xref: /linux/drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c (revision 67f49869106f78882a8a09b736d4884be85aba18)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6 
7 #include <linux/dma-resv.h>
8 #include <linux/highmem.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11 
12 #include <drm/drm_syncobj.h>
13 
14 #include "display/intel_frontbuffer.h"
15 
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gpu_commands.h"
19 #include "gt/intel_gt.h"
20 #include "gt/intel_gt_buffer_pool.h"
21 #include "gt/intel_gt_pm.h"
22 #include "gt/intel_ring.h"
23 
24 #include "pxp/intel_pxp.h"
25 
26 #include "i915_cmd_parser.h"
27 #include "i915_drv.h"
28 #include "i915_file_private.h"
29 #include "i915_gem_clflush.h"
30 #include "i915_gem_context.h"
31 #include "i915_gem_evict.h"
32 #include "i915_gem_ioctls.h"
33 #include "i915_reg.h"
34 #include "i915_trace.h"
35 #include "i915_user_extensions.h"
36 
37 struct eb_vma {
38 	struct i915_vma *vma;
39 	unsigned int flags;
40 
41 	/** This vma's place in the execbuf reservation list */
42 	struct drm_i915_gem_exec_object2 *exec;
43 	struct list_head bind_link;
44 	struct list_head reloc_link;
45 
46 	struct hlist_node node;
47 	u32 handle;
48 };
49 
50 enum {
51 	FORCE_CPU_RELOC = 1,
52 	FORCE_GTT_RELOC,
53 	FORCE_GPU_RELOC,
54 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
55 };
56 
57 /* __EXEC_OBJECT_ flags > BIT(29) defined in i915_vma.h */
58 #define __EXEC_OBJECT_HAS_PIN		BIT(29)
59 #define __EXEC_OBJECT_HAS_FENCE		BIT(28)
60 #define __EXEC_OBJECT_USERPTR_INIT	BIT(27)
61 #define __EXEC_OBJECT_NEEDS_MAP		BIT(26)
62 #define __EXEC_OBJECT_NEEDS_BIAS	BIT(25)
63 #define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 25) /* all of the above + */
64 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
65 
66 #define __EXEC_HAS_RELOC	BIT(31)
67 #define __EXEC_ENGINE_PINNED	BIT(30)
68 #define __EXEC_USERPTR_USED	BIT(29)
69 #define __EXEC_INTERNAL_FLAGS	(~0u << 29)
70 #define UPDATE			PIN_OFFSET_FIXED
71 
72 #define BATCH_OFFSET_BIAS (256*1024)
73 
74 #define __I915_EXEC_ILLEGAL_FLAGS \
75 	(__I915_EXEC_UNKNOWN_FLAGS | \
76 	 I915_EXEC_CONSTANTS_MASK  | \
77 	 I915_EXEC_RESOURCE_STREAMER)
78 
79 /* Catch emission of unexpected errors for CI! */
80 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
81 #undef EINVAL
82 #define EINVAL ({ \
83 	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
84 	22; \
85 })
86 #endif
87 
88 /**
89  * DOC: User command execution
90  *
91  * Userspace submits commands to be executed on the GPU as an instruction
92  * stream within a GEM object we call a batchbuffer. This instructions may
93  * refer to other GEM objects containing auxiliary state such as kernels,
94  * samplers, render targets and even secondary batchbuffers. Userspace does
95  * not know where in the GPU memory these objects reside and so before the
96  * batchbuffer is passed to the GPU for execution, those addresses in the
97  * batchbuffer and auxiliary objects are updated. This is known as relocation,
98  * or patching. To try and avoid having to relocate each object on the next
99  * execution, userspace is told the location of those objects in this pass,
100  * but this remains just a hint as the kernel may choose a new location for
101  * any object in the future.
102  *
103  * At the level of talking to the hardware, submitting a batchbuffer for the
104  * GPU to execute is to add content to a buffer from which the HW
105  * command streamer is reading.
106  *
107  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
108  *    Execlists, this command is not placed on the same buffer as the
109  *    remaining items.
110  *
111  * 2. Add a command to invalidate caches to the buffer.
112  *
113  * 3. Add a batchbuffer start command to the buffer; the start command is
114  *    essentially a token together with the GPU address of the batchbuffer
115  *    to be executed.
116  *
117  * 4. Add a pipeline flush to the buffer.
118  *
119  * 5. Add a memory write command to the buffer to record when the GPU
120  *    is done executing the batchbuffer. The memory write writes the
121  *    global sequence number of the request, ``i915_request::global_seqno``;
122  *    the i915 driver uses the current value in the register to determine
123  *    if the GPU has completed the batchbuffer.
124  *
125  * 6. Add a user interrupt command to the buffer. This command instructs
126  *    the GPU to issue an interrupt when the command, pipeline flush and
127  *    memory write are completed.
128  *
129  * 7. Inform the hardware of the additional commands added to the buffer
130  *    (by updating the tail pointer).
131  *
132  * Processing an execbuf ioctl is conceptually split up into a few phases.
133  *
134  * 1. Validation - Ensure all the pointers, handles and flags are valid.
135  * 2. Reservation - Assign GPU address space for every object
136  * 3. Relocation - Update any addresses to point to the final locations
137  * 4. Serialisation - Order the request with respect to its dependencies
138  * 5. Construction - Construct a request to execute the batchbuffer
139  * 6. Submission (at some point in the future execution)
140  *
141  * Reserving resources for the execbuf is the most complicated phase. We
142  * neither want to have to migrate the object in the address space, nor do
143  * we want to have to update any relocations pointing to this object. Ideally,
144  * we want to leave the object where it is and for all the existing relocations
145  * to match. If the object is given a new address, or if userspace thinks the
146  * object is elsewhere, we have to parse all the relocation entries and update
147  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
148  * all the target addresses in all of its objects match the value in the
149  * relocation entries and that they all match the presumed offsets given by the
150  * list of execbuffer objects. Using this knowledge, we know that if we haven't
151  * moved any buffers, all the relocation entries are valid and we can skip
152  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
153  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
154  *
155  *      The addresses written in the objects must match the corresponding
156  *      reloc.presumed_offset which in turn must match the corresponding
157  *      execobject.offset.
158  *
159  *      Any render targets written to in the batch must be flagged with
160  *      EXEC_OBJECT_WRITE.
161  *
162  *      To avoid stalling, execobject.offset should match the current
163  *      address of that object within the active context.
164  *
165  * The reservation is done is multiple phases. First we try and keep any
166  * object already bound in its current location - so as long as meets the
167  * constraints imposed by the new execbuffer. Any object left unbound after the
168  * first pass is then fitted into any available idle space. If an object does
169  * not fit, all objects are removed from the reservation and the process rerun
170  * after sorting the objects into a priority order (more difficult to fit
171  * objects are tried first). Failing that, the entire VM is cleared and we try
172  * to fit the execbuf once last time before concluding that it simply will not
173  * fit.
174  *
175  * A small complication to all of this is that we allow userspace not only to
176  * specify an alignment and a size for the object in the address space, but
177  * we also allow userspace to specify the exact offset. This objects are
178  * simpler to place (the location is known a priori) all we have to do is make
179  * sure the space is available.
180  *
181  * Once all the objects are in place, patching up the buried pointers to point
182  * to the final locations is a fairly simple job of walking over the relocation
183  * entry arrays, looking up the right address and rewriting the value into
184  * the object. Simple! ... The relocation entries are stored in user memory
185  * and so to access them we have to copy them into a local buffer. That copy
186  * has to avoid taking any pagefaults as they may lead back to a GEM object
187  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
188  * the relocation into multiple passes. First we try to do everything within an
189  * atomic context (avoid the pagefaults) which requires that we never wait. If
190  * we detect that we may wait, or if we need to fault, then we have to fallback
191  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
192  * bells yet?) Dropping the mutex means that we lose all the state we have
193  * built up so far for the execbuf and we must reset any global data. However,
194  * we do leave the objects pinned in their final locations - which is a
195  * potential issue for concurrent execbufs. Once we have left the mutex, we can
196  * allocate and copy all the relocation entries into a large array at our
197  * leisure, reacquire the mutex, reclaim all the objects and other state and
198  * then proceed to update any incorrect addresses with the objects.
199  *
200  * As we process the relocation entries, we maintain a record of whether the
201  * object is being written to. Using NORELOC, we expect userspace to provide
202  * this information instead. We also check whether we can skip the relocation
203  * by comparing the expected value inside the relocation entry with the target's
204  * final address. If they differ, we have to map the current object and rewrite
205  * the 4 or 8 byte pointer within.
206  *
207  * Serialising an execbuf is quite simple according to the rules of the GEM
208  * ABI. Execution within each context is ordered by the order of submission.
209  * Writes to any GEM object are in order of submission and are exclusive. Reads
210  * from a GEM object are unordered with respect to other reads, but ordered by
211  * writes. A write submitted after a read cannot occur before the read, and
212  * similarly any read submitted after a write cannot occur before the write.
213  * Writes are ordered between engines such that only one write occurs at any
214  * time (completing any reads beforehand) - using semaphores where available
215  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
216  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
217  * reads before starting, and any read (either using set-domain or pread) must
218  * flush all GPU writes before starting. (Note we only employ a barrier before,
219  * we currently rely on userspace not concurrently starting a new execution
220  * whilst reading or writing to an object. This may be an advantage or not
221  * depending on how much you trust userspace not to shoot themselves in the
222  * foot.) Serialisation may just result in the request being inserted into
223  * a DAG awaiting its turn, but most simple is to wait on the CPU until
224  * all dependencies are resolved.
225  *
226  * After all of that, is just a matter of closing the request and handing it to
227  * the hardware (well, leaving it in a queue to be executed). However, we also
228  * offer the ability for batchbuffers to be run with elevated privileges so
229  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
230  * Before any batch is given extra privileges we first must check that it
231  * contains no nefarious instructions, we check that each instruction is from
232  * our whitelist and all registers are also from an allowed list. We first
233  * copy the user's batchbuffer to a shadow (so that the user doesn't have
234  * access to it, either by the CPU or GPU as we scan it) and then parse each
235  * instruction. If everything is ok, we set a flag telling the hardware to run
236  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
237  */
238 
239 struct eb_fence {
240 	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
241 	struct dma_fence *dma_fence;
242 	u64 value;
243 	struct dma_fence_chain *chain_fence;
244 };
245 
246 struct i915_execbuffer {
247 	struct drm_i915_private *i915; /** i915 backpointer */
248 	struct drm_file *file; /** per-file lookup tables and limits */
249 	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
250 	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
251 	struct eb_vma *vma;
252 
253 	struct intel_gt *gt; /* gt for the execbuf */
254 	struct intel_context *context; /* logical state for the request */
255 	struct i915_gem_context *gem_context; /** caller's context */
256 
257 	/** our requests to build */
258 	struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
259 	/** identity of the batch obj/vma */
260 	struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
261 	struct i915_vma *trampoline; /** trampoline used for chaining */
262 
263 	/** used for excl fence in dma_resv objects when > 1 BB submitted */
264 	struct dma_fence *composite_fence;
265 
266 	/** actual size of execobj[] as we may extend it for the cmdparser */
267 	unsigned int buffer_count;
268 
269 	/* number of batches in execbuf IOCTL */
270 	unsigned int num_batches;
271 
272 	/** list of vma not yet bound during reservation phase */
273 	struct list_head unbound;
274 
275 	/** list of vma that have execobj.relocation_count */
276 	struct list_head relocs;
277 
278 	struct i915_gem_ww_ctx ww;
279 
280 	/**
281 	 * Track the most recently used object for relocations, as we
282 	 * frequently have to perform multiple relocations within the same
283 	 * obj/page
284 	 */
285 	struct reloc_cache {
286 		struct drm_mm_node node; /** temporary GTT binding */
287 		unsigned long vaddr; /** Current kmap address */
288 		unsigned long page; /** Currently mapped page index */
289 		unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
290 		bool use_64bit_reloc : 1;
291 		bool has_llc : 1;
292 		bool has_fence : 1;
293 		bool needs_unfenced : 1;
294 	} reloc_cache;
295 
296 	u64 invalid_flags; /** Set of execobj.flags that are invalid */
297 
298 	/** Length of batch within object */
299 	u64 batch_len[MAX_ENGINE_INSTANCE + 1];
300 	u32 batch_start_offset; /** Location within object of batch */
301 	u32 batch_flags; /** Flags composed for emit_bb_start() */
302 	struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
303 
304 	/**
305 	 * Indicate either the size of the hastable used to resolve
306 	 * relocation handles, or if negative that we are using a direct
307 	 * index into the execobj[].
308 	 */
309 	int lut_size;
310 	struct hlist_head *buckets; /** ht for relocation handles */
311 
312 	struct eb_fence *fences;
313 	unsigned long num_fences;
314 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
315 	struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
316 #endif
317 };
318 
319 static int eb_parse(struct i915_execbuffer *eb);
320 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
321 static void eb_unpin_engine(struct i915_execbuffer *eb);
322 static void eb_capture_release(struct i915_execbuffer *eb);
323 
324 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
325 {
326 	return intel_engine_requires_cmd_parser(eb->context->engine) ||
327 		(intel_engine_using_cmd_parser(eb->context->engine) &&
328 		 eb->args->batch_len);
329 }
330 
331 static int eb_create(struct i915_execbuffer *eb)
332 {
333 	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
334 		unsigned int size = 1 + ilog2(eb->buffer_count);
335 
336 		/*
337 		 * Without a 1:1 association between relocation handles and
338 		 * the execobject[] index, we instead create a hashtable.
339 		 * We size it dynamically based on available memory, starting
340 		 * first with 1:1 assocative hash and scaling back until
341 		 * the allocation succeeds.
342 		 *
343 		 * Later on we use a positive lut_size to indicate we are
344 		 * using this hashtable, and a negative value to indicate a
345 		 * direct lookup.
346 		 */
347 		do {
348 			gfp_t flags;
349 
350 			/* While we can still reduce the allocation size, don't
351 			 * raise a warning and allow the allocation to fail.
352 			 * On the last pass though, we want to try as hard
353 			 * as possible to perform the allocation and warn
354 			 * if it fails.
