xref: /linux/drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c (revision 6684f97981c528965d7458dd4f89cfbc8fa980b2)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6 
7 #include <linux/dma-resv.h>
8 #include <linux/highmem.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11 
12 #include <drm/drm_auth.h>
13 #include <drm/drm_syncobj.h>
14 
15 #include "display/intel_frontbuffer.h"
16 
17 #include "gem/i915_gem_ioctls.h"
18 #include "gt/intel_context.h"
19 #include "gt/intel_gpu_commands.h"
20 #include "gt/intel_gt.h"
21 #include "gt/intel_gt_buffer_pool.h"
22 #include "gt/intel_gt_pm.h"
23 #include "gt/intel_ring.h"
24 
25 #include "pxp/intel_pxp.h"
26 
27 #include "i915_cmd_parser.h"
28 #include "i915_drv.h"
29 #include "i915_file_private.h"
30 #include "i915_gem_clflush.h"
31 #include "i915_gem_context.h"
32 #include "i915_gem_evict.h"
33 #include "i915_gem_ioctls.h"
34 #include "i915_reg.h"
35 #include "i915_trace.h"
36 #include "i915_user_extensions.h"
37 
38 struct eb_vma {
39 	struct i915_vma *vma;
40 	unsigned int flags;
41 
42 	/** This vma's place in the execbuf reservation list */
43 	struct drm_i915_gem_exec_object2 *exec;
44 	struct list_head bind_link;
45 	struct list_head reloc_link;
46 
47 	struct hlist_node node;
48 	u32 handle;
49 };
50 
51 enum {
52 	FORCE_CPU_RELOC = 1,
53 	FORCE_GTT_RELOC,
54 	FORCE_GPU_RELOC,
55 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
56 };
57 
58 /* __EXEC_OBJECT_ flags > BIT(29) defined in i915_vma.h */
59 #define __EXEC_OBJECT_HAS_PIN		BIT(29)
60 #define __EXEC_OBJECT_HAS_FENCE		BIT(28)
61 #define __EXEC_OBJECT_USERPTR_INIT	BIT(27)
62 #define __EXEC_OBJECT_NEEDS_MAP		BIT(26)
63 #define __EXEC_OBJECT_NEEDS_BIAS	BIT(25)
64 #define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 25) /* all of the above + */
65 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
66 
67 #define __EXEC_HAS_RELOC	BIT(31)
68 #define __EXEC_ENGINE_PINNED	BIT(30)
69 #define __EXEC_USERPTR_USED	BIT(29)
70 #define __EXEC_INTERNAL_FLAGS	(~0u << 29)
71 #define UPDATE			PIN_OFFSET_FIXED
72 
73 #define BATCH_OFFSET_BIAS (256*1024)
74 
75 #define __I915_EXEC_ILLEGAL_FLAGS \
76 	(__I915_EXEC_UNKNOWN_FLAGS | \
77 	 I915_EXEC_CONSTANTS_MASK  | \
78 	 I915_EXEC_RESOURCE_STREAMER)
79 
80 /* Catch emission of unexpected errors for CI! */
81 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
82 #undef EINVAL
83 #define EINVAL ({ \
84 	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
85 	22; \
86 })
87 #endif
88 
89 /**
90  * DOC: User command execution
91  *
92  * Userspace submits commands to be executed on the GPU as an instruction
93  * stream within a GEM object we call a batchbuffer. This instructions may
94  * refer to other GEM objects containing auxiliary state such as kernels,
95  * samplers, render targets and even secondary batchbuffers. Userspace does
96  * not know where in the GPU memory these objects reside and so before the
97  * batchbuffer is passed to the GPU for execution, those addresses in the
98  * batchbuffer and auxiliary objects are updated. This is known as relocation,
99  * or patching. To try and avoid having to relocate each object on the next
100  * execution, userspace is told the location of those objects in this pass,
101  * but this remains just a hint as the kernel may choose a new location for
102  * any object in the future.
103  *
104  * At the level of talking to the hardware, submitting a batchbuffer for the
105  * GPU to execute is to add content to a buffer from which the HW
106  * command streamer is reading.
107  *
108  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
109  *    Execlists, this command is not placed on the same buffer as the
110  *    remaining items.
111  *
112  * 2. Add a command to invalidate caches to the buffer.
113  *
114  * 3. Add a batchbuffer start command to the buffer; the start command is
115  *    essentially a token together with the GPU address of the batchbuffer
116  *    to be executed.
117  *
118  * 4. Add a pipeline flush to the buffer.
119  *
120  * 5. Add a memory write command to the buffer to record when the GPU
121  *    is done executing the batchbuffer. The memory write writes the
122  *    global sequence number of the request, ``i915_request::global_seqno``;
123  *    the i915 driver uses the current value in the register to determine
124  *    if the GPU has completed the batchbuffer.
125  *
126  * 6. Add a user interrupt command to the buffer. This command instructs
127  *    the GPU to issue an interrupt when the command, pipeline flush and
128  *    memory write are completed.
129  *
130  * 7. Inform the hardware of the additional commands added to the buffer
131  *    (by updating the tail pointer).
132  *
133  * Processing an execbuf ioctl is conceptually split up into a few phases.
134  *
135  * 1. Validation - Ensure all the pointers, handles and flags are valid.
136  * 2. Reservation - Assign GPU address space for every object
137  * 3. Relocation - Update any addresses to point to the final locations
138  * 4. Serialisation - Order the request with respect to its dependencies
139  * 5. Construction - Construct a request to execute the batchbuffer
140  * 6. Submission (at some point in the future execution)
141  *
142  * Reserving resources for the execbuf is the most complicated phase. We
143  * neither want to have to migrate the object in the address space, nor do
144  * we want to have to update any relocations pointing to this object. Ideally,
145  * we want to leave the object where it is and for all the existing relocations
146  * to match. If the object is given a new address, or if userspace thinks the
147  * object is elsewhere, we have to parse all the relocation entries and update
148  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
149  * all the target addresses in all of its objects match the value in the
150  * relocation entries and that they all match the presumed offsets given by the
151  * list of execbuffer objects. Using this knowledge, we know that if we haven't
152  * moved any buffers, all the relocation entries are valid and we can skip
153  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
154  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
155  *
156  *      The addresses written in the objects must match the corresponding
157  *      reloc.presumed_offset which in turn must match the corresponding
158  *      execobject.offset.
159  *
160  *      Any render targets written to in the batch must be flagged with
161  *      EXEC_OBJECT_WRITE.
162  *
163  *      To avoid stalling, execobject.offset should match the current
164  *      address of that object within the active context.
165  *
166  * The reservation is done is multiple phases. First we try and keep any
167  * object already bound in its current location - so as long as meets the
168  * constraints imposed by the new execbuffer. Any object left unbound after the
169  * first pass is then fitted into any available idle space. If an object does
170  * not fit, all objects are removed from the reservation and the process rerun
171  * after sorting the objects into a priority order (more difficult to fit
172  * objects are tried first). Failing that, the entire VM is cleared and we try
173  * to fit the execbuf once last time before concluding that it simply will not
174  * fit.
175  *
176  * A small complication to all of this is that we allow userspace not only to
177  * specify an alignment and a size for the object in the address space, but
178  * we also allow userspace to specify the exact offset. This objects are
179  * simpler to place (the location is known a priori) all we have to do is make
180  * sure the space is available.
181  *
182  * Once all the objects are in place, patching up the buried pointers to point
183  * to the final locations is a fairly simple job of walking over the relocation
184  * entry arrays, looking up the right address and rewriting the value into
185  * the object. Simple! ... The relocation entries are stored in user memory
186  * and so to access them we have to copy them into a local buffer. That copy
187  * has to avoid taking any pagefaults as they may lead back to a GEM object
188  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
189  * the relocation into multiple passes. First we try to do everything within an
190  * atomic context (avoid the pagefaults) which requires that we never wait. If
191  * we detect that we may wait, or if we need to fault, then we have to fallback
192  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
193  * bells yet?) Dropping the mutex means that we lose all the state we have
194  * built up so far for the execbuf and we must reset any global data. However,
195  * we do leave the objects pinned in their final locations - which is a
196  * potential issue for concurrent execbufs. Once we have left the mutex, we can
197  * allocate and copy all the relocation entries into a large array at our
198  * leisure, reacquire the mutex, reclaim all the objects and other state and
199  * then proceed to update any incorrect addresses with the objects.
200  *
201  * As we process the relocation entries, we maintain a record of whether the
202  * object is being written to. Using NORELOC, we expect userspace to provide
203  * this information instead. We also check whether we can skip the relocation
204  * by comparing the expected value inside the relocation entry with the target's
205  * final address. If they differ, we have to map the current object and rewrite
206  * the 4 or 8 byte pointer within.
207  *
208  * Serialising an execbuf is quite simple according to the rules of the GEM
209  * ABI. Execution within each context is ordered by the order of submission.
210  * Writes to any GEM object are in order of submission and are exclusive. Reads
211  * from a GEM object are unordered with respect to other reads, but ordered by
212  * writes. A write submitted after a read cannot occur before the read, and
213  * similarly any read submitted after a write cannot occur before the write.
214  * Writes are ordered between engines such that only one write occurs at any
215  * time (completing any reads beforehand) - using semaphores where available
216  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
217  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
218  * reads before starting, and any read (either using set-domain or pread) must
219  * flush all GPU writes before starting. (Note we only employ a barrier before,
220  * we currently rely on userspace not concurrently starting a new execution
221  * whilst reading or writing to an object. This may be an advantage or not
222  * depending on how much you trust userspace not to shoot themselves in the
223  * foot.) Serialisation may just result in the request being inserted into
224  * a DAG awaiting its turn, but most simple is to wait on the CPU until
225  * all dependencies are resolved.
226  *
227  * After all of that, is just a matter of closing the request and handing it to
228  * the hardware (well, leaving it in a queue to be executed). However, we also
229  * offer the ability for batchbuffers to be run with elevated privileges so
230  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
231  * Before any batch is given extra privileges we first must check that it
232  * contains no nefarious instructions, we check that each instruction is from
233  * our whitelist and all registers are also from an allowed list. We first
234  * copy the user's batchbuffer to a shadow (so that the user doesn't have
235  * access to it, either by the CPU or GPU as we scan it) and then parse each
236  * instruction. If everything is ok, we set a flag telling the hardware to run
237  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
238  */
239 
240 struct eb_fence {
241 	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
242 	struct dma_fence *dma_fence;
243 	u64 value;
244 	struct dma_fence_chain *chain_fence;
245 };
246 
247 struct i915_execbuffer {
248 	struct drm_i915_private *i915; /** i915 backpointer */
249 	struct drm_file *file; /** per-file lookup tables and limits */
250 	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
251 	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
252 	struct eb_vma *vma;
253 
254 	struct intel_gt *gt; /* gt for the execbuf */
255 	struct intel_context *context; /* logical state for the request */
256 	struct i915_gem_context *gem_context; /** caller's context */
257 	intel_wakeref_t wakeref;
258 
259 	/** our requests to build */
260 	struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
261 	/** identity of the batch obj/vma */
262 	struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
263 	struct i915_vma *trampoline; /** trampoline used for chaining */
264 
265 	/** used for excl fence in dma_resv objects when > 1 BB submitted */
266 	struct dma_fence *composite_fence;
267 
268 	/** actual size of execobj[] as we may extend it for the cmdparser */
269 	unsigned int buffer_count;
270 
271 	/* number of batches in execbuf IOCTL */
272 	unsigned int num_batches;
273 
274 	/** list of vma not yet bound during reservation phase */
275 	struct list_head unbound;
276 
277 	/** list of vma that have execobj.relocation_count */
278 	struct list_head relocs;
279 
280 	struct i915_gem_ww_ctx ww;
281 
282 	/**
283 	 * Track the most recently used object for relocations, as we
284 	 * frequently have to perform multiple relocations within the same
285 	 * obj/page
286 	 */
287 	struct reloc_cache {
288 		struct drm_mm_node node; /** temporary GTT binding */
289 		unsigned long vaddr; /** Current kmap address */
290 		unsigned long page; /** Currently mapped page index */
291 		unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
292 		bool use_64bit_reloc : 1;
293 		bool has_llc : 1;
294 		bool has_fence : 1;
295 		bool needs_unfenced : 1;
296 	} reloc_cache;
297 
298 	u64 invalid_flags; /** Set of execobj.flags that are invalid */
299 
300 	/** Length of batch within object */
301 	u64 batch_len[MAX_ENGINE_INSTANCE + 1];
302 	u32 batch_start_offset; /** Location within object of batch */
303 	u32 batch_flags; /** Flags composed for emit_bb_start() */
304 	struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
305 
306 	/**
307 	 * Indicate either the size of the hastable used to resolve
308 	 * relocation handles, or if negative that we are using a direct
309 	 * index into the execobj[].
