flags & EXEC_OBJECT_CAPTURE)) 2000 continue; 2001 2002 if (i915_gem_context_is_recoverable(eb->gem_context) && 2003 (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0))) 2004 return -EINVAL; 2005 2006 for_each_batch_create_order(eb, j) { 2007 struct i915_capture_list *capture; 2008 2009 capture = kmalloc(sizeof(*capture), GFP_KERNEL); 2010 if (!capture) 2011 continue; 2012 2013 capture->next = eb->capture_lists[j]; 2014 capture->vma_res = i915_vma_resource_get(vma->resource); 2015 eb->capture_lists[j] = capture; 2016 } 2017 } 2018 2019 return 0; 2020 } 2021 2022 /* Commit once we're in the critical path */ 2023 static void eb_capture_commit(struct i915_execbuffer *eb) 2024 { 2025 unsigned int j; 2026 2027 for_each_batch_create_order(eb, j) { 2028 struct i915_request *rq = eb->requests[j]; 2029 2030 if (!rq) 2031 break; 2032 2033 rq->capture_list = eb->capture_lists[j]; 2034 eb->capture_lists[j] = NULL; 2035 } 2036 } 2037 2038 /* 2039 * Release anything that didn't get committed due to errors. 2040 * The capture_list will otherwise be freed at request retire. 2041 */ 2042 static void eb_capture_release(struct i915_execbuffer *eb) 2043 { 2044 unsigned int j; 2045 2046 for_each_batch_create_order(eb, j) { 2047 if (eb->capture_lists[j]) { 2048 i915_request_free_capture_list(eb->capture_lists[j]); 2049 eb->capture_lists[j] = NULL; 2050 } 2051 } 2052 } 2053 2054 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2055 { 2056 memset(eb->capture_lists, 0, sizeof(eb->capture_lists)); 2057 } 2058 2059 #else 2060 2061 static int eb_capture_stage(struct i915_execbuffer *eb) 2062 { 2063 return 0; 2064 } 2065 2066 static void eb_capture_commit(struct i915_execbuffer *eb) 2067 { 2068 } 2069 2070 static void eb_capture_release(struct i915_execbuffer *eb) 2071 { 2072 } 2073 2074 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2075 { 2076 } 2077 2078 #endif 2079 2080 static int eb_move_to_gpu(struct i915_execbuffer *eb) 2081 { 2082 const unsigned int count = eb->buffer_count; 2083 unsigned int i = count; 2084 int err = 0, j; 2085 2086 while (i--) { 2087 struct eb_vma *ev = &eb->vma[i]; 2088 struct i915_vma *vma = ev->vma; 2089 unsigned int flags = ev->flags; 2090 struct drm_i915_gem_object *obj = vma->obj; 2091 2092 assert_vma_held(vma); 2093 2094 /* 2095 * If the GPU is not _reading_ through the CPU cache, we need 2096 * to make sure that any writes (both previous GPU writes from 2097 * before a change in snooping levels and normal CPU writes) 2098 * caught in that cache are flushed to main memory. 2099 * 2100 * We want to say 2101 * obj->cache_dirty && 2102 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) 2103 * but gcc's optimiser doesn't handle that as well and emits 2104 * two jumps instead of one. Maybe one day... 2105 * 2106 * FIXME: There is also sync flushing in set_pages(), which 2107 * serves a different purpose(some of the time at least). 2108 * 2109 * We should consider: 2110 * 2111 * 1. Rip out the async flush code. 2112 * 2113 * 2. Or make the sync flushing use the async clflush path 2114 * using mandatory fences underneath. Currently the below 2115 * async flush happens after we bind the object. 2116 */ 2117 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { 2118 if (i915_gem_clflush_object(obj, 0)) 2119 flags &= ~EXEC_OBJECT_ASYNC; 2120 } 2121 2122 /* We only need to await on the first request */ 2123 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { 2124 err = i915_request_await_object 2125 (eb_find_first_request_added(eb), obj, 2126 flags & EXEC_OBJECT_WRITE); 2127 } 2128 2129 for_each_batch_add_order(eb, j) { 2130 if (err) 2131 break; 2132 if (!eb->requests[j]) 2133 continue; 2134 2135 err = _i915_vma_move_to_active(vma, eb->requests[j], 2136 j ? NULL : 2137 eb->composite_fence ? 2138 eb->composite_fence : 2139 &eb->requests[j]->fence, 2140 flags | __EXEC_OBJECT_NO_RESERVE | 2141 __EXEC_OBJECT_NO_REQUEST_AWAIT); 2142 } 2143 } 2144 2145 #ifdef CONFIG_MMU_NOTIFIER 2146 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) { 2147 for (i = 0; i < count; i++) { 2148 struct eb_vma *ev = &eb->vma[i]; 2149 struct drm_i915_gem_object *obj = ev->vma->obj; 2150 2151 if (!i915_gem_object_is_userptr(obj)) 2152 continue; 2153 2154 err = i915_gem_object_userptr_submit_done(obj); 2155 if (err) 2156 break; 2157 } 2158 } 2159 #endif 2160 2161 if (unlikely(err)) 2162 goto err_skip; 2163 2164 /* Unconditionally flush any chipset caches (for streaming writes). */ 2165 intel_gt_chipset_flush(eb->gt); 2166 eb_capture_commit(eb); 2167 2168 return 0; 2169 2170 err_skip: 2171 for_each_batch_create_order(eb, j) { 2172 if (!eb->requests[j]) 2173 break; 2174 2175 i915_request_set_error_once(eb->requests[j], err); 2176 } 2177 return err; 2178 } 2179 2180 static int i915_gem_check_execbuffer(struct drm_i915_private *i915, 2181 struct drm_i915_gem_execbuffer2 *exec) 2182 { 2183 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) 2184 return -EINVAL; 2185 2186 /* Kernel clipping was a DRI1 misfeature */ 2187 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY | 2188 I915_EXEC_USE_EXTENSIONS))) { 2189 if (exec->num_cliprects || exec->cliprects_ptr) 2190 return -EINVAL; 2191 } 2192 2193 if (exec->DR4 == 0xffffffff) { 2194 drm_dbg(&i915->drm, "UXA submitting garbage DR4, fixing up\n"); 2195 exec->DR4 = 0; 2196 } 2197 if (exec->DR1 || exec->DR4) 2198 return -EINVAL; 2199 2200 if ((exec->batch_start_offset | exec->batch_len) & 0x7) 2201 return -EINVAL; 2202 2203 return 0; 2204 } 2205 2206 static int i915_reset_gen7_sol_offsets(struct i915_request *rq) 2207 { 2208 u32 *cs; 2209 int i; 2210 2211 if (GRAPHICS_VER(rq->i915) != 7 || rq->engine->id != RCS0) { 2212 drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n"); 2213 return -EINVAL; 2214 } 2215 2216 cs = intel_ring_begin(rq, 4 * 2 + 2); 2217 if (IS_ERR(cs)) 2218 return PTR_ERR(cs); 2219 2220 *cs++ = MI_LOAD_REGISTER_IMM(4); 2221 for (i = 0; i < 4; i++) { 2222 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); 2223 *cs++ = 0; 2224 } 2225 *cs++ = MI_NOOP; 2226 intel_ring_advance(rq, cs); 2227 2228 return 0; 2229 } 2230 2231 static struct i915_vma * 2232 shadow_batch_pin(struct i915_execbuffer *eb, 2233 struct drm_i915_gem_object *obj, 2234 struct i915_address_space *vm, 2235 unsigned int flags) 2236 { 2237 struct i915_vma *vma; 2238 int err; 2239 2240 vma = i915_vma_instance(obj, vm, NULL); 2241 if (IS_ERR(vma)) 2242 return vma; 2243 2244 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE); 2245 if (err) 2246 return ERR_PTR(err); 2247 2248 return vma; 2249 } 2250 2251 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma) 2252 { 2253 /* 2254 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 2255 * batch" bit. Hence we need to pin secure batches into the global gtt. 2256 * hsw should have this fixed, but bdw mucks it up again. */ 2257 if (eb->batch_flags & I915_DISPATCH_SECURE) 2258 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE); 2259 2260 return NULL; 2261 } 2262 2263 static int eb_parse(struct i915_execbuffer *eb) 2264 { 2265 struct drm_i915_private *i915 = eb->i915; 2266 struct intel_gt_buffer_pool_node *pool = eb->batch_pool; 2267 struct i915_vma *shadow, *trampoline, *batch; 2268 unsigned long len; 2269 int err; 2270 2271 if (!eb_use_cmdparser(eb)) { 2272 batch = eb_dispatch_secure(eb, eb->batches[0]->vma); 2273 if (IS_ERR(batch)) 2274 return PTR_ERR(batch); 2275 2276 goto secure_batch; 2277 } 2278 2279 if (intel_context_is_parallel(eb->context)) 2280 return -EINVAL; 2281 2282 len = eb->batch_len[0]; 2283 if (!CMDPARSER_USES_GGTT(eb->i915)) { 2284 /* 2285 * ppGTT backed shadow buffers must be mapped RO, to prevent 2286 * post-scan tampering 2287 */ 2288 if (!eb->context->vm->has_read_only) { 2289 drm_dbg(&i915->drm, 2290 "Cannot prevent post-scan tampering without RO capable vm\n"); 2291 return -EINVAL; 2292 } 2293 } else { 2294 len += I915_CMD_PARSER_TRAMPOLINE_SIZE; 2295 } 2296 if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */ 2297 return -EINVAL; 2298 2299 if (!pool) { 2300 pool = intel_gt_get_buffer_pool(eb->gt, len, 2301 I915_MAP_WB); 2302 if (IS_ERR(pool)) 2303 return PTR_ERR(pool); 2304 eb->batch_pool = pool; 2305 } 2306 2307 err = i915_gem_object_lock(pool->obj, &eb->ww); 2308 if (err) 2309 return err; 2310 2311 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER); 2312 if (IS_ERR(shadow)) 2313 return PTR_ERR(shadow); 2314 2315 intel_gt_buffer_pool_mark_used(pool); 2316 i915_gem_object_set_readonly(shadow->obj); 2317 shadow->private = pool; 2318 2319 trampoline = NULL; 2320 if (CMDPARSER_USES_GGTT(eb->i915)) { 2321 trampoline = shadow; 2322 2323 shadow = shadow_batch_pin(eb, pool->obj, 2324 &eb->gt->ggtt->vm, 2325 PIN_GLOBAL); 2326 if (IS_ERR(shadow)) 2327 return PTR_ERR(shadow); 2328 2329 shadow->private = pool; 2330 2331 eb->batch_flags |= I915_DISPATCH_SECURE; 2332 } 2333 2334 batch = eb_dispatch_secure(eb, shadow); 2335 if (IS_ERR(batch)) 2336 return PTR_ERR(batch); 2337 2338 err = dma_resv_reserve_fences(shadow->obj->base.resv, 1); 2339 if (err) 2340 return err; 2341 2342 err = intel_engine_cmd_parser(eb->context->engine, 2343 eb->batches[0]->vma, 2344 eb->batch_start_offset, 2345 eb->batch_len[0], 2346 shadow, trampoline); 2347 if (err) 2348 return err; 2349 2350 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2351 eb->batches[0]->vma = i915_vma_get(shadow); 2352 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2353 2354 eb->trampoline = trampoline; 2355 eb->batch_start_offset = 0; 2356 2357 secure_batch: 2358 if (batch) { 2359 if (intel_context_is_parallel(eb->context)) 2360 return -EINVAL; 2361 2362 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2363 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2364 eb->batches[0]->vma = i915_vma_get(batch); 2365 } 2366 return 0; 2367 } 2368 2369 static int eb_request_submit(struct i915_execbuffer *eb, 2370 struct i915_request *rq, 2371 struct i915_vma *batch, 2372 u64 batch_len) 2373 { 2374 int err; 2375 2376 if (intel_context_nopreempt(rq->context)) 2377 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags); 2378 2379 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { 2380 err = i915_reset_gen7_sol_offsets(rq); 2381 if (err) 2382 return err; 2383 } 2384 2385 /* 2386 * After we completed waiting for other engines (using HW semaphores) 2387 * then we can signal that this request/batch is ready to run. This 2388 * allows us to determine if the batch is still waiting on the GPU 2389 * or actually running by checking the breadcrumb. 2390 */ 2391 if (rq->context->engine->emit_init_breadcrumb) { 2392 err = rq->context->engine->emit_init_breadcrumb(rq); 2393 if (err) 2394 return err; 2395 } 2396 2397 err = rq->context->engine->emit_bb_start(rq, 2398 i915_vma_offset(batch) + 2399 eb->batch_start_offset, 2400 batch_len, 2401 eb->batch_flags); 2402 if (err) 2403 return err; 2404 2405 if (eb->trampoline) { 2406 GEM_BUG_ON(intel_context_is_parallel(rq->context)); 2407 GEM_BUG_ON(eb->batch_start_offset); 2408 err = rq->context->engine->emit_bb_start(rq, 2409 i915_vma_offset(eb->trampoline) + 2410 batch_len, 0, 0); 2411 if (err) 2412 return err; 2413 } 2414 2415 return 0; 2416 } 2417 2418 static int eb_submit(struct i915_execbuffer *eb) 2419 { 2420 unsigned int i; 2421 int err; 2422 2423 err = eb_move_to_gpu(eb); 2424 2425 for_each_batch_create_order(eb, i) { 2426 if (!eb->requests[i]) 2427 break; 2428 2429 trace_i915_request_queue(eb->requests[i], eb->batch_flags); 2430 if (!err) 2431 err = eb_request_submit(eb, eb->requests[i], 2432 eb->batches[i]->vma, 2433 eb->batch_len[i]); 2434 } 2435 2436 return err; 2437 } 2438 2439 /* 2440 * Find one BSD ring to dispatch the corresponding BSD command. 