355 			 */
356 			flags = GFP_KERNEL;
357 			if (size > 1)
358 				flags |= __GFP_NORETRY | __GFP_NOWARN;
359 
360 			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
361 					      flags);
362 			if (eb->buckets)
363 				break;
364 		} while (--size);
365 
366 		if (unlikely(!size))
367 			return -ENOMEM;
368 
369 		eb->lut_size = size;
370 	} else {
371 		eb->lut_size = -eb->buffer_count;
372 	}
373 
374 	return 0;
375 }
376 
377 static bool
378 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
379 		 const struct i915_vma *vma,
380 		 unsigned int flags)
381 {
382 	if (vma->node.size < entry->pad_to_size)
383 		return true;
384 
385 	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
386 		return true;
387 
388 	if (flags & EXEC_OBJECT_PINNED &&
389 	    vma->node.start != entry->offset)
390 		return true;
391 
392 	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
393 	    vma->node.start < BATCH_OFFSET_BIAS)
394 		return true;
395 
396 	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
397 	    (vma->node.start + vma->node.size + 4095) >> 32)
398 		return true;
399 
400 	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
401 	    !i915_vma_is_map_and_fenceable(vma))
402 		return true;
403 
404 	return false;
405 }
406 
407 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
408 			unsigned int exec_flags)
409 {
410 	u64 pin_flags = 0;
411 
412 	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
413 		pin_flags |= PIN_GLOBAL;
414 
415 	/*
416 	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
417 	 * limit address to the first 4GBs for unflagged objects.
418 	 */
419 	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
420 		pin_flags |= PIN_ZONE_4G;
421 
422 	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
423 		pin_flags |= PIN_MAPPABLE;
424 
425 	if (exec_flags & EXEC_OBJECT_PINNED)
426 		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
427 	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
428 		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
429 
430 	return pin_flags;
431 }
432 
433 static inline int
434 eb_pin_vma(struct i915_execbuffer *eb,
435 	   const struct drm_i915_gem_exec_object2 *entry,
436 	   struct eb_vma *ev)
437 {
438 	struct i915_vma *vma = ev->vma;
439 	u64 pin_flags;
440 	int err;
441 
442 	if (vma->node.size)
443 		pin_flags = vma->node.start;
444 	else
445 		pin_flags = entry->offset & PIN_OFFSET_MASK;
446 
447 	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE;
448 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
449 		pin_flags |= PIN_GLOBAL;
450 
451 	/* Attempt to reuse the current location if available */
452 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
453 	if (err == -EDEADLK)
454 		return err;
455 
456 	if (unlikely(err)) {
457 		if (entry->flags & EXEC_OBJECT_PINNED)
458 			return err;
459 
460 		/* Failing that pick any _free_ space if suitable */
461 		err = i915_vma_pin_ww(vma, &eb->ww,
462 					     entry->pad_to_size,
463 					     entry->alignment,
464 					     eb_pin_flags(entry, ev->flags) |
465 					     PIN_USER | PIN_NOEVICT | PIN_VALIDATE);
466 		if (unlikely(err))
467 			return err;
468 	}
469 
470 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
471 		err = i915_vma_pin_fence(vma);
472 		if (unlikely(err))
473 			return err;
474 
475 		if (vma->fence)
476 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
477 	}
478 
479 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
480 	if (eb_vma_misplaced(entry, vma, ev->flags))
481 		return -EBADSLT;
482 
483 	return 0;
484 }
485 
486 static inline void
487 eb_unreserve_vma(struct eb_vma *ev)
488 {
489 	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
490 		__i915_vma_unpin_fence(ev->vma);
491 
492 	ev->flags &= ~__EXEC_OBJECT_RESERVED;
493 }
494 
495 static int
496 eb_validate_vma(struct i915_execbuffer *eb,
497 		struct drm_i915_gem_exec_object2 *entry,
498 		struct i915_vma *vma)
499 {
500 	/* Relocations are disallowed for all platforms after TGL-LP.  This
501 	 * also covers all platforms with local memory.
502 	 */
503 	if (entry->relocation_count &&
504 	    GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
505 		return -EINVAL;
506 
507 	if (unlikely(entry->flags & eb->invalid_flags))
508 		return -EINVAL;
509 
510 	if (unlikely(entry->alignment &&
511 		     !is_power_of_2_u64(entry->alignment)))
512 		return -EINVAL;
513 
514 	/*
515 	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
516 	 * any non-page-aligned or non-canonical addresses.
517 	 */
518 	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
519 		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
520 		return -EINVAL;
521 
522 	/* pad_to_size was once a reserved field, so sanitize it */
523 	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
524 		if (unlikely(offset_in_page(entry->pad_to_size)))
525 			return -EINVAL;
526 	} else {
527 		entry->pad_to_size = 0;
528 	}
529 	/*
530 	 * From drm_mm perspective address space is continuous,
531 	 * so from this point we're always using non-canonical
532 	 * form internally.
533 	 */
534 	entry->offset = gen8_noncanonical_addr(entry->offset);
535 
536 	if (!eb->reloc_cache.has_fence) {
537 		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
538 	} else {
539 		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
540 		     eb->reloc_cache.needs_unfenced) &&
541 		    i915_gem_object_is_tiled(vma->obj))
542 			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
543 	}
544 
545 	return 0;
546 }
547 
548 static inline bool
549 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
550 {
551 	return eb->args->flags & I915_EXEC_BATCH_FIRST ?
552 		buffer_idx < eb->num_batches :
553 		buffer_idx >= eb->args->buffer_count - eb->num_batches;
554 }
555 
556 static int
557 eb_add_vma(struct i915_execbuffer *eb,
558 	   unsigned int *current_batch,
559 	   unsigned int i,
560 	   struct i915_vma *vma)
561 {
562 	struct drm_i915_private *i915 = eb->i915;
563 	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
564 	struct eb_vma *ev = &eb->vma[i];
565 
566 	ev->vma = vma;
567 	ev->exec = entry;
568 	ev->flags = entry->flags;
569 
570 	if (eb->lut_size > 0) {
571 		ev->handle = entry->handle;
572 		hlist_add_head(&ev->node,
573 			       &eb->buckets[hash_32(entry->handle,
574 						    eb->lut_size)]);
575 	}
576 
577 	if (entry->relocation_count)
578 		list_add_tail(&ev->reloc_link, &eb->relocs);
579 
580 	/*
581 	 * SNA is doing fancy tricks with compressing batch buffers, which leads
582 	 * to negative relocation deltas. Usually that works out ok since the
583 	 * relocate address is still positive, except when the batch is placed
584 	 * very low in the GTT. Ensure this doesn't happen.
585 	 *
586 	 * Note that actual hangs have only been observed on gen7, but for
587 	 * paranoia do it everywhere.
588 	 */
589 	if (is_batch_buffer(eb, i)) {
590 		if (entry->relocation_count &&
591 		    !(ev->flags & EXEC_OBJECT_PINNED))
592 			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
593 		if (eb->reloc_cache.has_fence)
594 			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
595 
596 		eb->batches[*current_batch] = ev;
597 
598 		if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
599 			drm_dbg(&i915->drm,
600 				"Attempting to use self-modifying batch buffer\n");
601 			return -EINVAL;
602 		}
603 
604 		if (range_overflows_t(u64,
605 				      eb->batch_start_offset,
606 				      eb->args->batch_len,
607 				      ev->vma->size)) {
608 			drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
609 			return -EINVAL;
610 		}
611 
612 		if (eb->args->batch_len == 0)
613 			eb->batch_len[*current_batch] = ev->vma->size -
614 				eb->batch_start_offset;
615 		else
616 			eb->batch_len[*current_batch] = eb->args->batch_len;
617 		if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
618 			drm_dbg(&i915->drm, "Invalid batch length\n");
619 			return -EINVAL;
620 		}
621 
622 		++*current_batch;
623 	}
624 
625 	return 0;
626 }
627 
628 static inline int use_cpu_reloc(const struct reloc_cache *cache,
629 				const struct drm_i915_gem_object *obj)
630 {
631 	if (!i915_gem_object_has_struct_page(obj))
632 		return false;
633 
634 	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
635 		return true;
636 
637 	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
638 		return false;
639 
640 	return (cache->has_llc ||
641 		obj->cache_dirty ||
642 		obj->cache_level != I915_CACHE_NONE);
643 }
644 
645 static int eb_reserve_vma(struct i915_execbuffer *eb,
646 			  struct eb_vma *ev,
647 			  u64 pin_flags)
648 {
649 	struct drm_i915_gem_exec_object2 *entry = ev->exec;
650 	struct i915_vma *vma = ev->vma;
651 	int err;
652 
653 	if (drm_mm_node_allocated(&vma->node) &&
654 	    eb_vma_misplaced(entry, vma, ev->flags)) {
655 		err = i915_vma_unbind(vma);
656 		if (err)
657 			return err;
658 	}
659 
660 	err = i915_vma_pin_ww(vma, &eb->ww,
661 			   entry->pad_to_size, entry->alignment,
662 			   eb_pin_flags(entry, ev->flags) | pin_flags);
663 	if (err)
664 		return err;
665 
666 	if (entry->offset != vma->node.start) {
667 		entry->offset = vma->node.start | UPDATE;
668 		eb->args->flags |= __EXEC_HAS_RELOC;
669 	}
670 
671 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
672 		err = i915_vma_pin_fence(vma);
673 		if (unlikely(err))
674 			return err;
675 
676 		if (vma->fence)
677 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
678 	}
679 
680 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
681 	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
682 
683 	return 0;
684 }
685 
686 static bool eb_unbind(struct i915_execbuffer *eb, bool force)
687 {
688 	const unsigned int count = eb->buffer_count;
689 	unsigned int i;
690 	struct list_head last;
691 	bool unpinned = false;
692 
693 	/* Resort *all* the objects into priority order */
694 	INIT_LIST_HEAD(&eb->unbound);
695 	INIT_LIST_HEAD(&last);
696 
697 	for (i = 0; i < count; i++) {
698 		struct eb_vma *ev = &eb->vma[i];
699 		unsigned int flags = ev->flags;
700 
701 		if (!force && flags & EXEC_OBJECT_PINNED &&
702 		    flags & __EXEC_OBJECT_HAS_PIN)
703 			continue;
704 
705 		unpinned = true;
706 		eb_unreserve_vma(ev);
707 
708 		if (flags & EXEC_OBJECT_PINNED)
709 			/* Pinned must have their slot */
710 			list_add(&ev->bind_link, &eb->unbound);
711 		else if (flags & __EXEC_OBJECT_NEEDS_MAP)
712 			/* Map require the lowest 256MiB (aperture) */
713 			list_add_tail(&ev->bind_link, &eb->unbound);
714 		else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
715 			/* Prioritise 4GiB region for restricted bo */
716 			list_add(&ev->bind_link, &last);
717 		else
718 			list_add_tail(&ev->bind_link, &last);
719 	}
720 
721 	list_splice_tail(&last, &eb->unbound);
722 	return unpinned;
723 }
724 
725 static int eb_reserve(struct i915_execbuffer *eb)
726 {
727 	struct eb_vma *ev;
728 	unsigned int pass;
729 	int err = 0;
730 	bool unpinned;
731 
732 	/*
733 	 * We have one more buffers that we couldn't bind, which could be due to
734 	 * various reasons. To resolve this we have 4 passes, with every next
735 	 * level turning the screws tighter:
736 	 *
737 	 * 0. Unbind all objects that do not match the GTT constraints for the
738 	 * execbuffer (fenceable, mappable, alignment etc). Bind all new
739 	 * objects.  This avoids unnecessary unbinding of later objects in order
740 	 * to make room for the earlier objects *unless* we need to defragment.
741 	 *
742 	 * 1. Reorder the buffers, where objects with the most restrictive
743 	 * placement requirements go first (ignoring fixed location buffers for
744 	 * now).  For example, objects needing the mappable aperture (the first
745 	 * 256M of GTT), should go first vs objects that can be placed just
746 	 * about anywhere. Repeat the previous pass.
747 	 *
748 	 * 2. Consider buffers that are pinned at a fixed location. Also try to
749 	 * evict the entire VM this time, leaving only objects that we were
750 	 * unable to lock. Try again to bind the buffers. (still using the new
751 	 * buffer order).
752 	 *
753 	 * 3. We likely have object lock contention for one or more stubborn
754 	 * objects in the VM, for which we need to evict to make forward
755 	 * progress (perhaps we are fighting the shrinker?). When evicting the
756 	 * VM this time around, anything that we can't lock we now track using
757 	 * the busy_bo, using the full lock (after dropping the vm->mutex to
758 	 * prevent deadlocks), instead of trylock. We then continue to evict the
759 	 * VM, this time with the stubborn object locked, which we can now
760 	 * hopefully unbind (if still bound in the VM). Repeat until the VM is
761 	 * evicted. Finally we should be able bind everything.
762 	 */
763 	for (pass = 0; pass <= 3; pass++) {
764 		int pin_flags = PIN_USER | PIN_VALIDATE;
765 
766 		if (pass == 0)
767 			pin_flags |= PIN_NONBLOCK;
768 
769 		if (pass >= 1)
770 			unpinned = eb_unbind(eb, pass >= 2);
771 
772 		if (pass == 2) {
773 			err = mutex_lock_interruptible(&eb->context->vm->mutex);
774 			if (!err) {
775 				err = i915_gem_evict_vm(eb->context->vm, &eb->ww, NULL);
776 				mutex_unlock(&eb->context->vm->mutex);
777 			}
778 			if (err)
779 				return err;
780 		}
781 
782 		if (pass == 3) {
783 retry:
784 			err = mutex_lock_interruptible(&eb->context->vm->mutex);
785 			if (!err) {
786 				struct drm_i915_gem_object *busy_bo = NULL;
787 
788 				err = i915_gem_evict_vm(eb->context->vm, &eb->ww, &busy_bo);
789 				mutex_unlock(&eb->context->vm->mutex);
790 				if (err && busy_bo) {
791 					err = i915_gem_object_lock(busy_bo, &eb->ww);
792 					i915_gem_object_put(busy_bo);
793 					if (!err)
794 						goto retry;
795 				}
796 			}
797 			if (err)
798 				return err;
799 		}
800 
801 		list_for_each_entry(ev, &eb->unbound, bind_link) {
802 			err = eb_reserve_vma(eb, ev, pin_flags);
803 			if (err)
804 				break;
805 		}
806 
807 		if (err != -ENOSPC)
808 			break;
809 	}
810 
811 	return err;
812 }
813 
814 static int eb_select_context(struct i915_execbuffer *eb)
815 {
816 	struct i915_gem_context *ctx;
817 
818 	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
819 	if (unlikely(IS_ERR(ctx)))
820 		return PTR_ERR(ctx);
821 
822 	eb->gem_context = ctx;
823 	if (i915_gem_context_has_full_ppgtt(ctx))
824 		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
825 
826 	return 0;
827 }
828 
829 static int __eb_add_lut(struct i915_execbuffer *eb,
830 			u32 handle, struct i915_vma *vma)
831 {
832 	struct i915_gem_context *ctx = eb->gem_context;
833 	struct i915_lut_handle *lut;
834 	int err;
835 
836 	lut = i915_lut_handle_alloc();
837 	if (unlikely(!lut))
838 		return -ENOMEM;
839 
840 	i915_vma_get(vma);
841 	if (!atomic_fetch_inc(&vma->open_count))
842 		i915_vma_reopen(vma);
843 	lut->handle = handle;
844 	lut->ctx = ctx;
845 
846 	/* Check that the context hasn't been closed in the meantime */
847 	err = -EINTR;
848 	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
849 		if (likely(!i915_gem_context_is_closed(ctx)))
850 			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
851 		else
852 			err = -ENOENT;
853 		if (err == 0) { /* And nor has this handle */
854 			struct drm_i915_gem_object *obj = vma->obj;
855 
856 			spin_lock(&obj->lut_lock);
857 			if (idr_find(&eb->file->object_idr, handle) == obj) {
858 				list_add(&lut->obj_link, &obj->lut_list);
859 			} else {
860 				radix_tree_delete(&ctx->handles_vma, handle);
861 				err = -ENOENT;
862 			}
863 			spin_unlock(&obj->lut_lock);
864 		}
865 		mutex_unlock(&ctx->lut_mutex);
866 	}
867 	if (unlikely(err))
868 		goto err;
869 
870 	return 0;
871 
872 err:
873 	i915_vma_close(vma);
874 	i915_vma_put(vma);
875 	i915_lut_handle_free(lut);
876 	return err;
877 }
878 
879 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
880 {
881 	struct i915_address_space *vm = eb->context->vm;
882 
883 	do {
884 		struct drm_i915_gem_object *obj;
885 		struct i915_vma *vma;
886 		int err;
887 
888 		rcu_read_lock();
889 		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
890 		if (likely(vma && vma->vm == vm))
891 			vma = i915_vma_tryget(vma);
892 		rcu_read_unlock();
893 		if (likely(vma))
894 			return vma;
895 
896 		obj = i915_gem_object_lookup(eb->file, handle);
897 		if (unlikely(!obj))
898 			return ERR_PTR(-ENOENT);
899 
900 		/*
901 		 * If the user has opted-in for protected-object tracking, make
902 		 * sure the object encryption can be used.