310 	 */
311 	int lut_size;
312 	struct hlist_head *buckets; /** ht for relocation handles */
313 
314 	struct eb_fence *fences;
315 	unsigned long num_fences;
316 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
317 	struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
318 #endif
319 };
320 
321 static int eb_parse(struct i915_execbuffer *eb);
322 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
323 static void eb_unpin_engine(struct i915_execbuffer *eb);
324 static void eb_capture_release(struct i915_execbuffer *eb);
325 
326 static bool eb_use_cmdparser(const struct i915_execbuffer *eb)
327 {
328 	return intel_engine_requires_cmd_parser(eb->context->engine) ||
329 		(intel_engine_using_cmd_parser(eb->context->engine) &&
330 		 eb->args->batch_len);
331 }
332 
333 static int eb_create(struct i915_execbuffer *eb)
334 {
335 	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
336 		unsigned int size = 1 + ilog2(eb->buffer_count);
337 
338 		/*
339 		 * Without a 1:1 association between relocation handles and
340 		 * the execobject[] index, we instead create a hashtable.
341 		 * We size it dynamically based on available memory, starting
342 		 * first with 1:1 assocative hash and scaling back until
343 		 * the allocation succeeds.
344 		 *
345 		 * Later on we use a positive lut_size to indicate we are
346 		 * using this hashtable, and a negative value to indicate a
347 		 * direct lookup.
348 		 */
349 		do {
350 			gfp_t flags;
351 
352 			/* While we can still reduce the allocation size, don't
353 			 * raise a warning and allow the allocation to fail.
354 			 * On the last pass though, we want to try as hard
355 			 * as possible to perform the allocation and warn
356 			 * if it fails.
357 			 */
358 			flags = GFP_KERNEL;
359 			if (size > 1)
360 				flags |= __GFP_NORETRY | __GFP_NOWARN;
361 
362 			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
363 					      flags);
364 			if (eb->buckets)
365 				break;
366 		} while (--size);
367 
368 		if (unlikely(!size))
369 			return -ENOMEM;
370 
371 		eb->lut_size = size;
372 	} else {
373 		eb->lut_size = -eb->buffer_count;
374 	}
375 
376 	return 0;
377 }
378 
379 static bool
380 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
381 		 const struct i915_vma *vma,
382 		 unsigned int flags)
383 {
384 	const u64 start = i915_vma_offset(vma);
385 	const u64 size = i915_vma_size(vma);
386 
387 	if (size < entry->pad_to_size)
388 		return true;
389 
390 	if (entry->alignment && !IS_ALIGNED(start, entry->alignment))
391 		return true;
392 
393 	if (flags & EXEC_OBJECT_PINNED &&
394 	    start != entry->offset)
395 		return true;
396 
397 	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
398 	    start < BATCH_OFFSET_BIAS)
399 		return true;
400 
401 	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
402 	    (start + size + 4095) >> 32)
403 		return true;
404 
405 	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
406 	    !i915_vma_is_map_and_fenceable(vma))
407 		return true;
408 
409 	return false;
410 }
411 
412 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
413 			unsigned int exec_flags)
414 {
415 	u64 pin_flags = 0;
416 
417 	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
418 		pin_flags |= PIN_GLOBAL;
419 
420 	/*
421 	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
422 	 * limit address to the first 4GBs for unflagged objects.
423 	 */
424 	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
425 		pin_flags |= PIN_ZONE_4G;
426 
427 	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
428 		pin_flags |= PIN_MAPPABLE;
429 
430 	if (exec_flags & EXEC_OBJECT_PINNED)
431 		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
432 	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
433 		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
434 
435 	return pin_flags;
436 }
437 
438 static int
439 eb_pin_vma(struct i915_execbuffer *eb,
440 	   const struct drm_i915_gem_exec_object2 *entry,
441 	   struct eb_vma *ev)
442 {
443 	struct i915_vma *vma = ev->vma;
444 	u64 pin_flags;
445 	int err;
446 
447 	if (vma->node.size)
448 		pin_flags =  __i915_vma_offset(vma);
449 	else
450 		pin_flags = entry->offset & PIN_OFFSET_MASK;
451 
452 	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE;
453 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
454 		pin_flags |= PIN_GLOBAL;
455 
456 	/* Attempt to reuse the current location if available */
457 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
458 	if (err == -EDEADLK)
459 		return err;
460 
461 	if (unlikely(err)) {
462 		if (entry->flags & EXEC_OBJECT_PINNED)
463 			return err;
464 
465 		/* Failing that pick any _free_ space if suitable */
466 		err = i915_vma_pin_ww(vma, &eb->ww,
467 					     entry->pad_to_size,
468 					     entry->alignment,
469 					     eb_pin_flags(entry, ev->flags) |
470 					     PIN_USER | PIN_NOEVICT | PIN_VALIDATE);
471 		if (unlikely(err))
472 			return err;
473 	}
474 
475 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
476 		err = i915_vma_pin_fence(vma);
477 		if (unlikely(err))
478 			return err;
479 
480 		if (vma->fence)
481 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
482 	}
483 
484 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
485 	if (eb_vma_misplaced(entry, vma, ev->flags))
486 		return -EBADSLT;
487 
488 	return 0;
489 }
490 
491 static void
492 eb_unreserve_vma(struct eb_vma *ev)
493 {
494 	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
495 		__i915_vma_unpin_fence(ev->vma);
496 
497 	ev->flags &= ~__EXEC_OBJECT_RESERVED;
498 }
499 
500 static int
501 eb_validate_vma(struct i915_execbuffer *eb,
502 		struct drm_i915_gem_exec_object2 *entry,
503 		struct i915_vma *vma)
504 {
505 	/* Relocations are disallowed for all platforms after TGL-LP.  This
506 	 * also covers all platforms with local memory.
507 	 */
508 	if (entry->relocation_count &&
509 	    GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
510 		return -EINVAL;
511 
512 	if (unlikely(entry->flags & eb->invalid_flags))
513 		return -EINVAL;
514 
515 	if (unlikely(entry->alignment &&
516 		     !is_power_of_2_u64(entry->alignment)))
517 		return -EINVAL;
518 
519 	/*
520 	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
521 	 * any non-page-aligned or non-canonical addresses.
522 	 */
523 	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
524 		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
525 		return -EINVAL;
526 
527 	/* pad_to_size was once a reserved field, so sanitize it */
528 	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
529 		if (unlikely(offset_in_page(entry->pad_to_size)))
530 			return -EINVAL;
531 	} else {
532 		entry->pad_to_size = 0;
533 	}
534 	/*
535 	 * From drm_mm perspective address space is continuous,
536 	 * so from this point we're always using non-canonical
537 	 * form internally.
538 	 */
539 	entry->offset = gen8_noncanonical_addr(entry->offset);
540 
541 	if (!eb->reloc_cache.has_fence) {
542 		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
543 	} else {
544 		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
545 		     eb->reloc_cache.needs_unfenced) &&
546 		    i915_gem_object_is_tiled(vma->obj))
547 			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
548 	}
549 
550 	return 0;
551 }
552 
553 static bool
554 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
555 {
556 	return eb->args->flags & I915_EXEC_BATCH_FIRST ?
557 		buffer_idx < eb->num_batches :
558 		buffer_idx >= eb->args->buffer_count - eb->num_batches;
559 }
560 
561 static int
562 eb_add_vma(struct i915_execbuffer *eb,
563 	   unsigned int *current_batch,
564 	   unsigned int i,
565 	   struct i915_vma *vma)
566 {
567 	struct drm_i915_private *i915 = eb->i915;
568 	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
569 	struct eb_vma *ev = &eb->vma[i];
570 
571 	ev->vma = vma;
572 	ev->exec = entry;
573 	ev->flags = entry->flags;
574 
575 	if (eb->lut_size > 0) {
576 		ev->handle = entry->handle;
577 		hlist_add_head(&ev->node,
578 			       &eb->buckets[hash_32(entry->handle,
579 						    eb->lut_size)]);
580 	}
581 
582 	if (entry->relocation_count)
583 		list_add_tail(&ev->reloc_link, &eb->relocs);
584 
585 	/*
586 	 * SNA is doing fancy tricks with compressing batch buffers, which leads
587 	 * to negative relocation deltas. Usually that works out ok since the
588 	 * relocate address is still positive, except when the batch is placed
589 	 * very low in the GTT. Ensure this doesn't happen.
590 	 *
591 	 * Note that actual hangs have only been observed on gen7, but for
592 	 * paranoia do it everywhere.
593 	 */
594 	if (is_batch_buffer(eb, i)) {
595 		if (entry->relocation_count &&
596 		    !(ev->flags & EXEC_OBJECT_PINNED))
597 			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
598 		if (eb->reloc_cache.has_fence)
599 			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
600 
601 		eb->batches[*current_batch] = ev;
602 
603 		if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
604 			drm_dbg(&i915->drm,
605 				"Attempting to use self-modifying batch buffer\n");
606 			return -EINVAL;
607 		}
608 
609 		if (range_overflows_t(u64,
610 				      eb->batch_start_offset,
611 				      eb->args->batch_len,
612 				      ev->vma->size)) {
613 			drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
614 			return -EINVAL;
615 		}
616 
617 		if (eb->args->batch_len == 0)
618 			eb->batch_len[*current_batch] = ev->vma->size -
619 				eb->batch_start_offset;
620 		else
621 			eb->batch_len[*current_batch] = eb->args->batch_len;
622 		if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
623 			drm_dbg(&i915->drm, "Invalid batch length\n");
624 			return -EINVAL;
625 		}
626 
627 		++*current_batch;
628 	}
629 
630 	return 0;
631 }
632 
633 static int use_cpu_reloc(const struct reloc_cache *cache,
634 			 const struct drm_i915_gem_object *obj)
635 {
636 	if (!i915_gem_object_has_struct_page(obj))
637 		return false;
638 
639 	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
640 		return true;
641 
642 	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
643 		return false;
644 
645 	/*
646 	 * For objects created by userspace through GEM_CREATE with pat_index
647 	 * set by set_pat extension, i915_gem_object_has_cache_level() always
648 	 * return true, otherwise the call would fall back to checking whether
649 	 * the object is un-cached.
650 	 */
651 	return (cache->has_llc ||
652 		obj->cache_dirty ||
653 		!i915_gem_object_has_cache_level(obj, I915_CACHE_NONE));
654 }
655 
656 static int eb_reserve_vma(struct i915_execbuffer *eb,
657 			  struct eb_vma *ev,
658 			  u64 pin_flags)
659 {
660 	struct drm_i915_gem_exec_object2 *entry = ev->exec;
661 	struct i915_vma *vma = ev->vma;
662 	int err;
663 
664 	if (drm_mm_node_allocated(&vma->node) &&
665 	    eb_vma_misplaced(entry, vma, ev->flags)) {
666 		err = i915_vma_unbind(vma);
667 		if (err)
668 			return err;
669 	}
670 
671 	err = i915_vma_pin_ww(vma, &eb->ww,
672 			   entry->pad_to_size, entry->alignment,
673 			   eb_pin_flags(entry, ev->flags) | pin_flags);
674 	if (err)
675 		return err;
676 
677 	if (entry->offset != i915_vma_offset(vma)) {
678 		entry->offset = i915_vma_offset(vma) | UPDATE;
679 		eb->args->flags |= __EXEC_HAS_RELOC;
680 	}
681 
682 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
683 		err = i915_vma_pin_fence(vma);
684 		if (unlikely(err))
685 			return err;
686 
687 		if (vma->fence)
688 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
689 	}
690 
691 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
692 	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
693 
694 	return 0;
695 }
696 
697 static bool eb_unbind(struct i915_execbuffer *eb, bool force)
698 {
699 	const unsigned int count = eb->buffer_count;
700 	unsigned int i;
701 	struct list_head last;
702 	bool unpinned = false;
703 
704 	/* Resort *all* the objects into priority order */
705 	INIT_LIST_HEAD(&eb->unbound);
706 	INIT_LIST_HEAD(&last);
707 
708 	for (i = 0; i < count; i++) {
709 		struct eb_vma *ev = &eb->vma[i];
710 		unsigned int flags = ev->flags;
711 
712 		if (!force && flags & EXEC_OBJECT_PINNED &&
713 		    flags & __EXEC_OBJECT_HAS_PIN)
714 			continue;
715 
716 		unpinned = true;
717 		eb_unreserve_vma(ev);
718 
719 		if (flags & EXEC_OBJECT_PINNED)
720 			/* Pinned must have their slot */
721 			list_add(&ev->bind_link, &eb->unbound);
722 		else if (flags & __EXEC_OBJECT_NEEDS_MAP)
723 			/* Map require the lowest 256MiB (aperture) */
724 			list_add_tail(&ev->bind_link, &eb->unbound);
725 		else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
726 			/* Prioritise 4GiB region for restricted bo */
727 			list_add(&ev->bind_link, &last);
728 		else
729 			list_add_tail(&ev->bind_link, &last);
730 	}
731 
732 	list_splice_tail(&last, &eb->unbound);
733 	return unpinned;
734 }
735 
736 static int eb_reserve(struct i915_execbuffer *eb)
737 {
738 	struct eb_vma *ev;
739 	unsigned int pass;
740 	int err = 0;
741 
742 	/*
743 	 * We have one more buffers that we couldn't bind, which could be due to
744 	 * various reasons. To resolve this we have 4 passes, with every next
745 	 * level turning the screws tighter:
746 	 *
747 	 * 0. Unbind all objects that do not match the GTT constraints for the
748 	 * execbuffer (fenceable, mappable, alignment etc). Bind all new
749 	 * objects.  This avoids unnecessary unbinding of later objects in order
750 	 * to make room for the earlier objects *unless* we need to defragment.