2441 * The engine index is returned. 2442 */ 2443 static unsigned int 2444 gen8_dispatch_bsd_engine(struct drm_i915_private *i915, 2445 struct drm_file *file) 2446 { 2447 struct drm_i915_file_private *file_priv = file->driver_priv; 2448 2449 /* Check whether the file_priv has already selected one ring. */ 2450 if ((int)file_priv->bsd_engine < 0) 2451 file_priv->bsd_engine = 2452 get_random_u32_below(i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO]); 2453 2454 return file_priv->bsd_engine; 2455 } 2456 2457 static const enum intel_engine_id user_ring_map[] = { 2458 [I915_EXEC_DEFAULT] = RCS0, 2459 [I915_EXEC_RENDER] = RCS0, 2460 [I915_EXEC_BLT] = BCS0, 2461 [I915_EXEC_BSD] = VCS0, 2462 [I915_EXEC_VEBOX] = VECS0 2463 }; 2464 2465 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce) 2466 { 2467 struct intel_ring *ring = ce->ring; 2468 struct intel_timeline *tl = ce->timeline; 2469 struct i915_request *rq; 2470 2471 /* 2472 * Completely unscientific finger-in-the-air estimates for suitable 2473 * maximum user request size (to avoid blocking) and then backoff. 2474 */ 2475 if (intel_ring_update_space(ring) >= PAGE_SIZE) 2476 return NULL; 2477 2478 /* 2479 * Find a request that after waiting upon, there will be at least half 2480 * the ring available. The hysteresis allows us to compete for the 2481 * shared ring and should mean that we sleep less often prior to 2482 * claiming our resources, but not so long that the ring completely 2483 * drains before we can submit our next request. 2484 */ 2485 list_for_each_entry(rq, &tl->requests, link) { 2486 if (rq->ring != ring) 2487 continue; 2488 2489 if (__intel_ring_space(rq->postfix, 2490 ring->emit, ring->size) > ring->size / 2) 2491 break; 2492 } 2493 if (&rq->link == &tl->requests) 2494 return NULL; /* weird, we will check again later for real */ 2495 2496 return i915_request_get(rq); 2497 } 2498 2499 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce, 2500 bool throttle) 2501 { 2502 struct intel_timeline *tl; 2503 struct i915_request *rq = NULL; 2504 2505 /* 2506 * Take a local wakeref for preparing to dispatch the execbuf as 2507 * we expect to access the hardware fairly frequently in the 2508 * process, and require the engine to be kept awake between accesses. 2509 * Upon dispatch, we acquire another prolonged wakeref that we hold 2510 * until the timeline is idle, which in turn releases the wakeref 2511 * taken on the engine, and the parent device. 2512 */ 2513 tl = intel_context_timeline_lock(ce); 2514 if (IS_ERR(tl)) 2515 return PTR_ERR(tl); 2516 2517 intel_context_enter(ce); 2518 if (throttle) 2519 rq = eb_throttle(eb, ce); 2520 intel_context_timeline_unlock(tl); 2521 2522 if (rq) { 2523 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK; 2524 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT; 2525 2526 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 2527 timeout) < 0) { 2528 i915_request_put(rq); 2529 2530 /* 2531 * Error path, cannot use intel_context_timeline_lock as 2532 * that is user interruptible and this clean up step 2533 * must be done. 2534 */ 2535 mutex_lock(&ce->timeline->mutex); 2536 intel_context_exit(ce); 2537 mutex_unlock(&ce->timeline->mutex); 2538 2539 if (nonblock) 2540 return -EWOULDBLOCK; 2541 else 2542 return -EINTR; 2543 } 2544 i915_request_put(rq); 2545 } 2546 2547 return 0; 2548 } 2549 2550 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle) 2551 { 2552 struct intel_context *ce = eb->context, *child; 2553 int err; 2554 int i = 0, j = 0; 2555 2556 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED); 2557 2558 if (unlikely(intel_context_is_banned(ce))) 2559 return -EIO; 2560 2561 /* 2562 * Pinning the contexts may generate requests in order to acquire 2563 * GGTT space, so do this first before we reserve a seqno for 2564 * ourselves. 2565 */ 2566 err = intel_context_pin_ww(ce, &eb->ww); 2567 if (err) 2568 return err; 2569 for_each_child(ce, child) { 2570 err = intel_context_pin_ww(child, &eb->ww); 2571 GEM_BUG_ON(err); /* perma-pinned should incr a counter */ 2572 } 2573 2574 for_each_child(ce, child) { 2575 err = eb_pin_timeline(eb, child, throttle); 2576 if (err) 2577 goto unwind; 2578 ++i; 2579 } 2580 err = eb_pin_timeline(eb, ce, throttle); 2581 if (err) 2582 goto unwind; 2583 2584 eb->args->flags |= __EXEC_ENGINE_PINNED; 2585 return 0; 2586 2587 unwind: 2588 for_each_child(ce, child) { 2589 if (j++ < i) { 2590 mutex_lock(&child->timeline->mutex); 2591 intel_context_exit(child); 2592 mutex_unlock(&child->timeline->mutex); 2593 } 2594 } 2595 for_each_child(ce, child) 2596 intel_context_unpin(child); 2597 intel_context_unpin(ce); 2598 return err; 2599 } 2600 2601 static void eb_unpin_engine(struct i915_execbuffer *eb) 2602 { 2603 struct intel_context *ce = eb->context, *child; 2604 2605 if (!