903 		 * We only need to do this when the object is first used with
904 		 * this context, because the context itself will be banned when
905 		 * the protected objects become invalid.
906 		 */
907 		if (i915_gem_context_uses_protected_content(eb->gem_context) &&
908 		    i915_gem_object_is_protected(obj)) {
909 			err = intel_pxp_key_check(&vm->gt->pxp, obj, true);
910 			if (err) {
911 				i915_gem_object_put(obj);
912 				return ERR_PTR(err);
913 			}
914 		}
915 
916 		vma = i915_vma_instance(obj, vm, NULL);
917 		if (IS_ERR(vma)) {
918 			i915_gem_object_put(obj);
919 			return vma;
920 		}
921 
922 		err = __eb_add_lut(eb, handle, vma);
923 		if (likely(!err))
924 			return vma;
925 
926 		i915_gem_object_put(obj);
927 		if (err != -EEXIST)
928 			return ERR_PTR(err);
929 	} while (1);
930 }
931 
932 static int eb_lookup_vmas(struct i915_execbuffer *eb)
933 {
934 	unsigned int i, current_batch = 0;
935 	int err = 0;
936 
937 	INIT_LIST_HEAD(&eb->relocs);
938 
939 	for (i = 0; i < eb->buffer_count; i++) {
940 		struct i915_vma *vma;
941 
942 		vma = eb_lookup_vma(eb, eb->exec[i].handle);
943 		if (IS_ERR(vma)) {
944 			err = PTR_ERR(vma);
945 			goto err;
946 		}
947 
948 		err = eb_validate_vma(eb, &eb->exec[i], vma);
949 		if (unlikely(err)) {
950 			i915_vma_put(vma);
951 			goto err;
952 		}
953 
954 		err = eb_add_vma(eb, &current_batch, i, vma);
955 		if (err)
956 			return err;
957 
958 		if (i915_gem_object_is_userptr(vma->obj)) {
959 			err = i915_gem_object_userptr_submit_init(vma->obj);
960 			if (err) {
961 				if (i + 1 < eb->buffer_count) {
962 					/*
963 					 * Execbuffer code expects last vma entry to be NULL,
964 					 * since we already initialized this entry,
965 					 * set the next value to NULL or we mess up
966 					 * cleanup handling.
967 					 */
968 					eb->vma[i + 1].vma = NULL;
969 				}
970 
971 				return err;
972 			}
973 
974 			eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
975 			eb->args->flags |= __EXEC_USERPTR_USED;
976 		}
977 	}
978 
979 	return 0;
980 
981 err:
982 	eb->vma[i].vma = NULL;
983 	return err;
984 }
985 
986 static int eb_lock_vmas(struct i915_execbuffer *eb)
987 {
988 	unsigned int i;
989 	int err;
990 
991 	for (i = 0; i < eb->buffer_count; i++) {
992 		struct eb_vma *ev = &eb->vma[i];
993 		struct i915_vma *vma = ev->vma;
994 
995 		err = i915_gem_object_lock(vma->obj, &eb->ww);
996 		if (err)
997 			return err;
998 	}
999 
1000 	return 0;
1001 }
1002 
1003 static int eb_validate_vmas(struct i915_execbuffer *eb)
1004 {
1005 	unsigned int i;
1006 	int err;
1007 
1008 	INIT_LIST_HEAD(&eb->unbound);
1009 
1010 	err = eb_lock_vmas(eb);
1011 	if (err)
1012 		return err;
1013 
1014 	for (i = 0; i < eb->buffer_count; i++) {
1015 		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
1016 		struct eb_vma *ev = &eb->vma[i];
1017 		struct i915_vma *vma = ev->vma;
1018 
1019 		err = eb_pin_vma(eb, entry, ev);
1020 		if (err == -EDEADLK)
1021 			return err;
1022 
1023 		if (!err) {
1024 			if (entry->offset != vma->node.start) {
1025 				entry->offset = vma->node.start | UPDATE;
1026 				eb->args->flags |= __EXEC_HAS_RELOC;
1027 			}
1028 		} else {
1029 			eb_unreserve_vma(ev);
1030 
1031 			list_add_tail(&ev->bind_link, &eb->unbound);
1032 			if (drm_mm_node_allocated(&vma->node)) {
1033 				err = i915_vma_unbind(vma);
1034 				if (err)
1035 					return err;
1036 			}
1037 		}
1038 
1039 		/* Reserve enough slots to accommodate composite fences */
1040 		err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches);
1041 		if (err)
1042 			return err;
1043 
1044 		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
1045 			   eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
1046 	}
1047 
1048 	if (!list_empty(&eb->unbound))
1049 		return eb_reserve(eb);
1050 
1051 	return 0;
1052 }
1053 
1054 static struct eb_vma *
1055 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
1056 {
1057 	if (eb->lut_size < 0) {
1058 		if (handle >= -eb->lut_size)
1059 			return NULL;
1060 		return &eb->vma[handle];
1061 	} else {
1062 		struct hlist_head *head;
1063 		struct eb_vma *ev;
1064 
1065 		head = &eb->buckets[hash_32(handle, eb->lut_size)];
1066 		hlist_for_each_entry(ev, head, node) {
1067 			if (ev->handle == handle)
1068 				return ev;
1069 		}
1070 		return NULL;
1071 	}
1072 }
1073 
1074 static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
1075 {
1076 	const unsigned int count = eb->buffer_count;
1077 	unsigned int i;
1078 
1079 	for (i = 0; i < count; i++) {
1080 		struct eb_vma *ev = &eb->vma[i];
1081 		struct i915_vma *vma = ev->vma;
1082 
1083 		if (!vma)
1084 			break;
1085 
1086 		eb_unreserve_vma(ev);
1087 
1088 		if (final)
1089 			i915_vma_put(vma);
1090 	}
1091 
1092 	eb_capture_release(eb);
1093 	eb_unpin_engine(eb);
1094 }
1095 
1096 static void eb_destroy(const struct i915_execbuffer *eb)
1097 {
1098 	if (eb->lut_size > 0)
1099 		kfree(eb->buckets);
1100 }
1101 
1102 static inline u64
1103 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1104 		  const struct i915_vma *target)
1105 {
1106 	return gen8_canonical_addr((int)reloc->delta + target->node.start);
1107 }
1108 
1109 static void reloc_cache_init(struct reloc_cache *cache,
1110 			     struct drm_i915_private *i915)
1111 {
1112 	cache->page = -1;
1113 	cache->vaddr = 0;
1114 	/* Must be a variable in the struct to allow GCC to unroll. */
1115 	cache->graphics_ver = GRAPHICS_VER(i915);
1116 	cache->has_llc = HAS_LLC(i915);
1117 	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1118 	cache->has_fence = cache->graphics_ver < 4;
1119 	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1120 	cache->node.flags = 0;
1121 }
1122 
1123 static inline void *unmask_page(unsigned long p)
1124 {
1125 	return (void *)(uintptr_t)(p & PAGE_MASK);
1126 }
1127 
1128 static inline unsigned int unmask_flags(unsigned long p)
1129 {
1130 	return p & ~PAGE_MASK;
1131 }
1132 
1133 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1134 
1135 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1136 {
1137 	struct drm_i915_private *i915 =
1138 		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1139 	return to_gt(i915)->ggtt;
1140 }
1141 
1142 static void reloc_cache_unmap(struct reloc_cache *cache)
1143 {
1144 	void *vaddr;
1145 
1146 	if (!cache->vaddr)
1147 		return;
1148 
1149 	vaddr = unmask_page(cache->vaddr);
1150 	if (cache->vaddr & KMAP)
1151 		kunmap_atomic(vaddr);
1152 	else
1153 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1154 }
1155 
1156 static void reloc_cache_remap(struct reloc_cache *cache,
1157 			      struct drm_i915_gem_object *obj)
1158 {
1159 	void *vaddr;
1160 
1161 	if (!cache->vaddr)
1162 		return;
1163 
1164 	if (cache->vaddr & KMAP) {
1165 		struct page *page = i915_gem_object_get_page(obj, cache->page);
1166 
1167 		vaddr = kmap_atomic(page);
1168 		cache->vaddr = unmask_flags(cache->vaddr) |
1169 			(unsigned long)vaddr;
1170 	} else {
1171 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1172 		unsigned long offset;
1173 
1174 		offset = cache->node.start;
1175 		if (!drm_mm_node_allocated(&cache->node))
1176 			offset += cache->page << PAGE_SHIFT;
1177 
1178 		cache->vaddr = (unsigned long)
1179 			io_mapping_map_atomic_wc(&ggtt->iomap, offset);
1180 	}
1181 }
1182 
1183 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1184 {
1185 	void *vaddr;
1186 
1187 	if (!cache->vaddr)
1188 		return;
1189 
1190 	vaddr = unmask_page(cache->vaddr);
1191 	if (cache->vaddr & KMAP) {
1192 		struct drm_i915_gem_object *obj =
1193 			(struct drm_i915_gem_object *)cache->node.mm;
1194 		if (cache->vaddr & CLFLUSH_AFTER)
1195 			mb();
1196 
1197 		kunmap_atomic(vaddr);
1198 		i915_gem_object_finish_access(obj);
1199 	} else {
1200 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1201 
1202 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1203 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1204 
1205 		if (drm_mm_node_allocated(&cache->node)) {
1206 			ggtt->vm.clear_range(&ggtt->vm,
1207 					     cache->node.start,
1208 					     cache->node.size);
1209 			mutex_lock(&ggtt->vm.mutex);
1210 			drm_mm_remove_node(&cache->node);
1211 			mutex_unlock(&ggtt->vm.mutex);
1212 		} else {
1213 			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1214 		}
1215 	}
1216 
1217 	cache->vaddr = 0;
1218 	cache->page = -1;
1219 }
1220 
1221 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1222 			struct reloc_cache *cache,
1223 			unsigned long pageno)
1224 {
1225 	void *vaddr;
1226 	struct page *page;
1227 
1228 	if (cache->vaddr) {
1229 		kunmap_atomic(unmask_page(cache->vaddr));
1230 	} else {
1231 		unsigned int flushes;
1232 		int err;
1233 
1234 		err = i915_gem_object_prepare_write(obj, &flushes);
1235 		if (err)
1236 			return ERR_PTR(err);
1237 
1238 		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1239 		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1240 
1241 		cache->vaddr = flushes | KMAP;
1242 		cache->node.mm = (void *)obj;
1243 		if (flushes)
1244 			mb();
1245 	}
1246 
1247 	page = i915_gem_object_get_page(obj, pageno);
1248 	if (!obj->mm.dirty)
1249 		set_page_dirty(page);
1250 
1251 	vaddr = kmap_atomic(page);
1252 	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1253 	cache->page = pageno;
1254 
1255 	return vaddr;
1256 }
1257 
1258 static void *reloc_iomap(struct i915_vma *batch,
1259 			 struct i915_execbuffer *eb,
1260 			 unsigned long page)
1261 {
1262 	struct drm_i915_gem_object *obj = batch->obj;
1263 	struct reloc_cache *cache = &eb->reloc_cache;
1264 	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1265 	unsigned long offset;
1266 	void *vaddr;
1267 
1268 	if (cache->vaddr) {
1269 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1270 		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1271 	} else {
1272 		struct i915_vma *vma = ERR_PTR(-ENODEV);
1273 		int err;
1274 
1275 		if (i915_gem_object_is_tiled(obj))
1276 			return ERR_PTR(-EINVAL);
1277 
1278 		if (use_cpu_reloc(cache, obj))
1279 			return NULL;
1280 
1281 		err = i915_gem_object_set_to_gtt_domain(obj, true);
1282 		if (err)
1283 			return ERR_PTR(err);
1284 
1285 		/*
1286 		 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch
1287 		 * VMA from the object list because we no longer pin.
1288 		 *
1289 		 * Only attempt to pin the batch buffer to ggtt if the current batch
1290 		 * is not inside ggtt, or the batch buffer is not misplaced.