751 	 *
752 	 * 1. Reorder the buffers, where objects with the most restrictive
753 	 * placement requirements go first (ignoring fixed location buffers for
754 	 * now).  For example, objects needing the mappable aperture (the first
755 	 * 256M of GTT), should go first vs objects that can be placed just
756 	 * about anywhere. Repeat the previous pass.
757 	 *
758 	 * 2. Consider buffers that are pinned at a fixed location. Also try to
759 	 * evict the entire VM this time, leaving only objects that we were
760 	 * unable to lock. Try again to bind the buffers. (still using the new
761 	 * buffer order).
762 	 *
763 	 * 3. We likely have object lock contention for one or more stubborn
764 	 * objects in the VM, for which we need to evict to make forward
765 	 * progress (perhaps we are fighting the shrinker?). When evicting the
766 	 * VM this time around, anything that we can't lock we now track using
767 	 * the busy_bo, using the full lock (after dropping the vm->mutex to
768 	 * prevent deadlocks), instead of trylock. We then continue to evict the
769 	 * VM, this time with the stubborn object locked, which we can now
770 	 * hopefully unbind (if still bound in the VM). Repeat until the VM is
771 	 * evicted. Finally we should be able bind everything.
772 	 */
773 	for (pass = 0; pass <= 3; pass++) {
774 		int pin_flags = PIN_USER | PIN_VALIDATE;
775 
776 		if (pass == 0)
777 			pin_flags |= PIN_NONBLOCK;
778 
779 		if (pass >= 1)
780 			eb_unbind(eb, pass >= 2);
781 
782 		if (pass == 2) {
783 			err = mutex_lock_interruptible(&eb->context->vm->mutex);
784 			if (!err) {
785 				err = i915_gem_evict_vm(eb->context->vm, &eb->ww, NULL);
786 				mutex_unlock(&eb->context->vm->mutex);
787 			}
788 			if (err)
789 				return err;
790 		}
791 
792 		if (pass == 3) {
793 retry:
794 			err = mutex_lock_interruptible(&eb->context->vm->mutex);
795 			if (!err) {
796 				struct drm_i915_gem_object *busy_bo = NULL;
797 
798 				err = i915_gem_evict_vm(eb->context->vm, &eb->ww, &busy_bo);
799 				mutex_unlock(&eb->context->vm->mutex);
800 				if (err && busy_bo) {
801 					err = i915_gem_object_lock(busy_bo, &eb->ww);
802 					i915_gem_object_put(busy_bo);
803 					if (!err)
804 						goto retry;
805 				}
806 			}
807 			if (err)
808 				return err;
809 		}
810 
811 		list_for_each_entry(ev, &eb->unbound, bind_link) {
812 			err = eb_reserve_vma(eb, ev, pin_flags);
813 			if (err)
814 				break;
815 		}
816 
817 		if (err != -ENOSPC)
818 			break;
819 	}
820 
821 	return err;
822 }
823 
824 static int eb_select_context(struct i915_execbuffer *eb)
825 {
826 	struct i915_gem_context *ctx;
827 
828 	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
829 	if (unlikely(IS_ERR(ctx)))
830 		return PTR_ERR(ctx);
831 
832 	eb->gem_context = ctx;
833 	if (i915_gem_context_has_full_ppgtt(ctx))
834 		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
835 
836 	return 0;
837 }
838 
839 static int __eb_add_lut(struct i915_execbuffer *eb,
840 			u32 handle, struct i915_vma *vma)
841 {
842 	struct i915_gem_context *ctx = eb->gem_context;
843 	struct i915_lut_handle *lut;
844 	int err;
845 
846 	lut = i915_lut_handle_alloc();
847 	if (unlikely(!lut))
848 		return -ENOMEM;
849 
850 	i915_vma_get(vma);
851 	if (!atomic_fetch_inc(&vma->open_count))
852 		i915_vma_reopen(vma);
853 	lut->handle = handle;
854 	lut->ctx = ctx;
855 
856 	/* Check that the context hasn't been closed in the meantime */
857 	err = -EINTR;
858 	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
859 		if (likely(!i915_gem_context_is_closed(ctx)))
860 			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
861 		else
862 			err = -ENOENT;
863 		if (err == 0) { /* And nor has this handle */
864 			struct drm_i915_gem_object *obj = vma->obj;
865 
866 			spin_lock(&obj->lut_lock);
867 			if (idr_find(&eb->file->object_idr, handle) == obj) {
868 				list_add(&lut->obj_link, &obj->lut_list);
869 			} else {
870 				radix_tree_delete(&ctx->handles_vma, handle);
871 				err = -ENOENT;
872 			}
873 			spin_unlock(&obj->lut_lock);
874 		}
875 		mutex_unlock(&ctx->lut_mutex);
876 	}
877 	if (unlikely(err))
878 		goto err;
879 
880 	return 0;
881 
882 err:
883 	i915_vma_close(vma);
884 	i915_vma_put(vma);
885 	i915_lut_handle_free(lut);
886 	return err;
887 }
888 
889 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
890 {
891 	struct i915_address_space *vm = eb->context->vm;
892 
893 	do {
894 		struct drm_i915_gem_object *obj;
895 		struct i915_vma *vma;
896 		int err;
897 
898 		rcu_read_lock();
899 		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
900 		if (likely(vma && vma->vm == vm))
901 			vma = i915_vma_tryget(vma);
902 		rcu_read_unlock();
903 		if (likely(vma))
904 			return vma;
905 
906 		obj = i915_gem_object_lookup(eb->file, handle);
907 		if (unlikely(!obj))
908 			return ERR_PTR(-ENOENT);
909 
910 		/*
911 		 * If the user has opted-in for protected-object tracking, make
912 		 * sure the object encryption can be used.
913 		 * We only need to do this when the object is first used with
914 		 * this context, because the context itself will be banned when
915 		 * the protected objects become invalid.
916 		 */
917 		if (i915_gem_context_uses_protected_content(eb->gem_context) &&
918 		    i915_gem_object_is_protected(obj)) {
919 			err = intel_pxp_key_check(eb->i915->pxp, obj, true);
920 			if (err) {
921 				i915_gem_object_put(obj);
922 				return ERR_PTR(err);
923 			}
924 		}
925 
926 		vma = i915_vma_instance(obj, vm, NULL);
927 		if (IS_ERR(vma)) {
928 			i915_gem_object_put(obj);
929 			return vma;
930 		}
931 
932 		err = __eb_add_lut(eb, handle, vma);
933 		if (likely(!err))
934 			return vma;
935 
936 		i915_gem_object_put(obj);
937 		if (err != -EEXIST)
938 			return ERR_PTR(err);
939 	} while (1);
940 }
941 
942 static int eb_lookup_vmas(struct i915_execbuffer *eb)
943 {
944 	unsigned int i, current_batch = 0;
945 	int err = 0;
946 
947 	INIT_LIST_HEAD(&eb->relocs);
948 
949 	for (i = 0; i < eb->buffer_count; i++) {
950 		struct i915_vma *vma;
951 
952 		vma = eb_lookup_vma(eb, eb->exec[i].handle);
953 		if (IS_ERR(vma)) {
954 			err = PTR_ERR(vma);
955 			goto err;
956 		}
957 
958 		err = eb_validate_vma(eb, &eb->exec[i], vma);
959 		if (unlikely(err)) {
960 			i915_vma_put(vma);
961 			goto err;
962 		}
963 
964 		err = eb_add_vma(eb, &current_batch, i, vma);
965 		if (err)
966 			return err;
967 
968 		if (i915_gem_object_is_userptr(vma->obj)) {
969 			err = i915_gem_object_userptr_submit_init(vma->obj);
970 			if (err) {
971 				if (i + 1 < eb->buffer_count) {
972 					/*
973 					 * Execbuffer code expects last vma entry to be NULL,
974 					 * since we already initialized this entry,
975 					 * set the next value to NULL or we mess up
976 					 * cleanup handling.