(eb->args->flags & __EXEC_ENGINE_PINNED)) 2606 return; 2607 2608 eb->args->flags &= ~__EXEC_ENGINE_PINNED; 2609 2610 for_each_child(ce, child) { 2611 mutex_lock(&child->timeline->mutex); 2612 intel_context_exit(child); 2613 mutex_unlock(&child->timeline->mutex); 2614 2615 intel_context_unpin(child); 2616 } 2617 2618 mutex_lock(&ce->timeline->mutex); 2619 intel_context_exit(ce); 2620 mutex_unlock(&ce->timeline->mutex); 2621 2622 intel_context_unpin(ce); 2623 } 2624 2625 static unsigned int 2626 eb_select_legacy_ring(struct i915_execbuffer *eb) 2627 { 2628 struct drm_i915_private *i915 = eb->i915; 2629 struct drm_i915_gem_execbuffer2 *args = eb->args; 2630 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; 2631 2632 if (user_ring_id != I915_EXEC_BSD && 2633 (args->flags & I915_EXEC_BSD_MASK)) { 2634 drm_dbg(&i915->drm, 2635 "execbuf with non bsd ring but with invalid " 2636 "bsd dispatch flags: %d\n", (int)(args->flags)); 2637 return -1; 2638 } 2639 2640 if (user_ring_id == I915_EXEC_BSD && 2641 i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO] > 1) { 2642 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; 2643 2644 if (bsd_idx == I915_EXEC_BSD_DEFAULT) { 2645 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file); 2646 } else if (bsd_idx >= I915_EXEC_BSD_RING1 && 2647 bsd_idx <= I915_EXEC_BSD_RING2) { 2648 bsd_idx >>= I915_EXEC_BSD_SHIFT; 2649 bsd_idx--; 2650 } else { 2651 drm_dbg(&i915->drm, 2652 "execbuf with unknown bsd ring: %u\n", 2653 bsd_idx); 2654 return -1; 2655 } 2656 2657 return _VCS(bsd_idx); 2658 } 2659 2660 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { 2661 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n", 2662 user_ring_id); 2663 return -1; 2664 } 2665 2666 return user_ring_map[user_ring_id]; 2667 } 2668 2669 static int 2670 eb_select_engine(struct i915_execbuffer *eb) 2671 { 2672 struct intel_context *ce, *child; 2673 struct intel_gt *gt; 2674 unsigned int idx; 2675 int err; 2676 2677 if (i915_gem_context_user_engines(eb->gem_context)) 2678 idx = eb->args->flags & I915_EXEC_RING_MASK; 2679 else 2680 idx = eb_select_legacy_ring(eb); 2681 2682 ce = i915_gem_context_get_engine(eb->gem_context, idx); 2683 if (IS_ERR(ce)) 2684 return PTR_ERR(ce); 2685 2686 if (intel_context_is_parallel(ce)) { 2687 if (eb->buffer_count < ce->parallel.number_children + 1) { 2688 intel_context_put(ce); 2689 return -EINVAL; 2690 } 2691 if (eb->batch_start_offset || eb->args->batch_len) { 2692 intel_context_put(ce); 2693 return -EINVAL; 2694 } 2695 } 2696 eb->num_batches = ce->parallel.number_children + 1; 2697 gt = ce->engine->gt; 2698 2699 for_each_child(ce, child) 2700 intel_context_get(child); 2701 eb->wakeref = intel_gt_pm_get(ce->engine->gt); 2702 /* 2703 * Keep GT0 active on MTL so that i915_vma_parked() doesn't 2704 * free VMAs while execbuf ioctl is validating VMAs. 2705 */ 2706 if (gt->info.id) 2707 eb->wakeref_gt0 = intel_gt_pm_get(to_gt(gt->i915)); 2708 2709 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) { 2710 err = intel_context_alloc_state(ce); 2711 if (err) 2712 goto err; 2713 } 2714 for_each_child(ce, child) { 2715 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) { 2716 err = intel_context_alloc_state(child); 2717 if (err) 2718 goto err; 2719 } 2720 } 2721 2722 /* 2723 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 2724 * EIO if the GPU is already wedged. 2725 */ 2726 err = intel_gt_terminally_wedged(ce->engine->gt); 2727 if (err) 2728 goto err; 2729 2730 if (!i915_vm_tryget(ce->vm)) { 2731 err = -ENOENT; 2732 goto err; 2733 } 2734 2735 eb->context = ce; 2736 eb->gt = ce->engine->gt; 2737 2738 /* 2739 * Make sure engine pool stays alive even if we call intel_context_put 2740 * during ww handling. The pool is destroyed when last pm reference 2741 * is dropped, which breaks our -EDEADLK handling. 2742 */ 2743 return err; 2744 2745 err: 2746 if (gt->info.id) 2747 intel_gt_pm_put(to_gt(gt->i915), eb->wakeref_gt0); 2748 2749 intel_gt_pm_put(ce->engine->gt, eb->wakeref); 2750 for_each_child(ce, child) 2751 intel_context_put(child); 2752 intel_context_put(ce); 2753 return err; 2754 } 2755 2756 static void 2757 eb_put_engine(struct i915_execbuffer *eb) 2758 { 2759 struct intel_context *child; 2760 2761 i915_vm_put(eb->context->vm); 2762 /* 2763 * This works in conjunction with eb_select_engine() to prevent 2764 * i915_vma_parked() from interfering while execbuf validates vmas. 2765 */ 2766 if (eb->gt->info.id) 2767 intel_gt_pm_put(to_gt(eb->gt->i915), eb->wakeref_gt0); 2768 intel_gt_pm_put(eb->context->engine->gt, eb->wakeref); 2769 for_each_child(eb->context, child) 2770 intel_context_put(child); 2771 intel_context_put(eb->context); 2772 } 2773 2774 static void 2775 __free_fence_array(struct eb_fence *fences, unsigned int n) 2776 { 2777 while (n--) { 2778 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2)); 2779 dma_fence_put(fences[n].dma_fence); 2780 dma_fence_chain_free(fences[n].chain_fence); 2781 } 2782 kvfree(fences); 2783 } 2784 2785 static int 2786 add_timeline_fence_array(struct i915_execbuffer *eb, 2787 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences) 2788 { 2789 struct drm_i915_gem_exec_fence __user *user_fences; 2790 u64 __user *user_values; 2791 struct eb_fence *f; 2792 u64 nfences; 2793 int err = 0; 2794 2795 nfences = timeline_fences->fence_count; 2796 if (!nfences) 2797 return 0; 2798 2799 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2800 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2801 if (nfences > min_t(unsigned long, 2802 ULONG_MAX / sizeof(*user_fences), 2803 SIZE_MAX / sizeof(*f)) - eb->num_fences) 2804 return -EINVAL; 2805 2806 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr); 2807 if (!access_ok(user_fences, nfences * sizeof(*user_fences))) 2808 return -EFAULT; 2809 2810 user_values = u64_to_user_ptr(timeline_fences->values_ptr); 2811 if (!access_ok(user_values, nfences * sizeof(*user_values))) 2812 return -EFAULT; 2813 2814 f = krealloc(eb->fences, 2815 (eb->num_fences + nfences) * sizeof(*f), 2816 __GFP_NOWARN | GFP_KERNEL); 2817 if (!f) 2818 return -ENOMEM; 2819 2820 eb->fences = f; 2821 f += eb->num_fences; 2822 2823 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2824 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2825 2826 while (nfences--) { 2827 struct drm_i915_gem_exec_fence user_fence; 2828 struct drm_syncobj *syncobj; 2829 struct dma_fence *fence = NULL; 2830 u64 point; 2831 2832 if (__copy_from_user(&user_fence, 2833 user_fences++, 2834 sizeof(user_fence))) 2835 return -EFAULT; 2836 2837 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2838 return -EINVAL; 2839 2840 if (__get_user(point, user_values++)) 2841 return -EFAULT; 2842 2843 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2844 if (!syncobj) { 2845 drm_dbg(&eb->i915->drm, 2846 "Invalid syncobj handle provided\n"); 2847 return -ENOENT; 2848 } 2849 2850 fence = drm_syncobj_fence_get(syncobj); 2851 2852 if (!fence && user_fence.flags && 2853 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2854 drm_dbg(&eb->i915->drm, 2855 "Syncobj handle has no fence\n"); 2856 drm_syncobj_put(syncobj); 2857 return -EINVAL; 2858 } 2859 2860 if (fence) 2861 err = dma_fence_chain_find_seqno(&fence, point); 2862 2863 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2864 drm_dbg(&eb->i915->drm, 2865 "Syncobj handle missing requested point %llu\n", 2866 point); 2867 dma_fence_put(fence); 2868 drm_syncobj_put(syncobj); 2869 return err; 2870 } 2871 2872 /* 2873 * A point might have been signaled already and 2874 * garbage collected from the timeline. In this case 2875 * just ignore the point and carry on. 2876 */ 2877 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2878 drm_syncobj_put(syncobj); 2879 continue; 2880 } 2881 2882 /* 2883 * For timeline syncobjs we need to preallocate chains for 2884 * later signaling. 2885 */ 2886 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) { 2887 /* 2888 * Waiting and signaling the same point (when point != 2889 * 0) would break the timeline. 2890 */ 2891 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2892 drm_dbg(&eb->i915->drm, 2893 "Trying to wait & signal the same timeline point.\n"); 2894 dma_fence_put(fence); 2895 drm_syncobj_put(syncobj); 2896 return -EINVAL; 2897 } 2898 2899 f->chain_fence = dma_fence_chain_alloc(); 2900 if (!f->chain_fence) { 2901 drm_syncobj_put(syncobj); 2902 dma_fence_put(fence); 2903 return -ENOMEM; 2904 } 2905 } else { 2906 f->chain_fence = NULL; 2907 } 2908 2909 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2910 f->dma_fence = fence; 2911 f->value = point; 2912 f++; 2913 eb->num_fences++; 2914 } 2915 2916 return 0; 2917 } 2918 2919 static int add_fence_array(struct i915_execbuffer *eb) 2920 { 2921 struct drm_i915_gem_execbuffer2 *args = eb->args; 2922 struct drm_i915_gem_exec_fence __user *user; 2923 unsigned long num_fences = args->num_cliprects; 2924 struct eb_fence *f; 2925 2926 if (!(args->flags & I915_EXEC_FENCE_ARRAY)) 2927 return 0; 2928 2929 if (!num_fences) 2930 return 0; 2931 2932 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2933 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2934 if (num_fences > min_t(unsigned long, 2935 ULONG_MAX / sizeof(*user), 2936 SIZE_MAX / sizeof(*f) - eb->num_fences)) 2937 return -EINVAL; 2938 2939 user = u64_to_user_ptr(args->cliprects_ptr); 2940 if (!access_ok(user, num_fences * sizeof(*user))) 2941 return -EFAULT; 2942 2943 f = krealloc(eb->fences, 2944 (eb->num_fences + num_fences) * sizeof(*f), 2945 __GFP_NOWARN | GFP_KERNEL); 2946 if (!f) 2947 return -ENOMEM; 2948 2949 eb->fences = f; 2950 f += eb->num_fences; 2951 while (num_fences--) { 2952 struct drm_i915_gem_exec_fence user_fence; 2953 struct drm_syncobj *syncobj; 2954 struct dma_fence *fence = NULL; 2955 2956 if (__copy_from_user(&user_fence, user++, sizeof(user_fence))) 2957 return -EFAULT; 2958 2959 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2960 return -EINVAL; 2961 2962 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2963 if (!syncobj) { 2964 drm_dbg(&eb->i915->drm, 2965 "Invalid syncobj handle provided\n"); 2966 return -ENOENT; 2967 } 2968 2969 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2970 fence = drm_syncobj_fence_get(syncobj); 2971 if (!fence) { 2972 drm_dbg(&eb->i915->drm, 2973 "Syncobj handle has no fence\n"); 2974 drm_syncobj_put(syncobj); 2975 return -EINVAL; 2976 } 2977 } 2978 2979 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2980 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2981 2982 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2983 f->dma_fence = fence; 2984 f->value = 0; 2985 f->chain_fence = NULL; 2986 f++; 2987 eb->num_fences++; 2988 } 2989 2990 return 0; 2991 } 2992 2993 static void put_fence_array(struct eb_fence *fences, int num_fences) 2994 { 2995 if (fences) 2996 __free_fence_array(fences, num_fences); 2997 } 2998 2999 static int 3000 await_fence_array(struct i915_execbuffer *eb, 3001 struct i915_request *rq) 3002 { 3003 unsigned int n; 3004 int err; 3005 3006 for (n = 0; n < eb->num_fences; n++) { 3007 if (!eb->fences[n].dma_fence) 3008 continue; 3009 3010 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence); 3011 if (err < 0) 3012 return err; 3013 } 3014 3015 return 0; 3016 } 3017 3018 static void signal_fence_array(const struct i915_execbuffer *eb, 3019 struct dma_fence * const fence) 3020 { 3021 unsigned int n; 3022 3023 for (n = 0; n < eb->num_fences; n++) { 3024 struct drm_syncobj *syncobj; 3025 unsigned int flags; 3026 3027 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 3028 if (!