1291 		 */
1292 		if (!i915_is_ggtt(batch->vm) ||
1293 		    !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) {
1294 			vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1295 							  PIN_MAPPABLE |
1296 							  PIN_NONBLOCK /* NOWARN */ |
1297 							  PIN_NOEVICT);
1298 		}
1299 
1300 		if (vma == ERR_PTR(-EDEADLK))
1301 			return vma;
1302 
1303 		if (IS_ERR(vma)) {
1304 			memset(&cache->node, 0, sizeof(cache->node));
1305 			mutex_lock(&ggtt->vm.mutex);
1306 			err = drm_mm_insert_node_in_range
1307 				(&ggtt->vm.mm, &cache->node,
1308 				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1309 				 0, ggtt->mappable_end,
1310 				 DRM_MM_INSERT_LOW);
1311 			mutex_unlock(&ggtt->vm.mutex);
1312 			if (err) /* no inactive aperture space, use cpu reloc */
1313 				return NULL;
1314 		} else {
1315 			cache->node.start = vma->node.start;
1316 			cache->node.mm = (void *)vma;
1317 		}
1318 	}
1319 
1320 	offset = cache->node.start;
1321 	if (drm_mm_node_allocated(&cache->node)) {
1322 		ggtt->vm.insert_page(&ggtt->vm,
1323 				     i915_gem_object_get_dma_address(obj, page),
1324 				     offset, I915_CACHE_NONE, 0);
1325 	} else {
1326 		offset += page << PAGE_SHIFT;
1327 	}
1328 
1329 	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1330 							 offset);
1331 	cache->page = page;
1332 	cache->vaddr = (unsigned long)vaddr;
1333 
1334 	return vaddr;
1335 }
1336 
1337 static void *reloc_vaddr(struct i915_vma *vma,
1338 			 struct i915_execbuffer *eb,
1339 			 unsigned long page)
1340 {
1341 	struct reloc_cache *cache = &eb->reloc_cache;
1342 	void *vaddr;
1343 
1344 	if (cache->page == page) {
1345 		vaddr = unmask_page(cache->vaddr);
1346 	} else {
1347 		vaddr = NULL;
1348 		if ((cache->vaddr & KMAP) == 0)
1349 			vaddr = reloc_iomap(vma, eb, page);
1350 		if (!vaddr)
1351 			vaddr = reloc_kmap(vma->obj, cache, page);
1352 	}
1353 
1354 	return vaddr;
1355 }
1356 
1357 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1358 {
1359 	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1360 		if (flushes & CLFLUSH_BEFORE)
1361 			drm_clflush_virt_range(addr, sizeof(*addr));
1362 
1363 		*addr = value;
1364 
1365 		/*
1366 		 * Writes to the same cacheline are serialised by the CPU
1367 		 * (including clflush). On the write path, we only require
1368 		 * that it hits memory in an orderly fashion and place
1369 		 * mb barriers at the start and end of the relocation phase
1370 		 * to ensure ordering of clflush wrt to the system.
1371 		 */
1372 		if (flushes & CLFLUSH_AFTER)
1373 			drm_clflush_virt_range(addr, sizeof(*addr));
1374 	} else
1375 		*addr = value;
1376 }
1377 
1378 static u64
1379 relocate_entry(struct i915_vma *vma,
1380 	       const struct drm_i915_gem_relocation_entry *reloc,
1381 	       struct i915_execbuffer *eb,
1382 	       const struct i915_vma *target)
1383 {
1384 	u64 target_addr = relocation_target(reloc, target);
1385 	u64 offset = reloc->offset;
1386 	bool wide = eb->reloc_cache.use_64bit_reloc;
1387 	void *vaddr;
1388 
1389 repeat:
1390 	vaddr = reloc_vaddr(vma, eb,
1391 			    offset >> PAGE_SHIFT);
1392 	if (IS_ERR(vaddr))
1393 		return PTR_ERR(vaddr);
1394 
1395 	GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1396 	clflush_write32(vaddr + offset_in_page(offset),
1397 			lower_32_bits(target_addr),
1398 			eb->reloc_cache.vaddr);
1399 
1400 	if (wide) {
1401 		offset += sizeof(u32);
1402 		target_addr >>= 32;
1403 		wide = false;
1404 		goto repeat;
1405 	}
1406 
1407 	return target->node.start | UPDATE;
1408 }
1409 
1410 static u64
1411 eb_relocate_entry(struct i915_execbuffer *eb,
1412 		  struct eb_vma *ev,
1413 		  const struct drm_i915_gem_relocation_entry *reloc)
1414 {
1415 	struct drm_i915_private *i915 = eb->i915;
1416 	struct eb_vma *target;
1417 	int err;
1418 
1419 	/* we've already hold a reference to all valid objects */
1420 	target = eb_get_vma(eb, reloc->target_handle);
1421 	if (unlikely(!target))
1422 		return -ENOENT;
1423 
1424 	/* Validate that the target is in a valid r/w GPU domain */
1425 	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1426 		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1427 			  "target %d offset %d "
1428 			  "read %08x write %08x",
1429 			  reloc->target_handle,
1430 			  (int) reloc->offset,
1431 			  reloc->read_domains,
1432 			  reloc->write_domain);
1433 		return -EINVAL;
1434 	}
1435 	if (unlikely((reloc->write_domain | reloc->read_domains)
1436 		     & ~I915_GEM_GPU_DOMAINS)) {
1437 		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1438 			  "target %d offset %d "
1439 			  "read %08x write %08x",
1440 			  reloc->target_handle,
1441 			  (int) reloc->offset,
1442 			  reloc->read_domains,
1443 			  reloc->write_domain);
1444 		return -EINVAL;
1445 	}
1446 
1447 	if (reloc->write_domain) {
1448 		target->flags |= EXEC_OBJECT_WRITE;
1449 
1450 		/*
1451 		 * Sandybridge PPGTT errata: We need a global gtt mapping
1452 		 * for MI and pipe_control writes because the gpu doesn't
1453 		 * properly redirect them through the ppgtt for non_secure
1454 		 * batchbuffers.
1455 		 */
1456 		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1457 		    GRAPHICS_VER(eb->i915) == 6 &&
1458 		    !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
1459 			struct i915_vma *vma = target->vma;
1460 
1461 			reloc_cache_unmap(&eb->reloc_cache);
1462 			mutex_lock(&vma->vm->mutex);
1463 			err = i915_vma_bind(target->vma,
1464 					    target->vma->obj->cache_level,
1465 					    PIN_GLOBAL, NULL, NULL);
1466 			mutex_unlock(&vma->vm->mutex);
1467 			reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
1468 			if (err)
1469 				return err;
1470 		}
1471 	}
1472 
1473 	/*
1474 	 * If the relocation already has the right value in it, no
1475 	 * more work needs to be done.
1476 	 */
1477 	if (!DBG_FORCE_RELOC &&
1478 	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1479 		return 0;
1480 
1481 	/* Check that the relocation address is valid... */
1482 	if (unlikely(reloc->offset >
1483 		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1484 		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1485 			  "target %d offset %d size %d.\n",
1486 			  reloc->target_handle,
1487 			  (int)reloc->offset,
1488 			  (int)ev->vma->size);
1489 		return -EINVAL;
1490 	}
1491 	if (unlikely(reloc->offset & 3)) {
1492 		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1493 			  "target %d offset %d.\n",
1494 			  reloc->target_handle,
1495 			  (int)reloc->offset);
1496 		return -EINVAL;
1497 	}
1498 
1499 	/*
1500 	 * If we write into the object, we need to force the synchronisation
1501 	 * barrier, either with an asynchronous clflush or if we executed the
1502 	 * patching using the GPU (though that should be serialised by the
1503 	 * timeline). To be completely sure, and since we are required to
1504 	 * do relocations we are already stalling, disable the user's opt
1505 	 * out of our synchronisation.
1506 	 */
1507 	ev->flags &= ~EXEC_OBJECT_ASYNC;
1508 
1509 	/* and update the user's relocation entry */
1510 	return relocate_entry(ev->vma, reloc, eb, target->vma);
1511 }
1512 
1513 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1514 {
1515 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1516 	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1517 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1518 	struct drm_i915_gem_relocation_entry __user *urelocs =
1519 		u64_to_user_ptr(entry->relocs_ptr);
1520 	unsigned long remain = entry->relocation_count;
1521 
1522 	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1523 		return -EINVAL;
1524 
1525 	/*
1526 	 * We must check that the entire relocation array is safe
1527 	 * to read. However, if the array is not writable the user loses
1528 	 * the updated relocation values.
1529 	 */
1530 	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1531 		return -EFAULT;
1532 
1533 	do {
1534 		struct drm_i915_gem_relocation_entry *r = stack;
1535 		unsigned int count =
1536 			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1537 		unsigned int copied;
1538 
1539 		/*
1540 		 * This is the fast path and we cannot handle a pagefault
1541 		 * whilst holding the struct mutex lest the user pass in the
1542 		 * relocations contained within a mmaped bo. For in such a case
1543 		 * we, the page fault handler would call i915_gem_fault() and
1544 		 * we would try to acquire the struct mutex again. Obviously
1545 		 * this is bad and so lockdep complains vehemently.
1546 		 */
1547 		pagefault_disable();
1548 		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1549 		pagefault_enable();
1550 		if (unlikely(copied)) {
1551 			remain = -EFAULT;
1552 			goto out;
1553 		}
1554 
1555 		remain -= count;
1556 		do {
1557 			u64 offset = eb_relocate_entry(eb, ev, r);
1558 
1559 			if (likely(offset == 0)) {
1560 			} else if ((s64)offset < 0) {
1561 				remain = (int)offset;
1562 				goto out;
1563 			} else {
1564 				/*
1565 				 * Note that reporting an error now
1566 				 * leaves everything in an inconsistent
1567 				 * state as we have *already* changed
1568 				 * the relocation value inside the
1569 				 * object. As we have not changed the
1570 				 * reloc.presumed_offset or will not
1571 				 * change the execobject.offset, on the
1572 				 * call we may not rewrite the value
1573 				 * inside the object, leaving it
1574 				 * dangling and causing a GPU hang. Unless
1575 				 * userspace dynamically rebuilds the
1576 				 * relocations on each execbuf rather than
1577 				 * presume a static tree.
1578 				 *
1579 				 * We did previously check if the relocations
1580 				 * were writable (access_ok), an error now
1581 				 * would be a strange race with mprotect,
1582 				 * having already demonstrated that we
1583 				 * can read from this userspace address.
1584 				 */
1585 				offset = gen8_canonical_addr(offset & ~UPDATE);
1586 				__put_user(offset,
1587 					   &urelocs[r - stack].presumed_offset);
1588 			}
1589 		} while (r++, --count);
1590 		urelocs += ARRAY_SIZE(stack);
1591 	} while (remain);
1592 out:
1593 	reloc_cache_reset(&eb->reloc_cache, eb);
1594 	return remain;
1595 }
1596 
1597 static int
1598 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1599 {
1600 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1601 	struct drm_i915_gem_relocation_entry *relocs =
1602 		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1603 	unsigned int i;
1604 	int err;
1605 
1606 	for (i = 0; i < entry->relocation_count; i++) {
1607 		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1608 
1609 		if ((s64)offset < 0) {
1610 			err = (int)offset;
1611 			goto err;
1612 		}
1613 	}
1614 	err = 0;
1615 err:
1616 	reloc_cache_reset(&eb->reloc_cache, eb);
1617 	return err;
1618 }
1619 
1620 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1621 {
1622 	const char __user *addr, *end;
1623 	unsigned long size;
1624 	char __maybe_unused c;
1625 
1626 	size = entry->relocation_count;
1627 	if (size == 0)
1628 		return 0;
1629 
1630 	if (size > N_RELOC(ULONG_MAX))
1631 		return -EINVAL;
1632 
1633 	addr = u64_to_user_ptr(entry->relocs_ptr);
1634 	size *= sizeof(struct drm_i915_gem_relocation_entry);
1635 	if (!access_ok(addr, size))
1636 		return -EFAULT;
1637 
1638 	end = addr + size;
1639 	for (; addr < end; addr += PAGE_SIZE) {
1640 		int err = __get_user(c, addr);
1641 		if (err)
1642 			return err;
1643 	}
1644 	return __get_user(c, end - 1);
1645 }
1646 
1647 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1648 {
1649 	struct drm_i915_gem_relocation_entry *relocs;
1650 	const unsigned int count = eb->buffer_count;
1651 	unsigned int i;
1652 	int err;
1653 
1654 	for (i = 0; i < count; i++) {
1655 		const unsigned int nreloc = eb->exec[i].relocation_count;
1656 		struct drm_i915_gem_relocation_entry __user *urelocs;
1657 		unsigned long size;
1658 		unsigned long copied;
1659 
1660 		if (nreloc == 0)
1661 			continue;
1662 
1663 		err = check_relocations(&eb->exec[i]);
1664 		if (err)
1665 			goto err;
1666 
1667 		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1668 		size = nreloc * sizeof(*relocs);
1669 
1670 		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1671 		if (!relocs) {
1672 			err = -ENOMEM;
1673 			goto err;
1674 		}
1675 
1676 		/* copy_from_user is limited to < 4GiB */
1677 		copied = 0;
1678 		do {
1679 			unsigned int len =
1680 				min_t(u64, BIT_ULL(31), size - copied);
1681 
1682 			if (__copy_from_user((char *)relocs + copied,
1683 					     (char __user *)urelocs + copied,
1684 					     len))
1685 				goto end;
1686 
1687 			copied += len;
1688 		} while (copied < size);
1689 
1690 		/*
1691 		 * As we do not update the known relocation offsets after
1692 		 * relocating (due to the complexities in lock handling),
1693 		 * we need to mark them as invalid now so that we force the
1694 		 * relocation processing next time. Just in case the target
1695 		 * object is evicted and then rebound into its old
1696 		 * presumed_offset before the next execbuffer - if that
1697 		 * happened we would make the mistake of assuming that the
1698 		 * relocations were valid.
1699 		 */
1700 		if (!user_access_begin(urelocs, size))
1701 			goto end;
1702 
1703 		for (copied = 0; copied < nreloc; copied++)
1704 			unsafe_put_user(-1,
1705 					&urelocs[copied].presumed_offset,
1706 					end_user);
1707 		user_access_end();
1708 
1709 		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1710 	}
1711 
1712 	return 0;
1713 
1714 end_user:
1715 	user_access_end();
1716 end:
1717 	kvfree(relocs);
1718 	err = -EFAULT;
1719 err:
1720 	while (i--) {
1721 		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1722 		if (eb->exec[i].relocation_count)
1723 			kvfree(relocs);
1724 	}
1725 	return err;
1726 }
1727 
1728 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1729 {
1730 	const unsigned int count = eb->buffer_count;
1731 	unsigned int i;
1732 
1733 	for (i = 0; i < count; i++) {
1734 		int err;
1735 
1736 		err = check_relocations(&eb->exec[i]);
1737 		if (err)
1738 			return err;
1739 	}
1740 
1741 	return 0;
1742 }
1743 
1744 static int eb_reinit_userptr(struct i915_execbuffer *eb)
1745 {
1746 	const unsigned int count = eb->buffer_count;
1747 	unsigned int i;
1748 	int ret;
1749 
1750 	if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1751 		return 0;
1752 
1753 	for (i = 0; i < count; i++) {
1754 		struct eb_vma *ev = &eb->vma[i];
1755 
1756 		if (!i915_gem_object_is_userptr(ev->vma->obj))
1757 			continue;
1758 
1759 		ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1760 		if (ret)
1761 			return ret;
1762 
1763 		ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1764 	}
1765 
1766 	return 0;
1767 }
1768 
1769 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
1770 {
1771 	bool have_copy = false;
1772 	struct eb_vma *ev;
1773 	int err = 0;
1774 
1775 repeat:
1776 	if (signal_pending(current)) {
1777 		err = -ERESTARTSYS;
1778 		goto out;
1779 	}
1780 
1781 	/* We may process another execbuffer during the unlock... */
1782 	eb_release_vmas(eb, false);
1783 	i915_gem_ww_ctx_fini(&eb->ww);
1784 
1785 	/*
1786 	 * We take 3 passes through the slowpatch.