977 					 */
978 					eb->vma[i + 1].vma = NULL;
979 				}
980 
981 				return err;
982 			}
983 
984 			eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
985 			eb->args->flags |= __EXEC_USERPTR_USED;
986 		}
987 	}
988 
989 	return 0;
990 
991 err:
992 	eb->vma[i].vma = NULL;
993 	return err;
994 }
995 
996 static int eb_lock_vmas(struct i915_execbuffer *eb)
997 {
998 	unsigned int i;
999 	int err;
1000 
1001 	for (i = 0; i < eb->buffer_count; i++) {
1002 		struct eb_vma *ev = &eb->vma[i];
1003 		struct i915_vma *vma = ev->vma;
1004 
1005 		err = i915_gem_object_lock(vma->obj, &eb->ww);
1006 		if (err)
1007 			return err;
1008 	}
1009 
1010 	return 0;
1011 }
1012 
1013 static int eb_validate_vmas(struct i915_execbuffer *eb)
1014 {
1015 	unsigned int i;
1016 	int err;
1017 
1018 	INIT_LIST_HEAD(&eb->unbound);
1019 
1020 	err = eb_lock_vmas(eb);
1021 	if (err)
1022 		return err;
1023 
1024 	for (i = 0; i < eb->buffer_count; i++) {
1025 		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
1026 		struct eb_vma *ev = &eb->vma[i];
1027 		struct i915_vma *vma = ev->vma;
1028 
1029 		err = eb_pin_vma(eb, entry, ev);
1030 		if (err == -EDEADLK)
1031 			return err;
1032 
1033 		if (!err) {
1034 			if (entry->offset != i915_vma_offset(vma)) {
1035 				entry->offset = i915_vma_offset(vma) | UPDATE;
1036 				eb->args->flags |= __EXEC_HAS_RELOC;
1037 			}
1038 		} else {
1039 			eb_unreserve_vma(ev);
1040 
1041 			list_add_tail(&ev->bind_link, &eb->unbound);
1042 			if (drm_mm_node_allocated(&vma->node)) {
1043 				err = i915_vma_unbind(vma);
1044 				if (err)
1045 					return err;
1046 			}
1047 		}
1048 
1049 		/* Reserve enough slots to accommodate composite fences */
1050 		err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches);
1051 		if (err)
1052 			return err;
1053 
1054 		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
1055 			   eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
1056 	}
1057 
1058 	if (!list_empty(&eb->unbound))
1059 		return eb_reserve(eb);
1060 
1061 	return 0;
1062 }
1063 
1064 static struct eb_vma *
1065 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
1066 {
1067 	if (eb->lut_size < 0) {
1068 		if (handle >= -eb->lut_size)
1069 			return NULL;
1070 		return &eb->vma[handle];
1071 	} else {
1072 		struct hlist_head *head;
1073 		struct eb_vma *ev;
1074 
1075 		head = &eb->buckets[hash_32(handle, eb->lut_size)];
1076 		hlist_for_each_entry(ev, head, node) {
1077 			if (ev->handle == handle)
1078 				return ev;
1079 		}
1080 		return NULL;
1081 	}
1082 }
1083 
1084 static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
1085 {
1086 	const unsigned int count = eb->buffer_count;
1087 	unsigned int i;
1088 
1089 	for (i = 0; i < count; i++) {
1090 		struct eb_vma *ev = &eb->vma[i];
1091 		struct i915_vma *vma = ev->vma;
1092 
1093 		if (!vma)
1094 			break;
1095 
1096 		eb_unreserve_vma(ev);
1097 
1098 		if (final)
1099 			i915_vma_put(vma);
1100 	}
1101 
1102 	eb_capture_release(eb);
1103 	eb_unpin_engine(eb);
1104 }
1105 
1106 static void eb_destroy(const struct i915_execbuffer *eb)
1107 {
1108 	if (eb->lut_size > 0)
1109 		kfree(eb->buckets);
1110 }
1111 
1112 static u64
1113 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1114 		  const struct i915_vma *target)
1115 {
1116 	return gen8_canonical_addr((int)reloc->delta + i915_vma_offset(target));
1117 }
1118 
1119 static void reloc_cache_init(struct reloc_cache *cache,
1120 			     struct drm_i915_private *i915)
1121 {
1122 	cache->page = -1;
1123 	cache->vaddr = 0;
1124 	/* Must be a variable in the struct to allow GCC to unroll. */
1125 	cache->graphics_ver = GRAPHICS_VER(i915);
1126 	cache->has_llc = HAS_LLC(i915);
1127 	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1128 	cache->has_fence = cache->graphics_ver < 4;
1129 	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1130 	cache->node.flags = 0;
1131 }
1132 
1133 static void *unmask_page(unsigned long p)
1134 {
1135 	return (void *)(uintptr_t)(p & PAGE_MASK);
1136 }
1137 
1138 static unsigned int unmask_flags(unsigned long p)
1139 {
1140 	return p & ~PAGE_MASK;
1141 }
1142 
1143 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1144 
1145 static struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1146 {
1147 	struct drm_i915_private *i915 =
1148 		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1149 	return to_gt(i915)->ggtt;
1150 }
1151 
1152 static void reloc_cache_unmap(struct reloc_cache *cache)
1153 {
1154 	void *vaddr;
1155 
1156 	if (!cache->vaddr)
1157 		return;
1158 
1159 	vaddr = unmask_page(cache->vaddr);
1160 	if (cache->vaddr & KMAP)
1161 		kunmap_local(vaddr);
1162 	else
1163 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1164 }
1165 
1166 static void reloc_cache_remap(struct reloc_cache *cache,
1167 			      struct drm_i915_gem_object *obj)
1168 {
1169 	void *vaddr;
1170 
1171 	if (!cache->vaddr)
1172 		return;
1173 
1174 	if (cache->vaddr & KMAP) {
1175 		struct page *page = i915_gem_object_get_page(obj, cache->page);
1176 
1177 		vaddr = kmap_local_page(page);
1178 		cache->vaddr = unmask_flags(cache->vaddr) |
1179 			(unsigned long)vaddr;
1180 	} else {
1181 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1182 		unsigned long offset;
1183 
1184 		offset = cache->node.start;
1185 		if (!drm_mm_node_allocated(&cache->node))
1186 			offset += cache->page << PAGE_SHIFT;
1187 
1188 		cache->vaddr = (unsigned long)
1189 			io_mapping_map_atomic_wc(&ggtt->iomap, offset);
1190 	}
1191 }
1192 
1193 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1194 {
1195 	void *vaddr;
1196 
1197 	if (!cache->vaddr)
1198 		return;
1199 
1200 	vaddr = unmask_page(cache->vaddr);
1201 	if (cache->vaddr & KMAP) {
1202 		struct drm_i915_gem_object *obj =
1203 			(struct drm_i915_gem_object *)cache->node.mm;
1204 		if (cache->vaddr & CLFLUSH_AFTER)
1205 			mb();
1206 
1207 		kunmap_local(vaddr);
1208 		i915_gem_object_finish_access(obj);
1209 	} else {
1210 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1211 
1212 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1213 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1214 
1215 		if (drm_mm_node_allocated(&cache->node)) {
1216 			ggtt->vm.clear_range(&ggtt->vm,
1217 					     cache->node.start,
1218 					     cache->node.size);
1219 			mutex_lock(&ggtt->vm.mutex);
1220 			drm_mm_remove_node(&cache->node);
1221 			mutex_unlock(&ggtt->vm.mutex);
1222 		} else {
1223 			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1224 		}
1225 	}
1226 
1227 	cache->vaddr = 0;
1228 	cache->page = -1;
1229 }
1230 
1231 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1232 			struct reloc_cache *cache,
1233 			unsigned long pageno)
1234 {
1235 	void *vaddr;
1236 	struct page *page;
1237 
1238 	if (cache->vaddr) {
1239 		kunmap_local(unmask_page(cache->vaddr));
1240 	} else {
1241 		unsigned int flushes;
1242 		int err;
1243 
1244 		err = i915_gem_object_prepare_write(obj, &flushes);
1245 		if (err)
1246 			return ERR_PTR(err);
1247 
1248 		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1249 		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1250 
1251 		cache->vaddr = flushes | KMAP;
1252 		cache->node.mm = (void *)obj;
1253 		if (flushes)
1254 			mb();
1255 	}
1256 
1257 	page = i915_gem_object_get_page(obj, pageno);
1258 	if (!obj->mm.dirty)
1259 		set_page_dirty(page);
1260 
1261 	vaddr = kmap_local_page(page);
1262 	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1263 	cache->page = pageno;
1264 
1265 	return vaddr;
1266 }
1267 
1268 static void *reloc_iomap(struct i915_vma *batch,
1269 			 struct i915_execbuffer *eb,
1270 			 unsigned long page)
1271 {
1272 	struct drm_i915_gem_object *obj = batch->obj;
1273 	struct reloc_cache *cache = &eb->reloc_cache;
1274 	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1275 	unsigned long offset;
1276 	void *vaddr;
1277 
1278 	if (cache->vaddr) {
1279 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1280 		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1281 	} else {
1282 		struct i915_vma *vma = ERR_PTR(-ENODEV);
1283 		int err;
1284 
1285 		if (i915_gem_object_is_tiled(obj))
1286 			return ERR_PTR(-EINVAL);
1287 
1288 		if (use_cpu_reloc(cache, obj))
1289 			return NULL;
1290 
1291 		err = i915_gem_object_set_to_gtt_domain(obj, true);
1292 		if (err)
1293 			return ERR_PTR(err);
1294 
1295 		/*
1296 		 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch
1297 		 * VMA from the object list because we no longer pin.
1298 		 *
1299 		 * Only attempt to pin the batch buffer to ggtt if the current batch
1300 		 * is not inside ggtt, or the batch buffer is not misplaced.
1301 		 */
1302 		if (!i915_is_ggtt(batch->vm) ||
1303 		    !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) {
1304 			vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1305 							  PIN_MAPPABLE |
1306 							  PIN_NONBLOCK /* NOWARN */ |
1307 							  PIN_NOEVICT);
1308 		}
1309 
1310 		if (vma == ERR_PTR(-EDEADLK))
1311 			return vma;
1312 
1313 		if (IS_ERR(vma)) {
1314 			memset(&cache->node, 0, sizeof(cache->node));
1315 			mutex_lock(&ggtt->vm.mutex);
1316 			err = drm_mm_insert_node_in_range
1317 				(&ggtt->vm.mm, &cache->node,
1318 				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1319 				 0, ggtt->mappable_end,
1320 				 DRM_MM_INSERT_LOW);
1321 			mutex_unlock(&ggtt->vm.mutex);
1322 			if (err) /* no inactive aperture space, use cpu reloc */
1323 				return NULL;
1324 		} else {
1325 			cache->node.start = i915_ggtt_offset(vma);
1326 			cache->node.mm = (void *)vma;
1327 		}
1328 	}
1329 
1330 	offset = cache->node.start;
1331 	if (drm_mm_node_allocated(&cache->node)) {
1332 		ggtt->vm.insert_page(&ggtt->vm,
1333 				     i915_gem_object_get_dma_address(obj, page),
1334 				     offset,
1335 				     i915_gem_get_pat_index(ggtt->vm.i915,
1336 							    I915_CACHE_NONE),
1337 				     0);
1338 	} else {
1339 		offset += page << PAGE_SHIFT;
1340 	}
1341 
1342 	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1343 							 offset);
1344 	cache->page = page;
1345 	cache->vaddr = (unsigned long)vaddr;
1346 
1347 	return vaddr;
1348 }
1349 
1350 static void *reloc_vaddr(struct i915_vma *vma,
1351 			 struct i915_execbuffer *eb,
1352 			 unsigned long page)
1353 {
1354 	struct reloc_cache *cache = &eb->reloc_cache;
1355 	void *vaddr;
1356 
1357 	if (cache->page == page) {
1358 		vaddr = unmask_page(cache->vaddr);
1359 	} else {
1360 		vaddr = NULL;
1361 		if ((cache->vaddr & KMAP) == 0)
1362 			vaddr = reloc_iomap(vma, eb, page);
1363 		if (!vaddr)
1364 			vaddr = reloc_kmap(vma->obj, cache, page);
1365 	}
1366 
1367 	return vaddr;
1368 }
1369 
1370 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1371 {
1372 	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1373 		if (flushes & CLFLUSH_BEFORE)
1374 			drm_clflush_virt_range(addr, sizeof(*addr));
1375 
1376 		*addr = value;
1377 
1378 		/*
1379 		 * Writes to the same cacheline are serialised by the CPU
1380 		 * (including clflush). On the write path, we only require
1381 		 * that it hits memory in an orderly fashion and place
1382 		 * mb barriers at the start and end of the relocation phase
1383 		 * to ensure ordering of clflush wrt to the system.
1384 		 */
1385 		if (flushes & CLFLUSH_AFTER)
1386 			drm_clflush_virt_range(addr, sizeof(*addr));
1387 	} else
1388 		*addr = value;
1389 }
1390 
1391 static u64
1392 relocate_entry(struct i915_vma *vma,
1393 	       const struct drm_i915_gem_relocation_entry *reloc,
1394 	       struct i915_execbuffer *eb,
1395 	       const struct i915_vma *target)
1396 {
1397 	u64 target_addr = relocation_target(reloc, target);
1398 	u64 offset = reloc->offset;
1399 	bool wide = eb->reloc_cache.use_64bit_reloc;
1400 	void *vaddr;
1401 
1402 repeat:
1403 	vaddr = reloc_vaddr(vma, eb,
1404 			    offset >> PAGE_SHIFT);
1405 	if (IS_ERR(vaddr))
1406 		return PTR_ERR(vaddr);
1407 
1408 	GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1409 	clflush_write32(vaddr + offset_in_page(offset),
1410 			lower_32_bits(target_addr),
1411 			eb->reloc_cache.vaddr);
1412 
1413 	if (wide) {
1414 		offset += sizeof(u32);
1415 		target_addr >>= 32;
1416 		wide = false;
1417 		goto repeat;
1418 	}
1419 
1420 	return target->node.start | UPDATE;
1421 }
1422 
1423 static u64
1424 eb_relocate_entry(struct i915_execbuffer *eb,
1425 		  struct eb_vma *ev,
1426 		  const struct drm_i915_gem_relocation_entry *reloc)
1427 {
1428 	struct drm_i915_private *i915 = eb->i915;
1429 	struct eb_vma *target;
1430 	int err;
1431 
1432 	/* we've already hold a reference to all valid objects */
1433 	target = eb_get_vma(eb, reloc->target_handle);
1434 	if (unlikely(!target))
1435 		return -ENOENT;
1436 
1437 	/* Validate that the target is in a valid r/w GPU domain */
1438 	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1439 		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1440 			  "target %d offset %d "
1441 			  "read %08x write %08x\n",
1442 			  reloc->target_handle,
1443 			  (int) reloc->offset,
1444 			  reloc->read_domains,
1445 			  reloc->write_domain);
1446 		return -EINVAL;
1447 	}
1448 	if (unlikely((reloc->write_domain | reloc->read_domains)
1449 		     & ~I915_GEM_GPU_DOMAINS)) {
1450 		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1451 			  "target %d offset %d "
1452 			  "read %08x write %08x\n",
1453 			  reloc->target_handle,
1454 			  (int) reloc->offset,
1455 			  reloc->read_domains,
1456 			  reloc->write_domain);
1457 		return -EINVAL;
1458 	}
1459 
1460 	if (reloc->write_domain) {
1461 		target->flags |= EXEC_OBJECT_WRITE;
1462 
1463 		/*
1464 		 * Sandybridge PPGTT errata: We need a global gtt mapping
1465 		 * for MI and pipe_control writes because the gpu doesn't
1466 		 * properly redirect them through the ppgtt for non_secure
1467 		 * batchbuffers.