(flags & I915_EXEC_FENCE_SIGNAL)) 3029 continue; 3030 3031 if (eb->fences[n].chain_fence) { 3032 drm_syncobj_add_point(syncobj, 3033 eb->fences[n].chain_fence, 3034 fence, 3035 eb->fences[n].value); 3036 /* 3037 * The chain's ownership is transferred to the 3038 * timeline. 3039 */ 3040 eb->fences[n].chain_fence = NULL; 3041 } else { 3042 drm_syncobj_replace_fence(syncobj, fence); 3043 } 3044 } 3045 } 3046 3047 static int 3048 parse_timeline_fences(struct i915_user_extension __user *ext, void *data) 3049 { 3050 struct i915_execbuffer *eb = data; 3051 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences; 3052 3053 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences))) 3054 return -EFAULT; 3055 3056 return add_timeline_fence_array(eb, &timeline_fences); 3057 } 3058 3059 static void retire_requests(struct intel_timeline *tl, struct i915_request *end) 3060 { 3061 struct i915_request *rq, *rn; 3062 3063 list_for_each_entry_safe(rq, rn, &tl->requests, link) 3064 if (rq == end || !i915_request_retire(rq)) 3065 break; 3066 } 3067 3068 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq, 3069 int err, bool last_parallel) 3070 { 3071 struct intel_timeline * const tl = i915_request_timeline(rq); 3072 struct i915_sched_attr attr = {}; 3073 struct i915_request *prev; 3074 3075 lockdep_assert_held(&tl->mutex); 3076 lockdep_unpin_lock(&tl->mutex, rq->cookie); 3077 3078 trace_i915_request_add(rq); 3079 3080 prev = __i915_request_commit(rq); 3081 3082 /* Check that the context wasn't destroyed before submission */ 3083 if (likely(!intel_context_is_closed(eb->context))) { 3084 attr = eb->gem_context->sched; 3085 } else { 3086 /* Serialise with context_close via the add_to_timeline */ 3087 i915_request_set_error_once(rq, -ENOENT); 3088 __i915_request_skip(rq); 3089 err = -ENOENT; /* override any transient errors */ 3090 } 3091 3092 if (intel_context_is_parallel(eb->context)) { 3093 if (err) { 3094 __i915_request_skip(rq); 3095 set_bit(I915_FENCE_FLAG_SKIP_PARALLEL, 3096 &rq->fence.flags); 3097 } 3098 if (last_parallel) 3099 set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, 3100 &rq->fence.flags); 3101 } 3102 3103 __i915_request_queue(rq, &attr); 3104 3105 /* Try to clean up the client's timeline after submitting the request */ 3106 if (prev) 3107 retire_requests(tl, prev); 3108 3109 mutex_unlock(&tl->mutex); 3110 3111 return err; 3112 } 3113 3114 static int eb_requests_add(struct i915_execbuffer *eb, int err) 3115 { 3116 int i; 3117 3118 /* 3119 * We iterate in reverse order of creation to release timeline mutexes in 3120 * same order. 3121 */ 3122 for_each_batch_add_order(eb, i) { 3123 struct i915_request *rq = eb->requests[i]; 3124 3125 if (!rq) 3126 continue; 3127 err |= eb_request_add(eb, rq, err, i == 0); 3128 } 3129 3130 return err; 3131 } 3132 3133 static const i915_user_extension_fn execbuf_extensions[] = { 3134 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences, 3135 }; 3136 3137 static int 3138 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args, 3139 struct i915_execbuffer *eb) 3140 { 3141 if (!(args->flags & I915_EXEC_USE_EXTENSIONS)) 3142 return 0; 3143 3144 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot 3145 * have another flag also using it at the same time. 3146 */ 3147 if (eb->args->flags & I915_EXEC_FENCE_ARRAY) 3148 return -EINVAL; 3149 3150 if (args->num_cliprects != 0) 3151 return -EINVAL; 3152 3153 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr), 3154 execbuf_extensions, 3155 ARRAY_SIZE(execbuf_extensions), 3156 eb); 3157 } 3158 3159 static void eb_requests_get(struct i915_execbuffer *eb) 3160 { 3161 unsigned int i; 3162 3163 for_each_batch_create_order(eb, i) { 3164 if (!eb->requests[i]) 3165 break; 3166 3167 i915_request_get(eb->requests[i]); 3168 } 3169 } 3170 3171 static void eb_requests_put(struct i915_execbuffer *eb) 3172 { 3173 unsigned int i; 3174 3175 for_each_batch_create_order(eb, i) { 3176 if (!eb->requests[i]) 3177 break; 3178 3179 i915_request_put(eb->requests[i]); 3180 } 3181 } 3182 3183 static struct sync_file * 3184 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd) 3185 { 3186 struct sync_file *out_fence = NULL; 3187 struct dma_fence_array *fence_array; 3188 struct dma_fence **fences; 3189 unsigned int i; 3190 3191 GEM_BUG_ON(!intel_context_is_parent(eb->context)); 3192 3193 fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL); 3194 if (!fences) 3195 return ERR_PTR(-ENOMEM); 3196 3197 for_each_batch_create_order(eb, i) { 3198 fences[i] = &eb->requests[i]->fence; 3199 __set_bit(I915_FENCE_FLAG_COMPOSITE, 3200 &eb->requests[i]->fence.flags); 3201 } 3202 3203 fence_array = dma_fence_array_create(eb->num_batches, 3204 fences, 3205 eb->context->parallel.fence_context, 3206 eb->context->parallel.seqno++, 3207 false); 3208 if (!fence_array) { 3209 kfree(fences); 3210 return ERR_PTR(-ENOMEM); 3211 } 3212 3213 /* Move ownership to the dma_fence_array created above */ 3214 for_each_batch_create_order(eb, i) 3215 dma_fence_get(fences[i]); 3216 3217 if (out_fence_fd != -1) { 3218 out_fence = sync_file_create(&fence_array->base); 3219 /* sync_file now owns fence_arry, drop creation ref */ 3220 dma_fence_put(&fence_array->base); 3221 if (!out_fence) 3222 return ERR_PTR(-ENOMEM); 3223 } 3224 3225 eb->composite_fence = &fence_array->base; 3226 3227 return out_fence; 3228 } 3229 3230 static struct sync_file * 3231 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq, 3232 struct dma_fence *in_fence, int out_fence_fd) 3233 { 3234 struct sync_file *out_fence = NULL; 3235 int err; 3236 3237 if (unlikely(eb->gem_context->syncobj)) { 3238 struct dma_fence *fence; 3239 3240 fence = drm_syncobj_fence_get(eb->gem_context->syncobj); 3241 err = i915_request_await_dma_fence(rq, fence); 