1787 	 *
1788 	 * 1 - we try to just prefault all the user relocation entries and
1789 	 * then attempt to reuse the atomic pagefault disabled fast path again.
1790 	 *
1791 	 * 2 - we copy the user entries to a local buffer here outside of the
1792 	 * local and allow ourselves to wait upon any rendering before
1793 	 * relocations
1794 	 *
1795 	 * 3 - we already have a local copy of the relocation entries, but
1796 	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1797 	 */
1798 	if (!err) {
1799 		err = eb_prefault_relocations(eb);
1800 	} else if (!have_copy) {
1801 		err = eb_copy_relocations(eb);
1802 		have_copy = err == 0;
1803 	} else {
1804 		cond_resched();
1805 		err = 0;
1806 	}
1807 
1808 	if (!err)
1809 		err = eb_reinit_userptr(eb);
1810 
1811 	i915_gem_ww_ctx_init(&eb->ww, true);
1812 	if (err)
1813 		goto out;
1814 
1815 	/* reacquire the objects */
1816 repeat_validate:
1817 	err = eb_pin_engine(eb, false);
1818 	if (err)
1819 		goto err;
1820 
1821 	err = eb_validate_vmas(eb);
1822 	if (err)
1823 		goto err;
1824 
1825 	GEM_BUG_ON(!eb->batches[0]);
1826 
1827 	list_for_each_entry(ev, &eb->relocs, reloc_link) {
1828 		if (!have_copy) {
1829 			err = eb_relocate_vma(eb, ev);
1830 			if (err)
1831 				break;
1832 		} else {
1833 			err = eb_relocate_vma_slow(eb, ev);
1834 			if (err)
1835 				break;
1836 		}
1837 	}
1838 
1839 	if (err == -EDEADLK)
1840 		goto err;
1841 
1842 	if (err && !have_copy)
1843 		goto repeat;
1844 
1845 	if (err)
1846 		goto err;
1847 
1848 	/* as last step, parse the command buffer */
1849 	err = eb_parse(eb);
1850 	if (err)
1851 		goto err;
1852 
1853 	/*
1854 	 * Leave the user relocations as are, this is the painfully slow path,
1855 	 * and we want to avoid the complication of dropping the lock whilst
1856 	 * having buffers reserved in the aperture and so causing spurious
1857 	 * ENOSPC for random operations.
1858 	 */
1859 
1860 err:
1861 	if (err == -EDEADLK) {
1862 		eb_release_vmas(eb, false);
1863 		err = i915_gem_ww_ctx_backoff(&eb->ww);
1864 		if (!err)
1865 			goto repeat_validate;
1866 	}
1867 
1868 	if (err == -EAGAIN)
1869 		goto repeat;
1870 
1871 out:
1872 	if (have_copy) {
1873 		const unsigned int count = eb->buffer_count;
1874 		unsigned int i;
1875 
1876 		for (i = 0; i < count; i++) {
1877 			const struct drm_i915_gem_exec_object2 *entry =
1878 				&eb->exec[i];
1879 			struct drm_i915_gem_relocation_entry *relocs;
1880 
1881 			if (!entry->relocation_count)
1882 				continue;
1883 
1884 			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1885 			kvfree(relocs);
1886 		}
1887 	}
1888 
1889 	return err;
1890 }
1891 
1892 static int eb_relocate_parse(struct i915_execbuffer *eb)
1893 {
1894 	int err;
1895 	bool throttle = true;
1896 
1897 retry:
1898 	err = eb_pin_engine(eb, throttle);
1899 	if (err) {
1900 		if (err != -EDEADLK)
1901 			return err;
1902 
1903 		goto err;
1904 	}
1905 
1906 	/* only throttle once, even if we didn't need to throttle */
1907 	throttle = false;
1908 
1909 	err = eb_validate_vmas(eb);
1910 	if (err == -EAGAIN)
1911 		goto slow;
1912 	else if (err)
1913 		goto err;
1914 
1915 	/* The objects are in their final locations, apply the relocations. */
1916 	if (eb->args->flags & __EXEC_HAS_RELOC) {
1917 		struct eb_vma *ev;
1918 
1919 		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1920 			err = eb_relocate_vma(eb, ev);
1921 			if (err)
1922 				break;
1923 		}
1924 
1925 		if (err == -EDEADLK)
1926 			goto err;
1927 		else if (err)
1928 			goto slow;
1929 	}
1930 
1931 	if (!err)
1932 		err = eb_parse(eb);
1933 
1934 err:
1935 	if (err == -EDEADLK) {
1936 		eb_release_vmas(eb, false);
1937 		err = i915_gem_ww_ctx_backoff(&eb->ww);
1938 		if (!err)
1939 			goto retry;
1940 	}
1941 
1942 	return err;
1943 
1944 slow:
1945 	err = eb_relocate_parse_slow(eb);
1946 	if (err)
1947 		/*
1948 		 * If the user expects the execobject.offset and
1949 		 * reloc.presumed_offset to be an exact match,
1950 		 * as for using NO_RELOC, then we cannot update
1951 		 * the execobject.offset until we have completed
1952 		 * relocation.
1953 		 */
1954 		eb->args->flags &= ~__EXEC_HAS_RELOC;
1955 
1956 	return err;
1957 }
1958 
1959 /*
1960  * Using two helper loops for the order of which requests / batches are created
1961  * and added the to backend. Requests are created in order from the parent to
1962  * the last child. Requests are added in the reverse order, from the last child
1963  * to parent. This is done for locking reasons as the timeline lock is acquired
1964  * during request creation and released when the request is added to the
1965  * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
1966  * the ordering.
1967  */
1968 #define for_each_batch_create_order(_eb, _i) \
1969 	for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
1970 #define for_each_batch_add_order(_eb, _i) \
1971 	BUILD_BUG_ON(!typecheck(int, _i)); \
1972 	for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
1973 
1974 static struct i915_request *
1975 eb_find_first_request_added(struct i915_execbuffer *eb)
1976 {
1977 	int i;
1978 
1979 	for_each_batch_add_order(eb, i)
1980 		if (eb->requests[i])
1981 			return eb->requests[i];
1982 
1983 	GEM_BUG_ON("Request not found");
1984 
1985 	return NULL;
1986 }
1987 
1988 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
1989 
1990 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
1991 static int eb_capture_stage(struct i915_execbuffer *eb)
1992 {
1993 	const unsigned int count = eb->buffer_count;
1994 	unsigned int i = count, j;
1995 
1996 	while (i--) {
1997 		struct eb_vma *ev = &eb->vma[i];
1998 		struct i915_vma *vma = ev->vma;
1999 		unsigned int flags = ev->flags;
2000 
2001 		if (!(flags & EXEC_OBJECT_CAPTURE))
2002 			continue;
2003 
2004 		if (i915_gem_context_is_recoverable(eb->gem_context) &&
2005 		    (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0)))
2006 			return -EINVAL;
2007 
2008 		for_each_batch_create_order(eb, j) {
2009 			struct i915_capture_list *capture;
2010 
2011 			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
2012 			if (!capture)
2013 				continue;
2014 
2015 			capture->next = eb->capture_lists[j];
2016 			capture->vma_res = i915_vma_resource_get(vma->resource);
2017 			eb->capture_lists[j] = capture;
2018 		}
2019 	}
2020 
2021 	return 0;
2022 }
2023 
2024 /* Commit once we're in the critical path */
2025 static void eb_capture_commit(struct i915_execbuffer *eb)
2026 {
2027 	unsigned int j;
2028 
2029 	for_each_batch_create_order(eb, j) {
2030 		struct i915_request *rq = eb->requests[j];
2031 
2032 		if (!rq)
2033 			break;
2034 
2035 		rq->capture_list = eb->capture_lists[j];
2036 		eb->capture_lists[j] = NULL;
2037 	}
2038 }
2039 
2040 /*
2041  * Release anything that didn't get committed due to errors.
2042  * The capture_list will otherwise be freed at request retire.
2043  */
2044 static void eb_capture_release(struct i915_execbuffer *eb)
2045 {
2046 	unsigned int j;
2047 
2048 	for_each_batch_create_order(eb, j) {
2049 		if (eb->capture_lists[j]) {
2050 			i915_request_free_capture_list(eb->capture_lists[j]);
2051 			eb->capture_lists[j] = NULL;
2052 		}
2053 	}
2054 }
2055 
2056 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2057 {
2058 	memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
2059 }
2060 
2061 #else
2062 
2063 static int eb_capture_stage(struct i915_execbuffer *eb)
2064 {
2065 	return 0;
2066 }
2067 
2068 static void eb_capture_commit(struct i915_execbuffer *eb)
2069 {
2070 }
2071 
2072 static void eb_capture_release(struct i915_execbuffer *eb)
2073 {
2074 }
2075 
2076 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2077 {
2078 }
2079 
2080 #endif
2081 
2082 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2083 {
2084 	const unsigned int count = eb->buffer_count;
2085 	unsigned int i = count;
2086 	int err = 0, j;
2087 
2088 	while (i--) {
2089 		struct eb_vma *ev = &eb->vma[i];
2090 		struct i915_vma *vma = ev->vma;
2091 		unsigned int flags = ev->flags;
2092 		struct drm_i915_gem_object *obj = vma->obj;
2093 
2094 		assert_vma_held(vma);
2095 
2096 		/*
2097 		 * If the GPU is not _reading_ through the CPU cache, we need
2098 		 * to make sure that any writes (both previous GPU writes from
2099 		 * before a change in snooping levels and normal CPU writes)
2100 		 * caught in that cache are flushed to main memory.
2101 		 *
2102 		 * We want to say
2103 		 *   obj->cache_dirty &&
2104 		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2105 		 * but gcc's optimiser doesn't handle that as well and emits
2106 		 * two jumps instead of one. Maybe one day...
2107 		 *
2108 		 * FIXME: There is also sync flushing in set_pages(), which
2109 		 * serves a different purpose(some of the time at least).
2110 		 *
2111 		 * We should consider:
2112 		 *
2113 		 *   1. Rip out the async flush code.
2114 		 *
2115 		 *   2. Or make the sync flushing use the async clflush path
2116 		 *   using mandatory fences underneath. Currently the below
2117 		 *   async flush happens after we bind the object.
2118 		 */
2119 		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2120 			if (i915_gem_clflush_object(obj, 0))
2121 				flags &= ~EXEC_OBJECT_ASYNC;
2122 		}
2123 
2124 		/* We only need to await on the first request */
2125 		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2126 			err = i915_request_await_object
2127 				(eb_find_first_request_added(eb), obj,
2128 				 flags & EXEC_OBJECT_WRITE);
2129 		}
2130 
2131 		for_each_batch_add_order(eb, j) {
2132 			if (err)
2133 				break;
2134 			if (!eb->requests[j])
2135 				continue;
2136 
2137 			err = _i915_vma_move_to_active(vma, eb->requests[j],
2138 						       j ? NULL :
2139 						       eb->composite_fence ?
2140 						       eb->composite_fence :
2141 						       &eb->requests[j]->fence,
2142 						       flags | __EXEC_OBJECT_NO_RESERVE |
2143 						       __EXEC_OBJECT_NO_REQUEST_AWAIT);
2144 		}
2145 	}
2146 
2147 #ifdef CONFIG_MMU_NOTIFIER
2148 	if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2149 		read_lock(&eb->i915->mm.notifier_lock);
2150 
2151 		/*
2152 		 * count is always at least 1, otherwise __EXEC_USERPTR_USED
2153 		 * could not have been set
2154 		 */
2155 		for (i = 0; i < count; i++) {
2156 			struct eb_vma *ev = &eb->vma[i];
2157 			struct drm_i915_gem_object *obj = ev->vma->obj;
2158 
2159 			if (!i915_gem_object_is_userptr(obj))
2160 				continue;
2161 
2162 			err = i915_gem_object_userptr_submit_done(obj);
2163 			if (err)
2164 				break;
2165 		}
2166 
2167 		read_unlock(&eb->i915->mm.notifier_lock);
2168 	}
2169 #endif
2170 
2171 	if (unlikely(err))
2172 		goto err_skip;
2173 
2174 	/* Unconditionally flush any chipset caches (for streaming writes). */
2175 	intel_gt_chipset_flush(eb->gt);
2176 	eb_capture_commit(eb);
2177 
2178 	return 0;
2179 
2180 err_skip:
2181 	for_each_batch_create_order(eb, j) {
2182 		if (!eb->requests[j])
2183 			break;
2184 
2185 		i915_request_set_error_once(eb->requests[j], err);
2186 	}
2187 	return err;
2188 }
2189 
2190 static int i915_gem_check_execbuffer(struct drm_i915_private *i915,
2191 				     struct drm_i915_gem_execbuffer2 *exec)
2192 {
2193 	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2194 		return -EINVAL;
2195 
2196 	/* Kernel clipping was a DRI1 misfeature */
2197 	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2198 			     I915_EXEC_USE_EXTENSIONS))) {
2199 		if (exec->num_cliprects || exec->cliprects_ptr)
2200 			return -EINVAL;
2201 	}
2202 
2203 	if (exec->DR4 == 0xffffffff) {
2204 		drm_dbg(&i915->drm, "UXA submitting garbage DR4, fixing up\n");
2205 		exec->DR4 = 0;
2206 	}
2207 	if (exec->DR1 || exec->DR4)
2208 		return -EINVAL;
2209 
2210 	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2211 		return -EINVAL;
2212 
2213 	return 0;
2214 }
2215 
2216 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2217 {
2218 	u32 *cs;
2219 	int i;
2220 
2221 	if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
2222 		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2223 		return -EINVAL;
2224 	}
2225 
2226 	cs = intel_ring_begin(rq, 4 * 2 + 2);
2227 	if (IS_ERR(cs))
2228 		return PTR_ERR(cs);
2229 
2230 	*cs++ = MI_LOAD_REGISTER_IMM(4);
2231 	for (i = 0; i < 4; i++) {
2232 		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2233 		*cs++ = 0;
2234 	}
2235 	*cs++ = MI_NOOP;
2236 	intel_ring_advance(rq, cs);
2237 
2238 	return 0;
2239 }
2240 
2241 static struct i915_vma *
2242 shadow_batch_pin(struct i915_execbuffer *eb,
2243 		 struct drm_i915_gem_object *obj,
2244 		 struct i915_address_space *vm,
2245 		 unsigned int flags)
2246 {
2247 	struct i915_vma *vma;
2248 	int err;
2249 
2250 	vma = i915_vma_instance(obj, vm, NULL);
2251 	if (IS_ERR(vma))
2252 		return vma;
2253 
2254 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE);
2255 	if (err)
2256 		return ERR_PTR(err);
2257 
2258 	return vma;
2259 }
2260 
2261 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2262 {
2263 	/*
2264 	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2265 	 * batch" bit. Hence we need to pin secure batches into the global gtt.