1468 		 */
1469 		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1470 		    GRAPHICS_VER(eb->i915) == 6 &&
1471 		    !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
1472 			struct i915_vma *vma = target->vma;
1473 
1474 			reloc_cache_unmap(&eb->reloc_cache);
1475 			mutex_lock(&vma->vm->mutex);
1476 			err = i915_vma_bind(target->vma,
1477 					    target->vma->obj->pat_index,
1478 					    PIN_GLOBAL, NULL, NULL);
1479 			mutex_unlock(&vma->vm->mutex);
1480 			reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
1481 			if (err)
1482 				return err;
1483 		}
1484 	}
1485 
1486 	/*
1487 	 * If the relocation already has the right value in it, no
1488 	 * more work needs to be done.
1489 	 */
1490 	if (!DBG_FORCE_RELOC &&
1491 	    gen8_canonical_addr(i915_vma_offset(target->vma)) == reloc->presumed_offset)
1492 		return 0;
1493 
1494 	/* Check that the relocation address is valid... */
1495 	if (unlikely(reloc->offset >
1496 		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1497 		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1498 			  "target %d offset %d size %d.\n",
1499 			  reloc->target_handle,
1500 			  (int)reloc->offset,
1501 			  (int)ev->vma->size);
1502 		return -EINVAL;
1503 	}
1504 	if (unlikely(reloc->offset & 3)) {
1505 		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1506 			  "target %d offset %d.\n",
1507 			  reloc->target_handle,
1508 			  (int)reloc->offset);
1509 		return -EINVAL;
1510 	}
1511 
1512 	/*
1513 	 * If we write into the object, we need to force the synchronisation
1514 	 * barrier, either with an asynchronous clflush or if we executed the
1515 	 * patching using the GPU (though that should be serialised by the
1516 	 * timeline). To be completely sure, and since we are required to
1517 	 * do relocations we are already stalling, disable the user's opt
1518 	 * out of our synchronisation.
1519 	 */
1520 	ev->flags &= ~EXEC_OBJECT_ASYNC;
1521 
1522 	/* and update the user's relocation entry */
1523 	return relocate_entry(ev->vma, reloc, eb, target->vma);
1524 }
1525 
1526 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1527 {
1528 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1529 	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1530 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1531 	struct drm_i915_gem_relocation_entry __user *urelocs =
1532 		u64_to_user_ptr(entry->relocs_ptr);
1533 	unsigned long remain = entry->relocation_count;
1534 
1535 	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1536 		return -EINVAL;
1537 
1538 	/*
1539 	 * We must check that the entire relocation array is safe
1540 	 * to read. However, if the array is not writable the user loses
1541 	 * the updated relocation values.
1542 	 */
1543 	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1544 		return -EFAULT;
1545 
1546 	do {
1547 		struct drm_i915_gem_relocation_entry *r = stack;
1548 		unsigned int count =
1549 			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1550 		unsigned int copied;
1551 
1552 		/*
1553 		 * This is the fast path and we cannot handle a pagefault
1554 		 * whilst holding the struct mutex lest the user pass in the
1555 		 * relocations contained within a mmaped bo. For in such a case
1556 		 * we, the page fault handler would call i915_gem_fault() and
1557 		 * we would try to acquire the struct mutex again. Obviously
1558 		 * this is bad and so lockdep complains vehemently.
1559 		 */
1560 		pagefault_disable();
1561 		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1562 		pagefault_enable();
1563 		if (unlikely(copied)) {
1564 			remain = -EFAULT;
1565 			goto out;
1566 		}
1567 
1568 		remain -= count;
1569 		do {
1570 			u64 offset = eb_relocate_entry(eb, ev, r);
1571 
1572 			if (likely(offset == 0)) {
1573 			} else if ((s64)offset < 0) {
1574 				remain = (int)offset;
1575 				goto out;
1576 			} else {
1577 				/*
1578 				 * Note that reporting an error now
1579 				 * leaves everything in an inconsistent
1580 				 * state as we have *already* changed
1581 				 * the relocation value inside the
1582 				 * object. As we have not changed the
1583 				 * reloc.presumed_offset or will not
1584 				 * change the execobject.offset, on the
1585 				 * call we may not rewrite the value
1586 				 * inside the object, leaving it
1587 				 * dangling and causing a GPU hang. Unless
1588 				 * userspace dynamically rebuilds the
1589 				 * relocations on each execbuf rather than
1590 				 * presume a static tree.
1591 				 *
1592 				 * We did previously check if the relocations
1593 				 * were writable (access_ok), an error now
1594 				 * would be a strange race with mprotect,
1595 				 * having already demonstrated that we
1596 				 * can read from this userspace address.
1597 				 */
1598 				offset = gen8_canonical_addr(offset & ~UPDATE);
1599 				__put_user(offset,
1600 					   &urelocs[r - stack].presumed_offset);
1601 			}
1602 		} while (r++, --count);
1603 		urelocs += ARRAY_SIZE(stack);
1604 	} while (remain);
1605 out:
1606 	reloc_cache_reset(&eb->reloc_cache, eb);
1607 	return remain;
1608 }
1609 
1610 static int
1611 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1612 {
1613 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1614 	struct drm_i915_gem_relocation_entry *relocs =
1615 		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1616 	unsigned int i;
1617 	int err;
1618 
1619 	for (i = 0; i < entry->relocation_count; i++) {
1620 		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1621 
1622 		if ((s64)offset < 0) {
1623 			err = (int)offset;
1624 			goto err;
1625 		}
1626 	}
1627 	err = 0;
1628 err:
1629 	reloc_cache_reset(&eb->reloc_cache, eb);
1630 	return err;
1631 }
1632 
1633 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1634 {
1635 	const char __user *addr, *end;
1636 	unsigned long size;
1637 	char __maybe_unused c;
1638 
1639 	size = entry->relocation_count;
1640 	if (size == 0)
1641 		return 0;
1642 
1643 	if (size > N_RELOC(ULONG_MAX))
1644 		return -EINVAL;
1645 
1646 	addr = u64_to_user_ptr(entry->relocs_ptr);
1647 	size *= sizeof(struct drm_i915_gem_relocation_entry);
1648 	if (!access_ok(addr, size))
1649 		return -EFAULT;
1650 
1651 	end = addr + size;
1652 	for (; addr < end; addr += PAGE_SIZE) {
1653 		int err = __get_user(c, addr);
1654 		if (err)
1655 			return err;
1656 	}
1657 	return __get_user(c, end - 1);
1658 }
1659 
1660 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1661 {
1662 	struct drm_i915_gem_relocation_entry *relocs;
1663 	const unsigned int count = eb->buffer_count;
1664 	unsigned int i;
1665 	int err;
1666 
1667 	for (i = 0; i < count; i++) {
1668 		const unsigned int nreloc = eb->exec[i].relocation_count;
1669 		struct drm_i915_gem_relocation_entry __user *urelocs;
1670 		unsigned long size;
1671 		unsigned long copied;
1672 
1673 		if (nreloc == 0)
1674 			continue;
1675 
1676 		err = check_relocations(&eb->exec[i]);
1677 		if (err)
1678 			goto err;
1679 
1680 		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1681 		size = nreloc * sizeof(*relocs);
1682 
1683 		relocs = kvmalloc_array(1, size, GFP_KERNEL);
1684 		if (!relocs) {
1685 			err = -ENOMEM;
1686 			goto err;
1687 		}
1688 
1689 		/* copy_from_user is limited to < 4GiB */
1690 		copied = 0;
1691 		do {
1692 			unsigned int len =
1693 				min_t(u64, BIT_ULL(31), size - copied);
1694 
1695 			if (__copy_from_user((char *)relocs + copied,
1696 					     (char __user *)urelocs + copied,
1697 					     len))
1698 				goto end;
1699 
1700 			copied += len;
1701 		} while (copied < size);
1702 
1703 		/*
1704 		 * As we do not update the known relocation offsets after
1705 		 * relocating (due to the complexities in lock handling),
1706 		 * we need to mark them as invalid now so that we force the
1707 		 * relocation processing next time. Just in case the target
1708 		 * object is evicted and then rebound into its old
1709 		 * presumed_offset before the next execbuffer - if that
1710 		 * happened we would make the mistake of assuming that the
1711 		 * relocations were valid.
1712 		 */
1713 		if (!user_access_begin(urelocs, size))
1714 			goto end;
1715 
1716 		for (copied = 0; copied < nreloc; copied++)
1717 			unsafe_put_user(-1,
1718 					&urelocs[copied].presumed_offset,
1719 					end_user);
1720 		user_access_end();
1721 
1722 		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1723 	}
1724 
1725 	return 0;
1726 
1727 end_user:
1728 	user_access_end();
1729 end:
1730 	kvfree(relocs);
1731 	err = -EFAULT;
1732 err:
1733 	while (i--) {
1734 		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1735 		if (eb->exec[i].relocation_count)
1736 			kvfree(relocs);
1737 	}
1738 	return err;
1739 }
1740 
1741 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1742 {
1743 	const unsigned int count = eb->buffer_count;
1744 	unsigned int i;
1745 
1746 	for (i = 0; i < count; i++) {
1747 		int err;
1748 
1749 		err = check_relocations(&eb->exec[i]);
1750 		if (err)
1751 			return err;
1752 	}
1753 
1754 	return 0;
1755 }
1756 
1757 static int eb_reinit_userptr(struct i915_execbuffer *eb)
1758 {
1759 	const unsigned int count = eb->buffer_count;
1760 	unsigned int i;
1761 	int ret;
1762 
1763 	if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1764 		return 0;
1765 
1766 	for (i = 0; i < count; i++) {
1767 		struct eb_vma *ev = &eb->vma[i];
1768 
1769 		if (!i915_gem_object_is_userptr(ev->vma->obj))
1770 			continue;
1771 
1772 		ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1773 		if (ret)
1774 			return ret;
1775 
1776 		ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1777 	}
1778 
1779 	return 0;
1780 }
1781 
1782 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
1783 {
1784 	bool have_copy = false;
1785 	struct eb_vma *ev;
1786 	int err = 0;
1787 
1788 repeat:
1789 	if (signal_pending(current)) {
1790 		err = -ERESTARTSYS;
1791 		goto out;
1792 	}
1793 
1794 	/* We may process another execbuffer during the unlock... */
1795 	eb_release_vmas(eb, false);
1796 	i915_gem_ww_ctx_fini(&eb->ww);
1797 
1798 	/*
1799 	 * We take 3 passes through the slowpatch.
1800 	 *
1801 	 * 1 - we try to just prefault all the user relocation entries and
1802 	 * then attempt to reuse the atomic pagefault disabled fast path again.
1803 	 *
1804 	 * 2 - we copy the user entries to a local buffer here outside of the
1805 	 * local and allow ourselves to wait upon any rendering before
1806 	 * relocations
1807 	 *
1808 	 * 3 - we already have a local copy of the relocation entries, but
1809 	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1810 	 */
1811 	if (!err) {
1812 		err = eb_prefault_relocations(eb);
1813 	} else if (!have_copy) {
1814 		err = eb_copy_relocations(eb);
1815 		have_copy = err == 0;
1816 	} else {
1817 		cond_resched();
1818 		err = 0;
1819 	}
1820 
1821 	if (!err)
1822 		err = eb_reinit_userptr(eb);
1823 
1824 	i915_gem_ww_ctx_init(&eb->ww, true);
1825 	if (err)
1826 		goto out;
1827 
1828 	/* reacquire the objects */
1829 repeat_validate:
1830 	err = eb_pin_engine(eb, false);
1831 	if (err)
1832 		goto err;
1833 
1834 	err = eb_validate_vmas(eb);
1835 	if (err)
1836 		goto err;
1837 
1838 	GEM_BUG_ON(!eb->batches[0]);
1839 
1840 	list_for_each_entry(ev, &eb->relocs, reloc_link) {
1841 		if (!have_copy) {
1842 			err = eb_relocate_vma(eb, ev);
1843 			if (err)
1844 				break;
1845 		} else {
1846 			err = eb_relocate_vma_slow(eb, ev);
1847 			if (err)
1848 				break;
1849 		}
1850 	}
1851 
1852 	if (err == -EDEADLK)
1853 		goto err;
1854 
1855 	if (err && !have_copy)
1856 		goto repeat;
1857 
1858 	if (err)
1859 		goto err;
1860 
1861 	/* as last step, parse the command buffer */
1862 	err = eb_parse(eb);
1863 	if (err)
1864 		goto err;
1865 
1866 	/*
1867 	 * Leave the user relocations as are, this is the painfully slow path,
1868 	 * and we want to avoid the complication of dropping the lock whilst
1869 	 * having buffers reserved in the aperture and so causing spurious
1870 	 * ENOSPC for random operations.