3242 dma_fence_put(fence); 3243 if (err) 3244 return ERR_PTR(err); 3245 } 3246 3247 if (in_fence) { 3248 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT) 3249 err = i915_request_await_execution(rq, in_fence); 3250 else 3251 err = i915_request_await_dma_fence(rq, in_fence); 3252 if (err < 0) 3253 return ERR_PTR(err); 3254 } 3255 3256 if (eb->fences) { 3257 err = await_fence_array(eb, rq); 3258 if (err) 3259 return ERR_PTR(err); 3260 } 3261 3262 if (intel_context_is_parallel(eb->context)) { 3263 out_fence = eb_composite_fence_create(eb, out_fence_fd); 3264 if (IS_ERR(out_fence)) 3265 return ERR_PTR(-ENOMEM); 3266 } else if (out_fence_fd != -1) { 3267 out_fence = sync_file_create(&rq->fence); 3268 if (!out_fence) 3269 return ERR_PTR(-ENOMEM); 3270 } 3271 3272 return out_fence; 3273 } 3274 3275 static struct intel_context * 3276 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number) 3277 { 3278 struct intel_context *child; 3279 3280 if (likely(context_number == 0)) 3281 return eb->context; 3282 3283 for_each_child(eb->context, child) 3284 if (!--context_number) 3285 return child; 3286 3287 GEM_BUG_ON("Context not found"); 3288 3289 return NULL; 3290 } 3291 3292 static struct sync_file * 3293 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence, 3294 int out_fence_fd) 3295 { 3296 struct sync_file *out_fence = NULL; 3297 unsigned int i; 3298 3299 for_each_batch_create_order(eb, i) { 3300 /* Allocate a request for this batch buffer nice and early. */ 3301 eb->requests[i] = i915_request_create(eb_find_context(eb, i)); 3302 if (IS_ERR(eb->requests[i])) { 3303 out_fence = ERR_CAST(eb->requests[i]); 3304 eb->requests[i] = NULL; 3305 return out_fence; 3306 } 3307 3308 /* 3309 * Only the first request added (committed to backend) has to 3310 * take the in fences into account as all subsequent requests 3311 * will have fences inserted inbetween them. 3312 */ 3313 if (i + 1 == eb->num_batches) { 3314 out_fence = eb_fences_add(eb, eb->requests[i], 3315 in_fence, out_fence_fd); 3316 if (IS_ERR(out_fence)) 3317 return out_fence; 3318 } 3319 3320 /* 3321 * Not really on stack, but we don't want to call 3322 * kfree on the batch_snapshot when we put it, so use the 3323 * _onstack interface. 3324 */ 3325 if (eb->batches[i]->vma) 3326 eb->requests[i]->batch_res = 3327 i915_vma_resource_get(eb->batches[i]->vma->resource); 3328 if (eb->batch_pool) { 3329 GEM_BUG_ON(intel_context_is_parallel(eb->context)); 3330 intel_gt_buffer_pool_mark_active(eb->batch_pool, 3331 eb->requests[i]); 3332 } 3333 } 3334 3335 return out_fence; 3336 } 3337 3338 static int 3339 i915_gem_do_execbuffer(struct drm_device *dev, 3340 struct drm_file *file, 3341 struct drm_i915_gem_execbuffer2 *args, 3342 struct drm_i915_gem_exec_object2 *exec) 3343 { 3344 struct drm_i915_private *i915 = to_i915(dev); 3345 struct i915_execbuffer eb; 3346 struct dma_fence *in_fence = NULL; 3347 struct sync_file *out_fence = NULL; 3348 int out_fence_fd = -1; 3349 int err; 3350 3351 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); 3352 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & 3353 ~__EXEC_OBJECT_UNKNOWN_FLAGS); 3354 3355 eb.i915 = i915; 3356 eb.file = file; 3357 eb.args = args; 3358 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) 3359 args->flags |= __EXEC_HAS_RELOC; 3360 3361 eb.exec = exec; 3362 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1); 3363 memset(eb.vma, 0, (args->buffer_count + 1) * sizeof(struct eb_vma)); 3364 3365 eb.batch_pool = NULL; 3366 3367 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; 3368 reloc_cache_init(&eb.reloc_cache, eb.i915); 3369 3370 eb.buffer_count = args->buffer_count; 3371 eb.batch_start_offset = args->batch_start_offset; 3372 eb.trampoline = NULL; 3373 3374 eb.fences = NULL; 3375 eb.num_fences = 0; 3376 3377 eb_capture_list_clear(&eb); 3378 3379 memset(eb.requests, 0, sizeof(struct i915_request *) * 3380 ARRAY_SIZE(eb.requests)); 3381 eb.composite_fence = NULL; 3382 3383 eb.batch_flags = 0; 3384 if (args->flags & I915_EXEC_SECURE) { 3385 if (GRAPHICS_VER(i915) >= 11) 3386 return -ENODEV; 3387 3388 /* Return -EPERM to trigger fallback code on old binaries. */ 3389 if (!HAS_SECURE_BATCHES(i915)) 3390 return -EPERM; 3391 3392 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) 3393 return -EPERM; 3394 3395 eb.batch_flags |= I915_DISPATCH_SECURE; 3396 } 3397 if (args->flags & I915_EXEC_IS_PINNED) 3398 eb.batch_flags |= I915_DISPATCH_PINNED; 3399 3400 err = parse_execbuf2_extensions(args, &eb); 3401 if (err) 3402 goto err_ext; 3403 3404 err = add_fence_array(&eb); 3405 if (err) 3406 goto err_ext; 3407 3408 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT) 3409 if (args->flags & IN_FENCES) { 3410 if ((args->flags & IN_FENCES) == IN_FENCES) 3411 return -EINVAL; 3412 3413 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 3414 if (!in_fence) { 3415 err = -EINVAL; 3416 goto err_ext; 3417 } 3418 } 3419 #undef IN_FENCES 3420 3421 if (args->flags & I915_EXEC_FENCE_OUT) { 3422 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 3423 if (out_fence_fd < 0) { 3424 err = out_fence_fd; 3425 goto err_in_fence; 3426 } 3427 } 3428 3429 err = eb_create(&eb); 3430 if (err) 3431 goto err_out_fence; 3432 3433 GEM_BUG_ON(!eb.lut_size); 3434 3435 err = eb_select_context(&eb); 3436 if (unlikely(err)) 3437 goto err_destroy; 3438 3439 err = eb_select_engine(&eb); 3440 if (unlikely(err)) 3441 goto err_context; 3442 3443 err = eb_lookup_vmas(&eb); 3444 if (err) { 3445 eb_release_vmas(&eb, true); 3446 goto err_engine; 3447 } 3448 3449 i915_gem_ww_ctx_init(&eb.ww, true); 3450 3451 err = eb_relocate_parse(&eb); 3452 if (err) { 3453 /* 3454 * If the user expects the execobject.offset and 3455 * reloc.presumed_offset to be an exact match, 3456 * as for using NO_RELOC, then we cannot update 3457 * the execobject.offset until we have completed 3458 * relocation. 