2266 	 * hsw should have this fixed, but bdw mucks it up again. */
2267 	if (eb->batch_flags & I915_DISPATCH_SECURE)
2268 		return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE);
2269 
2270 	return NULL;
2271 }
2272 
2273 static int eb_parse(struct i915_execbuffer *eb)
2274 {
2275 	struct drm_i915_private *i915 = eb->i915;
2276 	struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2277 	struct i915_vma *shadow, *trampoline, *batch;
2278 	unsigned long len;
2279 	int err;
2280 
2281 	if (!eb_use_cmdparser(eb)) {
2282 		batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
2283 		if (IS_ERR(batch))
2284 			return PTR_ERR(batch);
2285 
2286 		goto secure_batch;
2287 	}
2288 
2289 	if (intel_context_is_parallel(eb->context))
2290 		return -EINVAL;
2291 
2292 	len = eb->batch_len[0];
2293 	if (!CMDPARSER_USES_GGTT(eb->i915)) {
2294 		/*
2295 		 * ppGTT backed shadow buffers must be mapped RO, to prevent
2296 		 * post-scan tampering
2297 		 */
2298 		if (!eb->context->vm->has_read_only) {
2299 			drm_dbg(&i915->drm,
2300 				"Cannot prevent post-scan tampering without RO capable vm\n");
2301 			return -EINVAL;
2302 		}
2303 	} else {
2304 		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2305 	}
2306 	if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
2307 		return -EINVAL;
2308 
2309 	if (!pool) {
2310 		pool = intel_gt_get_buffer_pool(eb->gt, len,
2311 						I915_MAP_WB);
2312 		if (IS_ERR(pool))
2313 			return PTR_ERR(pool);
2314 		eb->batch_pool = pool;
2315 	}
2316 
2317 	err = i915_gem_object_lock(pool->obj, &eb->ww);
2318 	if (err)
2319 		return err;
2320 
2321 	shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2322 	if (IS_ERR(shadow))
2323 		return PTR_ERR(shadow);
2324 
2325 	intel_gt_buffer_pool_mark_used(pool);
2326 	i915_gem_object_set_readonly(shadow->obj);
2327 	shadow->private = pool;
2328 
2329 	trampoline = NULL;
2330 	if (CMDPARSER_USES_GGTT(eb->i915)) {
2331 		trampoline = shadow;
2332 
2333 		shadow = shadow_batch_pin(eb, pool->obj,
2334 					  &eb->gt->ggtt->vm,
2335 					  PIN_GLOBAL);
2336 		if (IS_ERR(shadow))
2337 			return PTR_ERR(shadow);
2338 
2339 		shadow->private = pool;
2340 
2341 		eb->batch_flags |= I915_DISPATCH_SECURE;
2342 	}
2343 
2344 	batch = eb_dispatch_secure(eb, shadow);
2345 	if (IS_ERR(batch))
2346 		return PTR_ERR(batch);
2347 
2348 	err = dma_resv_reserve_fences(shadow->obj->base.resv, 1);
2349 	if (err)
2350 		return err;
2351 
2352 	err = intel_engine_cmd_parser(eb->context->engine,
2353 				      eb->batches[0]->vma,
2354 				      eb->batch_start_offset,
2355 				      eb->batch_len[0],
2356 				      shadow, trampoline);
2357 	if (err)
2358 		return err;
2359 
2360 	eb->batches[0] = &eb->vma[eb->buffer_count++];
2361 	eb->batches[0]->vma = i915_vma_get(shadow);
2362 	eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2363 
2364 	eb->trampoline = trampoline;
2365 	eb->batch_start_offset = 0;
2366 
2367 secure_batch:
2368 	if (batch) {
2369 		if (intel_context_is_parallel(eb->context))
2370 			return -EINVAL;
2371 
2372 		eb->batches[0] = &eb->vma[eb->buffer_count++];
2373 		eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2374 		eb->batches[0]->vma = i915_vma_get(batch);
2375 	}
2376 	return 0;
2377 }
2378 
2379 static int eb_request_submit(struct i915_execbuffer *eb,
2380 			     struct i915_request *rq,
2381 			     struct i915_vma *batch,
2382 			     u64 batch_len)
2383 {
2384 	int err;
2385 
2386 	if (intel_context_nopreempt(rq->context))
2387 		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
2388 
2389 	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2390 		err = i915_reset_gen7_sol_offsets(rq);
2391 		if (err)
2392 			return err;
2393 	}
2394 
2395 	/*
2396 	 * After we completed waiting for other engines (using HW semaphores)
2397 	 * then we can signal that this request/batch is ready to run. This
2398 	 * allows us to determine if the batch is still waiting on the GPU
2399 	 * or actually running by checking the breadcrumb.
2400 	 */
2401 	if (rq->context->engine->emit_init_breadcrumb) {
2402 		err = rq->context->engine->emit_init_breadcrumb(rq);
2403 		if (err)
2404 			return err;
2405 	}
2406 
2407 	err = rq->context->engine->emit_bb_start(rq,
2408 						 batch->node.start +
2409 						 eb->batch_start_offset,
2410 						 batch_len,
2411 						 eb->batch_flags);
2412 	if (err)
2413 		return err;
2414 
2415 	if (eb->trampoline) {
2416 		GEM_BUG_ON(intel_context_is_parallel(rq->context));
2417 		GEM_BUG_ON(eb->batch_start_offset);
2418 		err = rq->context->engine->emit_bb_start(rq,
2419 							 eb->trampoline->node.start +
2420 							 batch_len, 0, 0);
2421 		if (err)
2422 			return err;
2423 	}
2424 
2425 	return 0;
2426 }
2427 
2428 static int eb_submit(struct i915_execbuffer *eb)
2429 {
2430 	unsigned int i;
2431 	int err;
2432 
2433 	err = eb_move_to_gpu(eb);
2434 
2435 	for_each_batch_create_order(eb, i) {
2436 		if (!eb->requests[i])
2437 			break;
2438 
2439 		trace_i915_request_queue(eb->requests[i], eb->batch_flags);
2440 		if (!err)
2441 			err = eb_request_submit(eb, eb->requests[i],
2442 						eb->batches[i]->vma,
2443 						eb->batch_len[i]);
2444 	}
2445 
2446 	return err;
2447 }
2448 
2449 static int num_vcs_engines(struct drm_i915_private *i915)
2450 {
2451 	return hweight_long(VDBOX_MASK(to_gt(i915)));
2452 }
2453 
2454 /*
2455  * Find one BSD ring to dispatch the corresponding BSD command.
2456  * The engine index is returned.
2457  */
2458 static unsigned int
2459 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2460 			 struct drm_file *file)
2461 {
2462 	struct drm_i915_file_private *file_priv = file->driver_priv;
2463 
2464 	/* Check whether the file_priv has already selected one ring. */
2465 	if ((int)file_priv->bsd_engine < 0)
2466 		file_priv->bsd_engine =
2467 			get_random_u32_below(num_vcs_engines(dev_priv));
2468 
2469 	return file_priv->bsd_engine;
2470 }
2471 
2472 static const enum intel_engine_id user_ring_map[] = {
2473 	[I915_EXEC_DEFAULT]	= RCS0,
2474 	[I915_EXEC_RENDER]	= RCS0,
2475 	[I915_EXEC_BLT]		= BCS0,
2476 	[I915_EXEC_BSD]		= VCS0,
2477 	[I915_EXEC_VEBOX]	= VECS0
2478 };
2479 
2480 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2481 {
2482 	struct intel_ring *ring = ce->ring;
2483 	struct intel_timeline *tl = ce->timeline;
2484 	struct i915_request *rq;
2485 
2486 	/*
2487 	 * Completely unscientific finger-in-the-air estimates for suitable
2488 	 * maximum user request size (to avoid blocking) and then backoff.
2489 	 */
2490 	if (intel_ring_update_space(ring) >= PAGE_SIZE)
2491 		return NULL;
2492 
2493 	/*
2494 	 * Find a request that after waiting upon, there will be at least half
2495 	 * the ring available. The hysteresis allows us to compete for the
2496 	 * shared ring and should mean that we sleep less often prior to
2497 	 * claiming our resources, but not so long that the ring completely
2498 	 * drains before we can submit our next request.
2499 	 */
2500 	list_for_each_entry(rq, &tl->requests, link) {
2501 		if (rq->ring != ring)
2502 			continue;
2503 
2504 		if (__intel_ring_space(rq->postfix,
2505 				       ring->emit, ring->size) > ring->size / 2)
2506 			break;
2507 	}
2508 	if (&rq->link == &tl->requests)
2509 		return NULL; /* weird, we will check again later for real */
2510 
2511 	return i915_request_get(rq);
2512 }
2513 
2514 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
2515 			   bool throttle)
2516 {
2517 	struct intel_timeline *tl;
2518 	struct i915_request *rq = NULL;
2519 
2520 	/*
2521 	 * Take a local wakeref for preparing to dispatch the execbuf as
2522 	 * we expect to access the hardware fairly frequently in the
2523 	 * process, and require the engine to be kept awake between accesses.
2524 	 * Upon dispatch, we acquire another prolonged wakeref that we hold
2525 	 * until the timeline is idle, which in turn releases the wakeref
2526 	 * taken on the engine, and the parent device.
2527 	 */
2528 	tl = intel_context_timeline_lock(ce);
2529 	if (IS_ERR(tl))
2530 		return PTR_ERR(tl);
2531 
2532 	intel_context_enter(ce);
2533 	if (throttle)
2534 		rq = eb_throttle(eb, ce);
2535 	intel_context_timeline_unlock(tl);
2536 
2537 	if (rq) {
2538 		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2539 		long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
2540 
2541 		if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2542 				      timeout) < 0) {
2543 			i915_request_put(rq);
2544 
2545 			/*
2546 			 * Error path, cannot use intel_context_timeline_lock as
2547 			 * that is user interruptable and this clean up step
2548 			 * must be done.
2549 			 */
2550 			mutex_lock(&ce->timeline->mutex);
2551 			intel_context_exit(ce);
2552 			mutex_unlock(&ce->timeline->mutex);
2553 
2554 			if (nonblock)
2555 				return -EWOULDBLOCK;
2556 			else
2557 				return -EINTR;
2558 		}
2559 		i915_request_put(rq);
2560 	}
2561 
2562 	return 0;
2563 }
2564 
2565 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2566 {
2567 	struct intel_context *ce = eb->context, *child;
2568 	int err;
2569 	int i = 0, j = 0;
2570 
2571 	GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2572 
2573 	if (unlikely(intel_context_is_banned(ce)))
2574 		return -EIO;
2575 
2576 	/*
2577 	 * Pinning the contexts may generate requests in order to acquire
2578 	 * GGTT space, so do this first before we reserve a seqno for
2579 	 * ourselves.
2580 	 */
2581 	err = intel_context_pin_ww(ce, &eb->ww);
2582 	if (err)
2583 		return err;
2584 	for_each_child(ce, child) {
2585 		err = intel_context_pin_ww(child, &eb->ww);
2586 		GEM_BUG_ON(err);	/* perma-pinned should incr a counter */
2587 	}
2588 
2589 	for_each_child(ce, child) {
2590 		err = eb_pin_timeline(eb, child, throttle);
2591 		if (err)
2592 			goto unwind;
2593 		++i;
2594 	}
2595 	err = eb_pin_timeline(eb, ce, throttle);
2596 	if (err)
2597 		goto unwind;
2598 
2599 	eb->args->flags |= __EXEC_ENGINE_PINNED;
2600 	return 0;
2601 
2602 unwind:
2603 	for_each_child(ce, child) {
2604 		if (j++ < i) {
2605 			mutex_lock(&child->timeline->mutex);
2606 			intel_context_exit(child);
2607 			mutex_unlock(&child->timeline->mutex);
2608 		}
2609 	}
2610 	for_each_child(ce, child)
2611 		intel_context_unpin(child);
2612 	intel_context_unpin(ce);
2613 	return err;
2614 }
2615 
2616 static void eb_unpin_engine(struct i915_execbuffer *eb)
2617 {
2618 	struct intel_context *ce = eb->context, *child;
2619 
2620 	if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2621 		return;
2622 
2623 	eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2624 
2625 	for_each_child(ce, child) {
2626 		mutex_lock(&child->timeline->mutex);
2627 		intel_context_exit(child);
2628 		mutex_unlock(&child->timeline->mutex);
2629 
2630 		intel_context_unpin(child);
2631 	}
2632 
2633 	mutex_lock(&ce->timeline->mutex);
2634 	intel_context_exit(ce);
2635 	mutex_unlock(&ce->timeline->mutex);
2636 
2637 	intel_context_unpin(ce);
2638 }
2639 
2640 static unsigned int
2641 eb_select_legacy_ring(struct i915_execbuffer *eb)
2642 {
2643 	struct drm_i915_private *i915 = eb->i915;
2644 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2645 	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2646 
2647 	if (user_ring_id != I915_EXEC_BSD &&
2648 	    (args->flags & I915_EXEC_BSD_MASK)) {
2649 		drm_dbg(&i915->drm,
2650 			"execbuf with non bsd ring but with invalid "
2651 			"bsd dispatch flags: %d\n", (int)(args->flags));
2652 		return -1;
2653 	}
2654 
2655 	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2656 		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2657 
2658 		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2659 			bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2660 		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2661 			   bsd_idx <= I915_EXEC_BSD_RING2) {
2662 			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2663 			bsd_idx--;
2664 		} else {
2665 			drm_dbg(&i915->drm,
2666 				"execbuf with unknown bsd ring: %u\n",
2667 				bsd_idx);
2668 			return -1;
2669 		}
2670 
2671 		return _VCS(bsd_idx);
2672 	}
2673 
2674 	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2675 		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2676 			user_ring_id);
2677 		return -1;
2678 	}
2679 
2680 	return user_ring_map[user_ring_id];
2681 }
2682 
2683 static int
2684 eb_select_engine(struct i915_execbuffer *eb)
2685 {
2686 	struct intel_context *ce, *child;
2687 	unsigned int idx;
2688 	int err;
2689 
2690 	if (i915_gem_context_user_engines(eb->gem_context))
2691 		idx = eb->args->flags & I915_EXEC_RING_MASK;
2692 	else
2693 		idx = eb_select_legacy_ring(eb);
2694 
2695 	ce = i915_gem_context_get_engine(eb->gem_context, idx);
2696 	if (IS_ERR(ce))
2697 		return PTR_ERR(ce);
2698 
2699 	if (intel_context_is_parallel(ce)) {
2700 		if (eb->buffer_count < ce->parallel.number_children + 1) {
2701 			intel_context_put(ce);
2702 			return -EINVAL;
2703 		}
2704 		if (eb->batch_start_offset || eb->args->batch_len) {
2705 			intel_context_put(ce);
2706 			return -EINVAL;
2707 		}
2708 	}
2709 	eb->num_batches = ce->parallel.number_children + 1;
2710 
2711 	for_each_child(ce, child)
2712 		intel_context_get(child);
2713 	intel_gt_pm_get(ce->engine->gt);
2714 
2715 	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2716 		err = intel_context_alloc_state(ce);
2717 		if (err)
2718 			goto err;
2719 	}
2720 	for_each_child(ce, child) {
2721 		if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
2722 			err = intel_context_alloc_state(child);
2723 			if (err)
2724 				goto err;
2725 		}
2726 	}
2727 
2728 	/*
2729 	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2730 	 * EIO if the GPU is already wedged.