1871 	 */
1872 
1873 err:
1874 	if (err == -EDEADLK) {
1875 		eb_release_vmas(eb, false);
1876 		err = i915_gem_ww_ctx_backoff(&eb->ww);
1877 		if (!err)
1878 			goto repeat_validate;
1879 	}
1880 
1881 	if (err == -EAGAIN)
1882 		goto repeat;
1883 
1884 out:
1885 	if (have_copy) {
1886 		const unsigned int count = eb->buffer_count;
1887 		unsigned int i;
1888 
1889 		for (i = 0; i < count; i++) {
1890 			const struct drm_i915_gem_exec_object2 *entry =
1891 				&eb->exec[i];
1892 			struct drm_i915_gem_relocation_entry *relocs;
1893 
1894 			if (!entry->relocation_count)
1895 				continue;
1896 
1897 			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1898 			kvfree(relocs);
1899 		}
1900 	}
1901 
1902 	return err;
1903 }
1904 
1905 static int eb_relocate_parse(struct i915_execbuffer *eb)
1906 {
1907 	int err;
1908 	bool throttle = true;
1909 
1910 retry:
1911 	err = eb_pin_engine(eb, throttle);
1912 	if (err) {
1913 		if (err != -EDEADLK)
1914 			return err;
1915 
1916 		goto err;
1917 	}
1918 
1919 	/* only throttle once, even if we didn't need to throttle */
1920 	throttle = false;
1921 
1922 	err = eb_validate_vmas(eb);
1923 	if (err == -EAGAIN)
1924 		goto slow;
1925 	else if (err)
1926 		goto err;
1927 
1928 	/* The objects are in their final locations, apply the relocations. */
1929 	if (eb->args->flags & __EXEC_HAS_RELOC) {
1930 		struct eb_vma *ev;
1931 
1932 		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1933 			err = eb_relocate_vma(eb, ev);
1934 			if (err)
1935 				break;
1936 		}
1937 
1938 		if (err == -EDEADLK)
1939 			goto err;
1940 		else if (err)
1941 			goto slow;
1942 	}
1943 
1944 	if (!err)
1945 		err = eb_parse(eb);
1946 
1947 err:
1948 	if (err == -EDEADLK) {
1949 		eb_release_vmas(eb, false);
1950 		err = i915_gem_ww_ctx_backoff(&eb->ww);
1951 		if (!err)
1952 			goto retry;
1953 	}
1954 
1955 	return err;
1956 
1957 slow:
1958 	err = eb_relocate_parse_slow(eb);
1959 	if (err)
1960 		/*
1961 		 * If the user expects the execobject.offset and
1962 		 * reloc.presumed_offset to be an exact match,
1963 		 * as for using NO_RELOC, then we cannot update
1964 		 * the execobject.offset until we have completed
1965 		 * relocation.
1966 		 */
1967 		eb->args->flags &= ~__EXEC_HAS_RELOC;
1968 
1969 	return err;
1970 }
1971 
1972 /*
1973  * Using two helper loops for the order of which requests / batches are created
1974  * and added the to backend. Requests are created in order from the parent to
1975  * the last child. Requests are added in the reverse order, from the last child
1976  * to parent. This is done for locking reasons as the timeline lock is acquired
1977  * during request creation and released when the request is added to the
1978  * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
1979  * the ordering.
1980  */
1981 #define for_each_batch_create_order(_eb, _i) \
1982 	for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
1983 #define for_each_batch_add_order(_eb, _i) \
1984 	BUILD_BUG_ON(!typecheck(int, _i)); \
1985 	for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
1986 
1987 static struct i915_request *
1988 eb_find_first_request_added(struct i915_execbuffer *eb)
1989 {
1990 	int i;
1991 
1992 	for_each_batch_add_order(eb, i)
1993 		if (eb->requests[i])
1994 			return eb->requests[i];
1995 
1996 	GEM_BUG_ON("Request not found");
1997 
1998 	return NULL;
1999 }
2000 
2001 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
2002 
2003 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
2004 static int eb_capture_stage(struct i915_execbuffer *eb)
2005 {
2006 	const unsigned int count = eb->buffer_count;
2007 	unsigned int i = count, j;
2008 
2009 	while (i--) {
2010 		struct eb_vma *ev = &eb->vma[i];
2011 		struct i915_vma *vma = ev->vma;
2012 		unsigned int flags = ev->flags;
2013 
2014 		if (!(flags & EXEC_OBJECT_CAPTURE))
2015 			continue;
2016 
2017 		if (i915_gem_context_is_recoverable(eb->gem_context) &&
2018 		    (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0)))
2019 			return -EINVAL;
2020 
2021 		for_each_batch_create_order(eb, j) {
2022 			struct i915_capture_list *capture;
2023 
2024 			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
2025 			if (!capture)
2026 				continue;
2027 
2028 			capture->next = eb->capture_lists[j];
2029 			capture->vma_res = i915_vma_resource_get(vma->resource);
2030 			eb->capture_lists[j] = capture;
2031 		}
2032 	}
2033 
2034 	return 0;
2035 }
2036 
2037 /* Commit once we're in the critical path */
2038 static void eb_capture_commit(struct i915_execbuffer *eb)
2039 {
2040 	unsigned int j;
2041 
2042 	for_each_batch_create_order(eb, j) {
2043 		struct i915_request *rq = eb->requests[j];
2044 
2045 		if (!rq)
2046 			break;
2047 
2048 		rq->capture_list = eb->capture_lists[j];
2049 		eb->capture_lists[j] = NULL;
2050 	}
2051 }
2052 
2053 /*
2054  * Release anything that didn't get committed due to errors.
2055  * The capture_list will otherwise be freed at request retire.
2056  */
2057 static void eb_capture_release(struct i915_execbuffer *eb)
2058 {
2059 	unsigned int j;
2060 
2061 	for_each_batch_create_order(eb, j) {
2062 		if (eb->capture_lists[j]) {
2063 			i915_request_free_capture_list(eb->capture_lists[j]);
2064 			eb->capture_lists[j] = NULL;
2065 		}
2066 	}
2067 }
2068 
2069 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2070 {
2071 	memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
2072 }
2073 
2074 #else
2075 
2076 static int eb_capture_stage(struct i915_execbuffer *eb)
2077 {
2078 	return 0;
2079 }
2080 
2081 static void eb_capture_commit(struct i915_execbuffer *eb)
2082 {
2083 }
2084 
2085 static void eb_capture_release(struct i915_execbuffer *eb)
2086 {
2087 }
2088 
2089 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2090 {
2091 }
2092 
2093 #endif
2094 
2095 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2096 {
2097 	const unsigned int count = eb->buffer_count;
2098 	unsigned int i = count;
2099 	int err = 0, j;
2100 
2101 	while (i--) {
2102 		struct eb_vma *ev = &eb->vma[i];
2103 		struct i915_vma *vma = ev->vma;
2104 		unsigned int flags = ev->flags;
2105 		struct drm_i915_gem_object *obj = vma->obj;
2106 
2107 		assert_vma_held(vma);
2108 
2109 		/*
2110 		 * If the GPU is not _reading_ through the CPU cache, we need
2111 		 * to make sure that any writes (both previous GPU writes from
2112 		 * before a change in snooping levels and normal CPU writes)
2113 		 * caught in that cache are flushed to main memory.
2114 		 *
2115 		 * We want to say
2116 		 *   obj->cache_dirty &&
2117 		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2118 		 * but gcc's optimiser doesn't handle that as well and emits
2119 		 * two jumps instead of one. Maybe one day...
2120 		 *
2121 		 * FIXME: There is also sync flushing in set_pages(), which
2122 		 * serves a different purpose(some of the time at least).
2123 		 *
2124 		 * We should consider:
2125 		 *
2126 		 *   1. Rip out the async flush code.
2127 		 *
2128 		 *   2. Or make the sync flushing use the async clflush path
2129 		 *   using mandatory fences underneath. Currently the below
2130 		 *   async flush happens after we bind the object.
2131 		 */
2132 		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2133 			if (i915_gem_clflush_object(obj, 0))
2134 				flags &= ~EXEC_OBJECT_ASYNC;
2135 		}
2136 
2137 		/* We only need to await on the first request */
2138 		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2139 			err = i915_request_await_object
2140 				(eb_find_first_request_added(eb), obj,
2141 				 flags & EXEC_OBJECT_WRITE);
2142 		}
2143 
2144 		for_each_batch_add_order(eb, j) {
2145 			if (err)
2146 				break;
2147 			if (!eb->requests[j])
2148 				continue;
2149 
2150 			err = _i915_vma_move_to_active(vma, eb->requests[j],
2151 						       j ? NULL :
2152 						       eb->composite_fence ?
2153 						       eb->composite_fence :
2154 						       &eb->requests[j]->fence,
2155 						       flags | __EXEC_OBJECT_NO_RESERVE |
2156 						       __EXEC_OBJECT_NO_REQUEST_AWAIT);
2157 		}
2158 	}
2159 
2160 #ifdef CONFIG_MMU_NOTIFIER
2161 	if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2162 		for (i = 0; i < count; i++) {
2163 			struct eb_vma *ev = &eb->vma[i];
2164 			struct drm_i915_gem_object *obj = ev->vma->obj;
2165 
2166 			if (!i915_gem_object_is_userptr(obj))
2167 				continue;
2168 
2169 			err = i915_gem_object_userptr_submit_done(obj);
2170 			if (err)
2171 				break;
2172 		}
2173 	}
2174 #endif
2175 
2176 	if (unlikely(err))
2177 		goto err_skip;
2178 
2179 	/* Unconditionally flush any chipset caches (for streaming writes). */
2180 	intel_gt_chipset_flush(eb->gt);
2181 	eb_capture_commit(eb);
2182 
2183 	return 0;
2184 
2185 err_skip:
2186 	for_each_batch_create_order(eb, j) {
2187 		if (!eb->requests[j])
2188 			break;
2189 
2190 		i915_request_set_error_once(eb->requests[j], err);
2191 	}
2192 	return err;
2193 }
2194 
2195 static int i915_gem_check_execbuffer(struct drm_i915_private *i915,
2196 				     struct drm_i915_gem_execbuffer2 *exec)
2197 {
2198 	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2199 		return -EINVAL;
2200 
2201 	/* Kernel clipping was a DRI1 misfeature */
2202 	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2203 			     I915_EXEC_USE_EXTENSIONS))) {
2204 		if (exec->num_cliprects || exec->cliprects_ptr)
2205 			return -EINVAL;
2206 	}
2207 
2208 	if (exec->DR4 == 0xffffffff) {
2209 		drm_dbg(&i915->drm, "UXA submitting garbage DR4, fixing up\n");
2210 		exec->DR4 = 0;
2211 	}
2212 	if (exec->DR1 || exec->DR4)
2213 		return -EINVAL;
2214 
2215 	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2216 		return -EINVAL;
2217 
2218 	return 0;
2219 }
2220 
2221 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2222 {
2223 	u32 *cs;
2224 	int i;
2225 
2226 	if (GRAPHICS_VER(rq->i915) != 7 || rq->engine->id != RCS0) {
2227 		drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n");
2228 		return -EINVAL;
2229 	}
2230 
2231 	cs = intel_ring_begin(rq, 4 * 2 + 2);
2232 	if (IS_ERR(cs))
2233 		return PTR_ERR(cs);
2234 
2235 	*cs++ = MI_LOAD_REGISTER_IMM(4);
2236 	for (i = 0; i < 4; i++) {
2237 		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2238 		*cs++ = 0;
2239 	}
2240 	*cs++ = MI_NOOP;
2241 	intel_ring_advance(rq, cs);
2242 
2243 	return 0;
2244 }
2245 
2246 static struct i915_vma *
2247 shadow_batch_pin(struct i915_execbuffer *eb,
2248 		 struct drm_i915_gem_object *obj,
2249 		 struct i915_address_space *vm,
2250 		 unsigned int flags)
2251 {
2252 	struct i915_vma *vma;
2253 	int err;
2254 
2255 	vma = i915_vma_instance(obj, vm, NULL);
2256 	if (IS_ERR(vma))
2257 		return vma;
2258 
2259 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE);
2260 	if (err)
2261 		return ERR_PTR(err);
2262 
2263 	return vma;
2264 }
2265 
2266 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2267 {
2268 	/*
2269 	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2270 	 * batch" bit. Hence we need to pin secure batches into the global gtt.