3459 */ 3460 args->flags &= ~__EXEC_HAS_RELOC; 3461 goto err_vma; 3462 } 3463 3464 ww_acquire_done(&eb.ww.ctx); 3465 err = eb_capture_stage(&eb); 3466 if (err) 3467 goto err_vma; 3468 3469 out_fence = eb_requests_create(&eb, in_fence, out_fence_fd); 3470 if (IS_ERR(out_fence)) { 3471 err = PTR_ERR(out_fence); 3472 out_fence = NULL; 3473 if (eb.requests[0]) 3474 goto err_request; 3475 else 3476 goto err_vma; 3477 } 3478 3479 err = eb_submit(&eb); 3480 3481 err_request: 3482 eb_requests_get(&eb); 3483 err = eb_requests_add(&eb, err); 3484 3485 if (eb.fences) 3486 signal_fence_array(&eb, eb.composite_fence ? 3487 eb.composite_fence : 3488 &eb.requests[0]->fence); 3489 3490 if (unlikely(eb.gem_context->syncobj)) { 3491 drm_syncobj_replace_fence(eb.gem_context->syncobj, 3492 eb.composite_fence ? 3493 eb.composite_fence : 3494 &eb.requests[0]->fence); 3495 } 3496 3497 if (out_fence) { 3498 if (err == 0) { 3499 fd_install(out_fence_fd, out_fence->file); 3500 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ 3501 args->rsvd2 |= (u64)out_fence_fd << 32; 3502 out_fence_fd = -1; 3503 } else { 3504 fput(out_fence->file); 3505 } 3506 } 3507 3508 if (!out_fence && eb.composite_fence) 3509 dma_fence_put(eb.composite_fence); 3510 3511 eb_requests_put(&eb); 3512 3513 err_vma: 3514 eb_release_vmas(&eb, true); 3515 WARN_ON(err == -EDEADLK); 3516 i915_gem_ww_ctx_fini(&eb.ww); 3517 3518 if (eb.batch_pool) 3519 intel_gt_buffer_pool_put(eb.batch_pool); 3520 err_engine: 3521 eb_put_engine(&eb); 3522 err_context: 3523 i915_gem_context_put(eb.gem_context); 3524 err_destroy: 3525 eb_destroy(&eb); 3526 err_out_fence: 3527 if (out_fence_fd != -1) 3528 put_unused_fd(out_fence_fd); 3529 err_in_fence: 3530 dma_fence_put(in_fence); 3531 err_ext: 3532 put_fence_array(eb.fences, eb.num_fences); 3533 return err; 3534 } 3535 3536 static size_t eb_element_size(void) 3537 { 3538 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma); 3539 } 3540 3541 static bool check_buffer_count(size_t count) 3542 { 3543 const size_t sz = eb_element_size(); 3544 3545 /* 3546 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup 3547 * array size (see eb_create()). Otherwise, we can accept an array as 3548 * large as can be addressed (though use large arrays at your peril)! 3549 */ 3550 3551 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); 3552 } 3553 3554 int 3555 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 3556 struct drm_file *file) 3557 { 3558 struct drm_i915_private *i915 = to_i915(dev); 3559 struct drm_i915_gem_execbuffer2 *args = data; 3560 struct drm_i915_gem_exec_object2 *exec2_list; 3561 const size_t count = args->buffer_count; 3562 int err; 3563 3564 if (!check_buffer_count(count)) { 3565 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 3566 return -EINVAL; 3567 } 3568 3569 err = i915_gem_check_execbuffer(i915, args); 3570 if (err) 3571 return err; 3572 3573 /* 3574 * Allocate extra slots for use by the command parser. 3575 * 3576 * Note that this allocation handles two different arrays (the 3577 * exec2_list array, and the eventual eb.vma array introduced in 3578 * i915_gem_do_execbuffer()), that reside in virtually contiguous 3579 * memory. Also note that the allocation intentionally doesn't fill the 3580 * area with zeros, because the exec2_list part doesn't need to be, as 3581 * it's immediately overwritten by user data a few lines below. 3582 * However, the eb.vma part is explicitly zeroed later in 3583 * i915_gem_do_execbuffer(). 3584 */ 3585 exec2_list = kvmalloc_array(count + 2, eb_element_size(), 3586 __GFP_NOWARN | GFP_KERNEL); 3587 if (exec2_list == NULL) { 3588 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n", 3589 count); 3590 return -ENOMEM; 3591 } 3592 if (copy_from_user(exec2_list, 3593 u64_to_user_ptr(args->buffers_ptr), 3594 sizeof(*exec2_list) * count)) { 3595 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count); 3596 kvfree(exec2_list); 3597 return -EFAULT; 3598 } 3599 3600 err = i915_gem_do_execbuffer(dev, file, args, exec2_list); 3601 3602 /* 3603 * Now that we have begun execution of the batchbuffer, we ignore 3604 * any new error after this point. Also given that we have already 3605 * updated the associated relocations, we try to write out the current 3606 * object locations irrespective of any error. 3607 */ 3608 if (args->flags & __EXEC_HAS_RELOC) { 3609 struct drm_i915_gem_exec_object2 __user *user_exec_list = 3610 u64_to_user_ptr(args->buffers_ptr); 3611 unsigned int i; 3612 3613 /* Copy the new buffer offsets back to the user's exec list. */ 3614 /* 3615 * Note: count * sizeof(*user_exec_list) does not overflow, 3616 * because we checked 'count' in check_buffer_count(). 3617 * 3618 * And this range already got effectively checked earlier 3619 * when we did the "copy_from_user()" above. 3620 */ 3621 if (!user_write_access_begin(user_exec_list, 3622 count * sizeof(*user_exec_list))) 3623 goto end; 3624 3625 for (i = 0; i < args->buffer_count; i++) { 3626 if (!(exec2_list[i].offset & UPDATE)) 3627 continue; 3628 3629 exec2_list[i].offset = 3630 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 3631 unsafe_put_user(exec2_list[i].offset, 3632 &user_exec_list[i].offset, 3633 end_user); 3634 } 3635 end_user: 3636 user_write_access_end(); 3637 end:; 3638 } 3639 3640 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; 3641 kvfree(exec2_list); 3642 return err; 3643 } 3644