2731 	 */
2732 	err = intel_gt_terminally_wedged(ce->engine->gt);
2733 	if (err)
2734 		goto err;
2735 
2736 	if (!i915_vm_tryget(ce->vm)) {
2737 		err = -ENOENT;
2738 		goto err;
2739 	}
2740 
2741 	eb->context = ce;
2742 	eb->gt = ce->engine->gt;
2743 
2744 	/*
2745 	 * Make sure engine pool stays alive even if we call intel_context_put
2746 	 * during ww handling. The pool is destroyed when last pm reference
2747 	 * is dropped, which breaks our -EDEADLK handling.
2748 	 */
2749 	return err;
2750 
2751 err:
2752 	intel_gt_pm_put(ce->engine->gt);
2753 	for_each_child(ce, child)
2754 		intel_context_put(child);
2755 	intel_context_put(ce);
2756 	return err;
2757 }
2758 
2759 static void
2760 eb_put_engine(struct i915_execbuffer *eb)
2761 {
2762 	struct intel_context *child;
2763 
2764 	i915_vm_put(eb->context->vm);
2765 	intel_gt_pm_put(eb->gt);
2766 	for_each_child(eb->context, child)
2767 		intel_context_put(child);
2768 	intel_context_put(eb->context);
2769 }
2770 
2771 static void
2772 __free_fence_array(struct eb_fence *fences, unsigned int n)
2773 {
2774 	while (n--) {
2775 		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2776 		dma_fence_put(fences[n].dma_fence);
2777 		dma_fence_chain_free(fences[n].chain_fence);
2778 	}
2779 	kvfree(fences);
2780 }
2781 
2782 static int
2783 add_timeline_fence_array(struct i915_execbuffer *eb,
2784 			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2785 {
2786 	struct drm_i915_gem_exec_fence __user *user_fences;
2787 	u64 __user *user_values;
2788 	struct eb_fence *f;
2789 	u64 nfences;
2790 	int err = 0;
2791 
2792 	nfences = timeline_fences->fence_count;
2793 	if (!nfences)
2794 		return 0;
2795 
2796 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2797 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2798 	if (nfences > min_t(unsigned long,
2799 			    ULONG_MAX / sizeof(*user_fences),
2800 			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2801 		return -EINVAL;
2802 
2803 	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2804 	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2805 		return -EFAULT;
2806 
2807 	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2808 	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2809 		return -EFAULT;
2810 
2811 	f = krealloc(eb->fences,
2812 		     (eb->num_fences + nfences) * sizeof(*f),
2813 		     __GFP_NOWARN | GFP_KERNEL);
2814 	if (!f)
2815 		return -ENOMEM;
2816 
2817 	eb->fences = f;
2818 	f += eb->num_fences;
2819 
2820 	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2821 		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2822 
2823 	while (nfences--) {
2824 		struct drm_i915_gem_exec_fence user_fence;
2825 		struct drm_syncobj *syncobj;
2826 		struct dma_fence *fence = NULL;
2827 		u64 point;
2828 
2829 		if (__copy_from_user(&user_fence,
2830 				     user_fences++,
2831 				     sizeof(user_fence)))
2832 			return -EFAULT;
2833 
2834 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2835 			return -EINVAL;
2836 
2837 		if (__get_user(point, user_values++))
2838 			return -EFAULT;
2839 
2840 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2841 		if (!syncobj) {
2842 			drm_dbg(&eb->i915->drm,
2843 				"Invalid syncobj handle provided\n");
2844 			return -ENOENT;
2845 		}
2846 
2847 		fence = drm_syncobj_fence_get(syncobj);
2848 
2849 		if (!fence && user_fence.flags &&
2850 		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2851 			drm_dbg(&eb->i915->drm,
2852 				"Syncobj handle has no fence\n");
2853 			drm_syncobj_put(syncobj);
2854 			return -EINVAL;
2855 		}
2856 
2857 		if (fence)
2858 			err = dma_fence_chain_find_seqno(&fence, point);
2859 
2860 		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2861 			drm_dbg(&eb->i915->drm,
2862 				"Syncobj handle missing requested point %llu\n",
2863 				point);
2864 			dma_fence_put(fence);
2865 			drm_syncobj_put(syncobj);
2866 			return err;
2867 		}
2868 
2869 		/*
2870 		 * A point might have been signaled already and
2871 		 * garbage collected from the timeline. In this case
2872 		 * just ignore the point and carry on.
2873 		 */
2874 		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2875 			drm_syncobj_put(syncobj);
2876 			continue;
2877 		}
2878 
2879 		/*
2880 		 * For timeline syncobjs we need to preallocate chains for
2881 		 * later signaling.
2882 		 */
2883 		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2884 			/*
2885 			 * Waiting and signaling the same point (when point !=
2886 			 * 0) would break the timeline.
2887 			 */
2888 			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2889 				drm_dbg(&eb->i915->drm,
2890 					"Trying to wait & signal the same timeline point.\n");
2891 				dma_fence_put(fence);
2892 				drm_syncobj_put(syncobj);
2893 				return -EINVAL;
2894 			}
2895 
2896 			f->chain_fence = dma_fence_chain_alloc();
2897 			if (!f->chain_fence) {
2898 				drm_syncobj_put(syncobj);
2899 				dma_fence_put(fence);
2900 				return -ENOMEM;
2901 			}
2902 		} else {
2903 			f->chain_fence = NULL;
2904 		}
2905 
2906 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2907 		f->dma_fence = fence;
2908 		f->value = point;
2909 		f++;
2910 		eb->num_fences++;
2911 	}
2912 
2913 	return 0;
2914 }
2915 
2916 static int add_fence_array(struct i915_execbuffer *eb)
2917 {
2918 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2919 	struct drm_i915_gem_exec_fence __user *user;
2920 	unsigned long num_fences = args->num_cliprects;
2921 	struct eb_fence *f;
2922 
2923 	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2924 		return 0;
2925 
2926 	if (!num_fences)
2927 		return 0;
2928 
2929 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2930 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2931 	if (num_fences > min_t(unsigned long,
2932 			       ULONG_MAX / sizeof(*user),
2933 			       SIZE_MAX / sizeof(*f) - eb->num_fences))
2934 		return -EINVAL;
2935 
2936 	user = u64_to_user_ptr(args->cliprects_ptr);
2937 	if (!access_ok(user, num_fences * sizeof(*user)))
2938 		return -EFAULT;
2939 
2940 	f = krealloc(eb->fences,
2941 		     (eb->num_fences + num_fences) * sizeof(*f),
2942 		     __GFP_NOWARN | GFP_KERNEL);
2943 	if (!f)
2944 		return -ENOMEM;
2945 
2946 	eb->fences = f;
2947 	f += eb->num_fences;
2948 	while (num_fences--) {
2949 		struct drm_i915_gem_exec_fence user_fence;
2950 		struct drm_syncobj *syncobj;
2951 		struct dma_fence *fence = NULL;
2952 
2953 		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2954 			return -EFAULT;
2955 
2956 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2957 			return -EINVAL;
2958 
2959 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2960 		if (!syncobj) {
2961 			drm_dbg(&eb->i915->drm,
2962 				"Invalid syncobj handle provided\n");
2963 			return -ENOENT;
2964 		}
2965 
2966 		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2967 			fence = drm_syncobj_fence_get(syncobj);
2968 			if (!fence) {
2969 				drm_dbg(&eb->i915->drm,
2970 					"Syncobj handle has no fence\n");
2971 				drm_syncobj_put(syncobj);
2972 				return -EINVAL;
2973 			}
2974 		}
2975 
2976 		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2977 			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2978 
2979 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2980 		f->dma_fence = fence;
2981 		f->value = 0;
2982 		f->chain_fence = NULL;
2983 		f++;
2984 		eb->num_fences++;
2985 	}
2986 
2987 	return 0;
2988 }
2989 
2990 static void put_fence_array(struct eb_fence *fences, int num_fences)
2991 {
2992 	if (fences)
2993 		__free_fence_array(fences, num_fences);
2994 }
2995 
2996 static int
2997 await_fence_array(struct i915_execbuffer *eb,
2998 		  struct i915_request *rq)
2999 {
3000 	unsigned int n;
3001 	int err;
3002 
3003 	for (n = 0; n < eb->num_fences; n++) {
3004 		if (!eb->fences[n].dma_fence)
3005 			continue;
3006 
3007 		err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
3008 		if (err < 0)
3009 			return err;
3010 	}
3011 
3012 	return 0;
3013 }
3014 
3015 static void signal_fence_array(const struct i915_execbuffer *eb,
3016 			       struct dma_fence * const fence)
3017 {
3018 	unsigned int n;
3019 
3020 	for (n = 0; n < eb->num_fences; n++) {
3021 		struct drm_syncobj *syncobj;
3022 		unsigned int flags;
3023 
3024 		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3025 		if (!(flags & I915_EXEC_FENCE_SIGNAL))
3026 			continue;
3027 
3028 		if (eb->fences[n].chain_fence) {
3029 			drm_syncobj_add_point(syncobj,
3030 					      eb->fences[n].chain_fence,
3031 					      fence,
3032 					      eb->fences[n].value);
3033 			/*
3034 			 * The chain's ownership is transferred to the
3035 			 * timeline.
3036 			 */
3037 			eb->fences[n].chain_fence = NULL;
3038 		} else {
3039 			drm_syncobj_replace_fence(syncobj, fence);
3040 		}
3041 	}
3042 }
3043 
3044 static int
3045 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3046 {
3047 	struct i915_execbuffer *eb = data;
3048 	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3049 
3050 	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3051 		return -EFAULT;
3052 
3053 	return add_timeline_fence_array(eb, &timeline_fences);
3054 }
3055 
3056 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3057 {
3058 	struct i915_request *rq, *rn;
3059 
3060 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
3061 		if (rq == end || !i915_request_retire(rq))
3062 			break;
3063 }
3064 
3065 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
3066 			  int err, bool last_parallel)
3067 {
3068 	struct intel_timeline * const tl = i915_request_timeline(rq);
3069 	struct i915_sched_attr attr = {};
3070 	struct i915_request *prev;
3071 
3072 	lockdep_assert_held(&tl->mutex);
3073 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
3074 
3075 	trace_i915_request_add(rq);
3076 
3077 	prev = __i915_request_commit(rq);
3078 
3079 	/* Check that the context wasn't destroyed before submission */
3080 	if (likely(!intel_context_is_closed(eb->context))) {
3081 		attr = eb->gem_context->sched;
3082 	} else {
3083 		/* Serialise with context_close via the add_to_timeline */
3084 		i915_request_set_error_once(rq, -ENOENT);
3085 		__i915_request_skip(rq);
3086 		err = -ENOENT; /* override any transient errors */
3087 	}
3088 
3089 	if (intel_context_is_parallel(eb->context)) {
3090 		if (err) {
3091 			__i915_request_skip(rq);
3092 			set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
3093 				&rq->fence.flags);
3094 		}
3095 		if (last_parallel)
3096 			set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
3097 				&rq->fence.flags);
3098 	}
3099 
3100 	__i915_request_queue(rq, &attr);
3101 
3102 	/* Try to clean up the client's timeline after submitting the request */
3103 	if (prev)
3104 		retire_requests(tl, prev);
3105 
3106 	mutex_unlock(&tl->mutex);
3107 
3108 	return err;
3109 }
3110 
3111 static int eb_requests_add(struct i915_execbuffer *eb, int err)
3112 {
3113 	int i;
3114 
3115 	/*
3116 	 * We iterate in reverse order of creation to release timeline mutexes in
3117 	 * same order.
3118 	 */
3119 	for_each_batch_add_order(eb, i) {
3120 		struct i915_request *rq = eb->requests[i];
3121 
3122 		if (!rq)
3123 			continue;
3124 		err |= eb_request_add(eb, rq, err, i == 0);
3125 	}
3126 
3127 	return err;
3128 }
3129 
3130 static const i915_user_extension_fn execbuf_extensions[] = {
3131 	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3132 };
3133 
3134 static int
3135 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3136 			  struct i915_execbuffer *eb)
3137 {
3138 	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3139 		return 0;
3140 
3141 	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3142 	 * have another flag also using it at the same time.