2271 	 * hsw should have this fixed, but bdw mucks it up again. */
2272 	if (eb->batch_flags & I915_DISPATCH_SECURE)
2273 		return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE);
2274 
2275 	return NULL;
2276 }
2277 
2278 static int eb_parse(struct i915_execbuffer *eb)
2279 {
2280 	struct drm_i915_private *i915 = eb->i915;
2281 	struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2282 	struct i915_vma *shadow, *trampoline, *batch;
2283 	unsigned long len;
2284 	int err;
2285 
2286 	if (!eb_use_cmdparser(eb)) {
2287 		batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
2288 		if (IS_ERR(batch))
2289 			return PTR_ERR(batch);
2290 
2291 		goto secure_batch;
2292 	}
2293 
2294 	if (intel_context_is_parallel(eb->context))
2295 		return -EINVAL;
2296 
2297 	len = eb->batch_len[0];
2298 	if (!CMDPARSER_USES_GGTT(eb->i915)) {
2299 		/*
2300 		 * ppGTT backed shadow buffers must be mapped RO, to prevent
2301 		 * post-scan tampering
2302 		 */
2303 		if (!eb->context->vm->has_read_only) {
2304 			drm_dbg(&i915->drm,
2305 				"Cannot prevent post-scan tampering without RO capable vm\n");
2306 			return -EINVAL;
2307 		}
2308 	} else {
2309 		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2310 	}
2311 	if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
2312 		return -EINVAL;
2313 
2314 	if (!pool) {
2315 		pool = intel_gt_get_buffer_pool(eb->gt, len,
2316 						I915_MAP_WB);
2317 		if (IS_ERR(pool))
2318 			return PTR_ERR(pool);
2319 		eb->batch_pool = pool;
2320 	}
2321 
2322 	err = i915_gem_object_lock(pool->obj, &eb->ww);
2323 	if (err)
2324 		return err;
2325 
2326 	shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2327 	if (IS_ERR(shadow))
2328 		return PTR_ERR(shadow);
2329 
2330 	intel_gt_buffer_pool_mark_used(pool);
2331 	i915_gem_object_set_readonly(shadow->obj);
2332 	shadow->private = pool;
2333 
2334 	trampoline = NULL;
2335 	if (CMDPARSER_USES_GGTT(eb->i915)) {
2336 		trampoline = shadow;
2337 
2338 		shadow = shadow_batch_pin(eb, pool->obj,
2339 					  &eb->gt->ggtt->vm,
2340 					  PIN_GLOBAL);
2341 		if (IS_ERR(shadow))
2342 			return PTR_ERR(shadow);
2343 
2344 		shadow->private = pool;
2345 
2346 		eb->batch_flags |= I915_DISPATCH_SECURE;
2347 	}
2348 
2349 	batch = eb_dispatch_secure(eb, shadow);
2350 	if (IS_ERR(batch))
2351 		return PTR_ERR(batch);
2352 
2353 	err = dma_resv_reserve_fences(shadow->obj->base.resv, 1);
2354 	if (err)
2355 		return err;
2356 
2357 	err = intel_engine_cmd_parser(eb->context->engine,
2358 				      eb->batches[0]->vma,
2359 				      eb->batch_start_offset,
2360 				      eb->batch_len[0],
2361 				      shadow, trampoline);
2362 	if (err)
2363 		return err;
2364 
2365 	eb->batches[0] = &eb->vma[eb->buffer_count++];
2366 	eb->batches[0]->vma = i915_vma_get(shadow);
2367 	eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2368 
2369 	eb->trampoline = trampoline;
2370 	eb->batch_start_offset = 0;
2371 
2372 secure_batch:
2373 	if (batch) {
2374 		if (intel_context_is_parallel(eb->context))
2375 			return -EINVAL;
2376 
2377 		eb->batches[0] = &eb->vma[eb->buffer_count++];
2378 		eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2379 		eb->batches[0]->vma = i915_vma_get(batch);
2380 	}
2381 	return 0;
2382 }
2383 
2384 static int eb_request_submit(struct i915_execbuffer *eb,
2385 			     struct i915_request *rq,
2386 			     struct i915_vma *batch,
2387 			     u64 batch_len)
2388 {
2389 	int err;
2390 
2391 	if (intel_context_nopreempt(rq->context))
2392 		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
2393 
2394 	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2395 		err = i915_reset_gen7_sol_offsets(rq);
2396 		if (err)
2397 			return err;
2398 	}
2399 
2400 	/*
2401 	 * After we completed waiting for other engines (using HW semaphores)
2402 	 * then we can signal that this request/batch is ready to run. This
2403 	 * allows us to determine if the batch is still waiting on the GPU
2404 	 * or actually running by checking the breadcrumb.
2405 	 */
2406 	if (rq->context->engine->emit_init_breadcrumb) {
2407 		err = rq->context->engine->emit_init_breadcrumb(rq);
2408 		if (err)
2409 			return err;
2410 	}
2411 
2412 	err = rq->context->engine->emit_bb_start(rq,
2413 						 i915_vma_offset(batch) +
2414 						 eb->batch_start_offset,
2415 						 batch_len,
2416 						 eb->batch_flags);
2417 	if (err)
2418 		return err;
2419 
2420 	if (eb->trampoline) {
2421 		GEM_BUG_ON(intel_context_is_parallel(rq->context));
2422 		GEM_BUG_ON(eb->batch_start_offset);
2423 		err = rq->context->engine->emit_bb_start(rq,
2424 							 i915_vma_offset(eb->trampoline) +
2425 							 batch_len, 0, 0);
2426 		if (err)
2427 			return err;
2428 	}
2429 
2430 	return 0;
2431 }
2432 
2433 static int eb_submit(struct i915_execbuffer *eb)
2434 {
2435 	unsigned int i;
2436 	int err;
2437 
2438 	err = eb_move_to_gpu(eb);
2439 
2440 	for_each_batch_create_order(eb, i) {
2441 		if (!eb->requests[i])
2442 			break;
2443 
2444 		trace_i915_request_queue(eb->requests[i], eb->batch_flags);
2445 		if (!err)
2446 			err = eb_request_submit(eb, eb->requests[i],
2447 						eb->batches[i]->vma,
2448 						eb->batch_len[i]);
2449 	}
2450 
2451 	return err;
2452 }
2453 
2454 /*
2455  * Find one BSD ring to dispatch the corresponding BSD command.
2456  * The engine index is returned.
2457  */
2458 static unsigned int
2459 gen8_dispatch_bsd_engine(struct drm_i915_private *i915,
2460 			 struct drm_file *file)
2461 {
2462 	struct drm_i915_file_private *file_priv = file->driver_priv;
2463 
2464 	/* Check whether the file_priv has already selected one ring. */
2465 	if ((int)file_priv->bsd_engine < 0)
2466 		file_priv->bsd_engine =
2467 			get_random_u32_below(i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO]);
2468 
2469 	return file_priv->bsd_engine;
2470 }
2471 
2472 static const enum intel_engine_id user_ring_map[] = {
2473 	[I915_EXEC_DEFAULT]	= RCS0,
2474 	[I915_EXEC_RENDER]	= RCS0,
2475 	[I915_EXEC_BLT]		= BCS0,
2476 	[I915_EXEC_BSD]		= VCS0,
2477 	[I915_EXEC_VEBOX]	= VECS0
2478 };
2479 
2480 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2481 {
2482 	struct intel_ring *ring = ce->ring;
2483 	struct intel_timeline *tl = ce->timeline;
2484 	struct i915_request *rq;
2485 
2486 	/*
2487 	 * Completely unscientific finger-in-the-air estimates for suitable
2488 	 * maximum user request size (to avoid blocking) and then backoff.
2489 	 */
2490 	if (intel_ring_update_space(ring) >= PAGE_SIZE)
2491 		return NULL;
2492 
2493 	/*
2494 	 * Find a request that after waiting upon, there will be at least half
2495 	 * the ring available. The hysteresis allows us to compete for the
2496 	 * shared ring and should mean that we sleep less often prior to
2497 	 * claiming our resources, but not so long that the ring completely
2498 	 * drains before we can submit our next request.
2499 	 */
2500 	list_for_each_entry(rq, &tl->requests, link) {
2501 		if (rq->ring != ring)
2502 			continue;
2503 
2504 		if (__intel_ring_space(rq->postfix,
2505 				       ring->emit, ring->size) > ring->size / 2)
2506 			break;
2507 	}
2508 	if (&rq->link == &tl->requests)
2509 		return NULL; /* weird, we will check again later for real */
2510 
2511 	return i915_request_get(rq);
2512 }
2513 
2514 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
2515 			   bool throttle)
2516 {
2517 	struct intel_timeline *tl;
2518 	struct i915_request *rq = NULL;
2519 
2520 	/*
2521 	 * Take a local wakeref for preparing to dispatch the execbuf as
2522 	 * we expect to access the hardware fairly frequently in the
2523 	 * process, and require the engine to be kept awake between accesses.
2524 	 * Upon dispatch, we acquire another prolonged wakeref that we hold
2525 	 * until the timeline is idle, which in turn releases the wakeref
2526 	 * taken on the engine, and the parent device.
2527 	 */
2528 	tl = intel_context_timeline_lock(ce);
2529 	if (IS_ERR(tl))
2530 		return PTR_ERR(tl);
2531 
2532 	intel_context_enter(ce);
2533 	if (throttle)
2534 		rq = eb_throttle(eb, ce);
2535 	intel_context_timeline_unlock(tl);
2536 
2537 	if (rq) {
2538 		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2539 		long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
2540 
2541 		if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2542 				      timeout) < 0) {
2543 			i915_request_put(rq);
2544 
2545 			/*
2546 			 * Error path, cannot use intel_context_timeline_lock as
2547 			 * that is user interruptable and this clean up step
2548 			 * must be done.
2549 			 */
2550 			mutex_lock(&ce->timeline->mutex);
2551 			intel_context_exit(ce);
2552 			mutex_unlock(&ce->timeline->mutex);
2553 
2554 			if (nonblock)
2555 				return -EWOULDBLOCK;
2556 			else
2557 				return -EINTR;
2558 		}
2559 		i915_request_put(rq);
2560 	}
2561 
2562 	return 0;
2563 }
2564 
2565 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2566 {
2567 	struct intel_context *ce = eb->context, *child;
2568 	int err;
2569 	int i = 0, j = 0;
2570 
2571 	GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2572 
2573 	if (unlikely(intel_context_is_banned(ce)))
2574 		return -EIO;
2575 
2576 	/*
2577 	 * Pinning the contexts may generate requests in order to acquire
2578 	 * GGTT space, so do this first before we reserve a seqno for
2579 	 * ourselves.