3143 	 */
3144 	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3145 		return -EINVAL;
3146 
3147 	if (args->num_cliprects != 0)
3148 		return -EINVAL;
3149 
3150 	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3151 				    execbuf_extensions,
3152 				    ARRAY_SIZE(execbuf_extensions),
3153 				    eb);
3154 }
3155 
3156 static void eb_requests_get(struct i915_execbuffer *eb)
3157 {
3158 	unsigned int i;
3159 
3160 	for_each_batch_create_order(eb, i) {
3161 		if (!eb->requests[i])
3162 			break;
3163 
3164 		i915_request_get(eb->requests[i]);
3165 	}
3166 }
3167 
3168 static void eb_requests_put(struct i915_execbuffer *eb)
3169 {
3170 	unsigned int i;
3171 
3172 	for_each_batch_create_order(eb, i) {
3173 		if (!eb->requests[i])
3174 			break;
3175 
3176 		i915_request_put(eb->requests[i]);
3177 	}
3178 }
3179 
3180 static struct sync_file *
3181 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
3182 {
3183 	struct sync_file *out_fence = NULL;
3184 	struct dma_fence_array *fence_array;
3185 	struct dma_fence **fences;
3186 	unsigned int i;
3187 
3188 	GEM_BUG_ON(!intel_context_is_parent(eb->context));
3189 
3190 	fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
3191 	if (!fences)
3192 		return ERR_PTR(-ENOMEM);
3193 
3194 	for_each_batch_create_order(eb, i) {
3195 		fences[i] = &eb->requests[i]->fence;
3196 		__set_bit(I915_FENCE_FLAG_COMPOSITE,
3197 			  &eb->requests[i]->fence.flags);
3198 	}
3199 
3200 	fence_array = dma_fence_array_create(eb->num_batches,
3201 					     fences,
3202 					     eb->context->parallel.fence_context,
3203 					     eb->context->parallel.seqno++,
3204 					     false);
3205 	if (!fence_array) {
3206 		kfree(fences);
3207 		return ERR_PTR(-ENOMEM);
3208 	}
3209 
3210 	/* Move ownership to the dma_fence_array created above */
3211 	for_each_batch_create_order(eb, i)
3212 		dma_fence_get(fences[i]);
3213 
3214 	if (out_fence_fd != -1) {
3215 		out_fence = sync_file_create(&fence_array->base);
3216 		/* sync_file now owns fence_arry, drop creation ref */
3217 		dma_fence_put(&fence_array->base);
3218 		if (!out_fence)
3219 			return ERR_PTR(-ENOMEM);
3220 	}
3221 
3222 	eb->composite_fence = &fence_array->base;
3223 
3224 	return out_fence;
3225 }
3226 
3227 static struct sync_file *
3228 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
3229 	      struct dma_fence *in_fence, int out_fence_fd)
3230 {
3231 	struct sync_file *out_fence = NULL;
3232 	int err;
3233 
3234 	if (unlikely(eb->gem_context->syncobj)) {
3235 		struct dma_fence *fence;
3236 
3237 		fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
3238 		err = i915_request_await_dma_fence(rq, fence);
3239 		dma_fence_put(fence);
3240 		if (err)
3241 			return ERR_PTR(err);
3242 	}
3243 
3244 	if (in_fence) {
3245 		if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
3246 			err = i915_request_await_execution(rq, in_fence);
3247 		else
3248 			err = i915_request_await_dma_fence(rq, in_fence);
3249 		if (err < 0)
3250 			return ERR_PTR(err);
3251 	}
3252 
3253 	if (eb->fences) {
3254 		err = await_fence_array(eb, rq);
3255 		if (err)
3256 			return ERR_PTR(err);
3257 	}
3258 
3259 	if (intel_context_is_parallel(eb->context)) {
3260 		out_fence = eb_composite_fence_create(eb, out_fence_fd);
3261 		if (IS_ERR(out_fence))
3262 			return ERR_PTR(-ENOMEM);
3263 	} else if (out_fence_fd != -1) {
3264 		out_fence = sync_file_create(&rq->fence);
3265 		if (!out_fence)
3266 			return ERR_PTR(-ENOMEM);
3267 	}
3268 
3269 	return out_fence;
3270 }
3271 
3272 static struct intel_context *
3273 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
3274 {
3275 	struct intel_context *child;
3276 
3277 	if (likely(context_number == 0))
3278 		return eb->context;
3279 
3280 	for_each_child(eb->context, child)
3281 		if (!--context_number)
3282 			return child;
3283 
3284 	GEM_BUG_ON("Context not found");
3285 
3286 	return NULL;
3287 }
3288 
3289 static struct sync_file *
3290 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
3291 		   int out_fence_fd)
3292 {
3293 	struct sync_file *out_fence = NULL;
3294 	unsigned int i;
3295 
3296 	for_each_batch_create_order(eb, i) {
3297 		/* Allocate a request for this batch buffer nice and early. */
3298 		eb->requests[i] = i915_request_create(eb_find_context(eb, i));
3299 		if (IS_ERR(eb->requests[i])) {
3300 			out_fence = ERR_CAST(eb->requests[i]);
3301 			eb->requests[i] = NULL;
3302 			return out_fence;
3303 		}
3304 
3305 		/*
3306 		 * Only the first request added (committed to backend) has to
3307 		 * take the in fences into account as all subsequent requests
3308 		 * will have fences inserted inbetween them.
3309 		 */
3310 		if (i + 1 == eb->num_batches) {
3311 			out_fence = eb_fences_add(eb, eb->requests[i],
3312 						  in_fence, out_fence_fd);
3313 			if (IS_ERR(out_fence))
3314 				return out_fence;
3315 		}
3316 
3317 		/*
3318 		 * Not really on stack, but we don't want to call
3319 		 * kfree on the batch_snapshot when we put it, so use the
3320 		 * _onstack interface.
3321 		 */
3322 		if (eb->batches[i]->vma)
3323 			eb->requests[i]->batch_res =
3324 				i915_vma_resource_get(eb->batches[i]->vma->resource);
3325 		if (eb->batch_pool) {
3326 			GEM_BUG_ON(intel_context_is_parallel(eb->context));
3327 			intel_gt_buffer_pool_mark_active(eb->batch_pool,
3328 							 eb->requests[i]);
3329 		}
3330 	}
3331 
3332 	return out_fence;
3333 }
3334 
3335 static int
3336 i915_gem_do_execbuffer(struct drm_device *dev,
3337 		       struct drm_file *file,
3338 		       struct drm_i915_gem_execbuffer2 *args,
3339 		       struct drm_i915_gem_exec_object2 *exec)
3340 {
3341 	struct drm_i915_private *i915 = to_i915(dev);
3342 	struct i915_execbuffer eb;
3343 	struct dma_fence *in_fence = NULL;
3344 	struct sync_file *out_fence = NULL;
3345 	int out_fence_fd = -1;
3346 	int err;
3347 
3348 	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3349 	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3350 		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3351 
3352 	eb.i915 = i915;
3353 	eb.file = file;
3354 	eb.args = args;
3355 	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3356 		args->flags |= __EXEC_HAS_RELOC;
3357 
3358 	eb.exec = exec;
3359 	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3360 	eb.vma[0].vma = NULL;
3361 	eb.batch_pool = NULL;
3362 
3363 	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3364 	reloc_cache_init(&eb.reloc_cache, eb.i915);
3365 
3366 	eb.buffer_count = args->buffer_count;
3367 	eb.batch_start_offset = args->batch_start_offset;
3368 	eb.trampoline = NULL;
3369 
3370 	eb.fences = NULL;
3371 	eb.num_fences = 0;
3372 
3373 	eb_capture_list_clear(&eb);
3374 
3375 	memset(eb.requests, 0, sizeof(struct i915_request *) *
3376 	       ARRAY_SIZE(eb.requests));
3377 	eb.composite_fence = NULL;
3378 
3379 	eb.batch_flags = 0;
3380 	if (args->flags & I915_EXEC_SECURE) {
3381 		if (GRAPHICS_VER(i915) >= 11)
3382 			return -ENODEV;
3383 
3384 		/* Return -EPERM to trigger fallback code on old binaries. */
3385 		if (!HAS_SECURE_BATCHES(i915))
3386 			return -EPERM;
3387 
3388 		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3389 			return -EPERM;
3390 
3391 		eb.batch_flags |= I915_DISPATCH_SECURE;
3392 	}
3393 	if (args->flags & I915_EXEC_IS_PINNED)
3394 		eb.batch_flags |= I915_DISPATCH_PINNED;
3395 
3396 	err = parse_execbuf2_extensions(args, &eb);
3397 	if (err)
3398 		goto err_ext;
3399 
3400 	err = add_fence_array(&eb);
3401 	if (err)
3402 		goto err_ext;
3403 
3404 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3405 	if (args->flags & IN_FENCES) {
3406 		if ((args->flags & IN_FENCES) == IN_FENCES)
3407 			return -EINVAL;
3408 
3409 		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3410 		if (!in_fence) {
3411 			err = -EINVAL;
3412 			goto err_ext;
3413 		}
3414 	}
3415 #undef IN_FENCES
3416 
3417 	if (args->flags & I915_EXEC_FENCE_OUT) {
3418 		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3419 		if (out_fence_fd < 0) {
3420 			err = out_fence_fd;
3421 			goto err_in_fence;
3422 		}
3423 	}
3424 
3425 	err = eb_create(&eb);
3426 	if (err)
3427 		goto err_out_fence;
3428 
3429 	GEM_BUG_ON(!eb.lut_size);
3430 
3431 	err = eb_select_context(&eb);
3432 	if (unlikely(err))
3433 		goto err_destroy;
3434 
3435 	err = eb_select_engine(&eb);
3436 	if (unlikely(err))
3437 		goto err_context;
3438 
3439 	err = eb_lookup_vmas(&eb);
3440 	if (err) {
3441 		eb_release_vmas(&eb, true);
3442 		goto err_engine;
3443 	}
3444 
3445 	i915_gem_ww_ctx_init(&eb.ww, true);
3446 
3447 	err = eb_relocate_parse(&eb);
3448 	if (err) {
3449 		/*
3450 		 * If the user expects the execobject.offset and
3451 		 * reloc.presumed_offset to be an exact match,
3452 		 * as for using NO_RELOC, then we cannot update
3453 		 * the execobject.offset until we have completed
3454 		 * relocation.
3455 		 */
3456 		args->flags &= ~__EXEC_HAS_RELOC;
3457 		goto err_vma;
3458 	}
3459 
3460 	ww_acquire_done(&eb.ww.ctx);
3461 	err = eb_capture_stage(&eb);
3462 	if (err)
3463 		goto err_vma;
3464 
3465 	out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
3466 	if (IS_ERR(out_fence)) {
3467 		err = PTR_ERR(out_fence);
3468 		out_fence = NULL;
3469 		if (eb.requests[0])
3470 			goto err_request;
3471 		else
3472 			goto err_vma;
3473 	}
3474 
3475 	err = eb_submit(&eb);
3476 
3477 err_request:
3478 	eb_requests_get(&eb);
3479 	err = eb_requests_add(&eb, err);
3480 
3481 	if (eb.fences)
3482 		signal_fence_array(&eb, eb.composite_fence ?
3483 				   eb.composite_fence :
3484 				   &eb.requests[0]->fence);
3485 
3486 	if (out_fence) {
3487 		if (err == 0) {
3488 			fd_install(out_fence_fd, out_fence->file);
3489 			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3490 			args->rsvd2 |= (u64)out_fence_fd << 32;
3491 			out_fence_fd = -1;
3492 		} else {
3493 			fput(out_fence->file);
3494 		}
3495 	}
3496 
3497 	if (unlikely(eb.gem_context->syncobj)) {
3498 		drm_syncobj_replace_fence(eb.gem_context->syncobj,
3499 					  eb.composite_fence ?
3500 					  eb.composite_fence :
3501 					  &eb.requests[0]->fence);
3502 	}
3503 
3504 	if (!out_fence && eb.composite_fence)
3505 		dma_fence_put(eb.composite_fence);
3506 
3507 	eb_requests_put(&eb);
3508 
3509 err_vma:
3510 	eb_release_vmas(&eb, true);
3511 	WARN_ON(err == -EDEADLK);
3512 	i915_gem_ww_ctx_fini(&eb.ww);
3513 
3514 	if (eb.batch_pool)
3515 		intel_gt_buffer_pool_put(eb.batch_pool);
3516 err_engine:
3517 	eb_put_engine(&eb);
3518 err_context:
3519 	i915_gem_context_put(eb.gem_context);
3520 err_destroy:
3521 	eb_destroy(&eb);
3522 err_out_fence:
3523 	if (out_fence_fd != -1)
3524 		put_unused_fd(out_fence_fd);
3525 err_in_fence:
3526 	dma_fence_put(in_fence);
3527 err_ext:
3528 	put_fence_array(eb.fences, eb.num_fences);
3529 	return err;
3530 }
3531 
3532 static size_t eb_element_size(void)
3533 {
3534 	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3535 }
3536 
3537 static bool check_buffer_count(size_t count)
3538 {
3539 	const size_t sz = eb_element_size();
3540 
3541 	/*
3542 	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3543 	 * array size (see eb_create()). Otherwise, we can accept an array as
3544 	 * large as can be addressed (though use large arrays at your peril)!
3545 	 */
3546 
3547 	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3548 }
3549 
3550 int
3551 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3552 			   struct drm_file *file)
3553 {
3554 	struct drm_i915_private *i915 = to_i915(dev);
3555 	struct drm_i915_gem_execbuffer2 *args = data;
3556 	struct drm_i915_gem_exec_object2 *exec2_list;
3557 	const size_t count = args->buffer_count;
3558 	int err;
3559 
3560 	if (!check_buffer_count(count)) {
3561 		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3562 		return -EINVAL;
3563 	}
3564 
3565 	err = i915_gem_check_execbuffer(i915, args);
3566 	if (err)
3567 		return err;
3568 
3569 	/* Allocate extra slots for use by the command parser */
3570 	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3571 				    __GFP_NOWARN | GFP_KERNEL);
3572 	if (exec2_list == NULL) {
3573 		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3574 			count);
3575 		return -ENOMEM;
3576 	}
3577 	if (copy_from_user(exec2_list,
3578 			   u64_to_user_ptr(args->buffers_ptr),
3579 			   sizeof(*exec2_list) * count)) {
3580 		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3581 		kvfree(exec2_list);
3582 		return -EFAULT;
3583 	}
3584 
3585 	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3586 
3587 	/*
3588 	 * Now that we have begun execution of the batchbuffer, we ignore
3589 	 * any new error after this point. Also given that we have already
3590 	 * updated the associated relocations, we try to write out the current
3591 	 * object locations irrespective of any error.
3592 	 */
3593 	if (args->flags & __EXEC_HAS_RELOC) {
3594 		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3595 			u64_to_user_ptr(args->buffers_ptr);
3596 		unsigned int i;
3597 
3598 		/* Copy the new buffer offsets back to the user's exec list. */
3599 		/*
3600 		 * Note: count * sizeof(*user_exec_list) does not overflow,
3601 		 * because we checked 'count' in check_buffer_count().
3602 		 *
3603 		 * And this range already got effectively checked earlier
3604 		 * when we did the "copy_from_user()" above.
3605 		 */
3606 		if (!user_write_access_begin(user_exec_list,
3607 					     count * sizeof(*user_exec_list)))
3608 			goto end;
3609 
3610 		for (i = 0; i < args->buffer_count; i++) {
3611 			if (!(exec2_list[i].offset & UPDATE))
3612 				continue;
3613 
3614 			exec2_list[i].offset =
3615 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3616 			unsafe_put_user(exec2_list[i].offset,
3617 					&user_exec_list[i].offset,
3618 					end_user);
3619 		}
3620 end_user:
3621 		user_write_access_end();
3622 end:;
3623 	}
3624 
3625 	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3626 	kvfree(exec2_list);
3627 	return err;
3628 }
3629