2580 	 */
2581 	err = intel_context_pin_ww(ce, &eb->ww);
2582 	if (err)
2583 		return err;
2584 	for_each_child(ce, child) {
2585 		err = intel_context_pin_ww(child, &eb->ww);
2586 		GEM_BUG_ON(err);	/* perma-pinned should incr a counter */
2587 	}
2588 
2589 	for_each_child(ce, child) {
2590 		err = eb_pin_timeline(eb, child, throttle);
2591 		if (err)
2592 			goto unwind;
2593 		++i;
2594 	}
2595 	err = eb_pin_timeline(eb, ce, throttle);
2596 	if (err)
2597 		goto unwind;
2598 
2599 	eb->args->flags |= __EXEC_ENGINE_PINNED;
2600 	return 0;
2601 
2602 unwind:
2603 	for_each_child(ce, child) {
2604 		if (j++ < i) {
2605 			mutex_lock(&child->timeline->mutex);
2606 			intel_context_exit(child);
2607 			mutex_unlock(&child->timeline->mutex);
2608 		}
2609 	}
2610 	for_each_child(ce, child)
2611 		intel_context_unpin(child);
2612 	intel_context_unpin(ce);
2613 	return err;
2614 }
2615 
2616 static void eb_unpin_engine(struct i915_execbuffer *eb)
2617 {
2618 	struct intel_context *ce = eb->context, *child;
2619 
2620 	if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2621 		return;
2622 
2623 	eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2624 
2625 	for_each_child(ce, child) {
2626 		mutex_lock(&child->timeline->mutex);
2627 		intel_context_exit(child);
2628 		mutex_unlock(&child->timeline->mutex);
2629 
2630 		intel_context_unpin(child);
2631 	}
2632 
2633 	mutex_lock(&ce->timeline->mutex);
2634 	intel_context_exit(ce);
2635 	mutex_unlock(&ce->timeline->mutex);
2636 
2637 	intel_context_unpin(ce);
2638 }
2639 
2640 static unsigned int
2641 eb_select_legacy_ring(struct i915_execbuffer *eb)
2642 {
2643 	struct drm_i915_private *i915 = eb->i915;
2644 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2645 	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2646 
2647 	if (user_ring_id != I915_EXEC_BSD &&
2648 	    (args->flags & I915_EXEC_BSD_MASK)) {
2649 		drm_dbg(&i915->drm,
2650 			"execbuf with non bsd ring but with invalid "
2651 			"bsd dispatch flags: %d\n", (int)(args->flags));
2652 		return -1;
2653 	}
2654 
2655 	if (user_ring_id == I915_EXEC_BSD &&
2656 	    i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO] > 1) {
2657 		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2658 
2659 		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2660 			bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2661 		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2662 			   bsd_idx <= I915_EXEC_BSD_RING2) {
2663 			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2664 			bsd_idx--;
2665 		} else {
2666 			drm_dbg(&i915->drm,
2667 				"execbuf with unknown bsd ring: %u\n",
2668 				bsd_idx);
2669 			return -1;
2670 		}
2671 
2672 		return _VCS(bsd_idx);
2673 	}
2674 
2675 	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2676 		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2677 			user_ring_id);
2678 		return -1;
2679 	}
2680 
2681 	return user_ring_map[user_ring_id];
2682 }
2683 
2684 static int
2685 eb_select_engine(struct i915_execbuffer *eb)
2686 {
2687 	struct intel_context *ce, *child;
2688 	unsigned int idx;
2689 	int err;
2690 
2691 	if (i915_gem_context_user_engines(eb->gem_context))
2692 		idx = eb->args->flags & I915_EXEC_RING_MASK;
2693 	else
2694 		idx = eb_select_legacy_ring(eb);
2695 
2696 	ce = i915_gem_context_get_engine(eb->gem_context, idx);
2697 	if (IS_ERR(ce))
2698 		return PTR_ERR(ce);
2699 
2700 	if (intel_context_is_parallel(ce)) {
2701 		if (eb->buffer_count < ce->parallel.number_children + 1) {
2702 			intel_context_put(ce);
2703 			return -EINVAL;
2704 		}
2705 		if (eb->batch_start_offset || eb->args->batch_len) {
2706 			intel_context_put(ce);
2707 			return -EINVAL;
2708 		}
2709 	}
2710 	eb->num_batches = ce->parallel.number_children + 1;
2711 
2712 	for_each_child(ce, child)
2713 		intel_context_get(child);
2714 	eb->wakeref = intel_gt_pm_get(ce->engine->gt);
2715 
2716 	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2717 		err = intel_context_alloc_state(ce);
2718 		if (err)
2719 			goto err;
2720 	}
2721 	for_each_child(ce, child) {
2722 		if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
2723 			err = intel_context_alloc_state(child);
2724 			if (err)
2725 				goto err;
2726 		}
2727 	}
2728 
2729 	/*
2730 	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2731 	 * EIO if the GPU is already wedged.
2732 	 */
2733 	err = intel_gt_terminally_wedged(ce->engine->gt);
2734 	if (err)
2735 		goto err;
2736 
2737 	if (!i915_vm_tryget(ce->vm)) {
2738 		err = -ENOENT;
2739 		goto err;
2740 	}
2741 
2742 	eb->context = ce;
2743 	eb->gt = ce->engine->gt;
2744 
2745 	/*
2746 	 * Make sure engine pool stays alive even if we call intel_context_put
2747 	 * during ww handling. The pool is destroyed when last pm reference
2748 	 * is dropped, which breaks our -EDEADLK handling.
2749 	 */
2750 	return err;
2751 
2752 err:
2753 	intel_gt_pm_put(ce->engine->gt, eb->wakeref);
2754 	for_each_child(ce, child)
2755 		intel_context_put(child);
2756 	intel_context_put(ce);
2757 	return err;
2758 }
2759 
2760 static void
2761 eb_put_engine(struct i915_execbuffer *eb)
2762 {
2763 	struct intel_context *child;
2764 
2765 	i915_vm_put(eb->context->vm);
2766 	intel_gt_pm_put(eb->context->engine->gt, eb->wakeref);
2767 	for_each_child(eb->context, child)
2768 		intel_context_put(child);
2769 	intel_context_put(eb->context);
2770 }
2771 
2772 static void
2773 __free_fence_array(struct eb_fence *fences, unsigned int n)
2774 {
2775 	while (n--) {
2776 		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2777 		dma_fence_put(fences[n].dma_fence);
2778 		dma_fence_chain_free(fences[n].chain_fence);
2779 	}
2780 	kvfree(fences);
2781 }
2782 
2783 static int
2784 add_timeline_fence_array(struct i915_execbuffer *eb,
2785 			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2786 {
2787 	struct drm_i915_gem_exec_fence __user *user_fences;
2788 	u64 __user *user_values;
2789 	struct eb_fence *f;
2790 	u64 nfences;
2791 	int err = 0;
2792 
2793 	nfences = timeline_fences->fence_count;
2794 	if (!nfences)
2795 		return 0;
2796 
2797 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2798 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2799 	if (nfences > min_t(unsigned long,
2800 			    ULONG_MAX / sizeof(*user_fences),
2801 			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2802 		return -EINVAL;
2803 
2804 	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2805 	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2806 		return -EFAULT;
2807 
2808 	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2809 	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2810 		return -EFAULT;
2811 
2812 	f = krealloc(eb->fences,
2813 		     (eb->num_fences + nfences) * sizeof(*f),
2814 		     __GFP_NOWARN | GFP_KERNEL);
2815 	if (!f)
2816 		return -ENOMEM;
2817 
2818 	eb->fences = f;
2819 	f += eb->num_fences;
2820 
2821 	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2822 		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2823 
2824 	while (nfences--) {
2825 		struct drm_i915_gem_exec_fence user_fence;
2826 		struct drm_syncobj *syncobj;
2827 		struct dma_fence *fence = NULL;
2828 		u64 point;
2829 
2830 		if (__copy_from_user(&user_fence,
2831 				     user_fences++,
2832 				     sizeof(user_fence)))
2833 			return -EFAULT;
2834 
2835 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2836 			return -EINVAL;
2837 
2838 		if (__get_user(point, user_values++))
2839 			return -EFAULT;
2840 
2841 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2842 		if (!syncobj) {
2843 			drm_dbg(&eb->i915->drm,
2844 				"Invalid syncobj handle provided\n");
2845 			return -ENOENT;
2846 		}
2847 
2848 		fence = drm_syncobj_fence_get(syncobj);
2849 
2850 		if (!fence && user_fence.flags &&
2851 		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2852 			drm_dbg(&eb->i915->drm,
2853 				"Syncobj handle has no fence\n");
2854 			drm_syncobj_put(syncobj);
2855 			return -EINVAL;
2856 		}
2857 
2858 		if (fence)
2859 			err = dma_fence_chain_find_seqno(&fence, point);
2860 
2861 		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2862 			drm_dbg(&eb->i915->drm,
2863 				"Syncobj handle missing requested point %llu\n",
2864 				point);
2865 			dma_fence_put(fence);
2866 			drm_syncobj_put(syncobj);
2867 			return err;
2868 		}
2869 
2870 		/*
2871 		 * A point might have been signaled already and
2872 		 * garbage collected from the timeline. In this case
2873 		 * just ignore the point and carry on.
2874 		 */
2875 		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2876 			drm_syncobj_put(syncobj);
2877 			continue;
2878 		}
2879 
2880 		/*
2881 		 * For timeline syncobjs we need to preallocate chains for
2882 		 * later signaling.
2883 		 */
2884 		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2885 			/*
2886 			 * Waiting and signaling the same point (when point !=
2887 			 * 0) would break the timeline.
2888 			 */
2889 			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2890 				drm_dbg(&eb->i915->drm,
2891 					"Trying to wait & signal the same timeline point.\n");
2892 				dma_fence_put(fence);
2893 				drm_syncobj_put(syncobj);
2894 				return -EINVAL;
2895 			}
2896 
2897 			f->chain_fence = dma_fence_chain_alloc();
2898 			if (!f->chain_fence) {
2899 				drm_syncobj_put(syncobj);
2900 				dma_fence_put(fence);
2901 				return -ENOMEM;
2902 			}
2903 		} else {
2904 			f->chain_fence = NULL;
2905 		}
2906 
2907 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2908 		f->dma_fence = fence;
2909 		f->value = point;
2910 		f++;
2911 		eb->num_fences++;
2912 	}
2913 
2914 	return 0;
2915 }
2916 
2917 static int add_fence_array(struct i915_execbuffer *eb)
2918 {
2919 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2920 	struct drm_i915_gem_exec_fence __user *user;
2921 	unsigned long num_fences = args->num_cliprects;
2922 	struct eb_fence *f;
2923 
2924 	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2925 		return 0;
2926 
2927 	if (!num_fences)
2928 		return 0;
2929 
2930 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2931 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2932 	if (num_fences > min_t(unsigned long,
2933 			       ULONG_MAX / sizeof(*user),
2934 			       SIZE_MAX / sizeof(*f) - eb->num_fences))
2935 		return -EINVAL;
2936 
2937 	user = u64_to_user_ptr(args->cliprects_ptr);
2938 	if (!access_ok(user, num_fences * sizeof(*user)))
2939 		return -EFAULT;
2940 
2941 	f = krealloc(eb->fences,
2942 		     (eb->num_fences + num_fences) * sizeof(*f),
2943 		     __GFP_NOWARN | GFP_KERNEL);
2944 	if (!f)
2945 		return -ENOMEM;
2946 
2947 	eb->fences = f;
2948 	f += eb->num_fences;
2949 	while (num_fences--) {
2950 		struct drm_i915_gem_exec_fence user_fence;
2951 		struct drm_syncobj *syncobj;
2952 		struct dma_fence *fence = NULL;
2953 
2954 		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2955 			return -EFAULT;
2956 
2957 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2958 			return -EINVAL;
2959 
2960 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2961 		if (!syncobj) {
2962 			drm_dbg(&eb->i915->drm,
2963 				"Invalid syncobj handle provided\n");
2964 			return -ENOENT;
2965 		}
2966 
2967 		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2968 			fence = drm_syncobj_fence_get(syncobj);
2969 			if (!fence) {
2970 				drm_dbg(&eb->i915->drm,
2971 					"Syncobj handle has no fence\n");
2972 				drm_syncobj_put(syncobj);
2973 				return -EINVAL;
2974 			}
2975 		}
2976 
2977 		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2978 			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2979 
2980 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2981 		f->dma_fence = fence;
2982 		f->value = 0;
2983 		f->chain_fence = NULL;
2984 		f++;
2985 		eb->num_fences++;
2986 	}
2987 
2988 	return 0;
2989 }
2990 
2991 static void put_fence_array(struct eb_fence *fences, int num_fences)
2992 {
2993 	if (fences)
2994 		__free_fence_array(fences, num_fences);
2995 }
2996 
2997 static int
2998 await_fence_array(struct i915_execbuffer *eb,
2999 		  struct i915_request *rq)
3000 {
3001 	unsigned int n;
3002 	int err;
3003 
3004 	for (n = 0; n < eb->num_fences; n++) {
3005 		if (!eb->fences[n].dma_fence)
3006 			continue;
3007 
3008 		err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
3009 		if (err < 0)
3010 			return err;
3011 	}
3012 
3013 	return 0;
3014 }
3015 
3016 static void signal_fence_array(const struct i915_execbuffer *eb,
3017 			       struct dma_fence * const fence)
3018 {
3019 	unsigned int n;
3020 
3021 	for (n = 0; n < eb->num_fences; n++) {
3022 		struct drm_syncobj *syncobj;
3023 		unsigned int flags;
3024 
3025 		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3026 		if (!(flags & I915_EXEC_FENCE_SIGNAL))
3027 			continue;
3028 
3029 		if (eb->fences[n].chain_fence) {
3030 			drm_syncobj_add_point(syncobj,
3031 					      eb->fences[n].chain_fence,
3032 					      fence,
3033 					      eb->fences[n].value);
3034 			/*
3035 			 * The chain's ownership is transferred to the
3036 			 * timeline.
3037 			 */
3038 			eb->fences[n].chain_fence = NULL;
3039 		} else {
3040 			drm_syncobj_replace_fence(syncobj, fence);
3041 		}
3042 	}
3043 }
3044 
3045 static int
3046 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3047 {
3048 	struct i915_execbuffer *eb = data;
3049 	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3050 
3051 	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3052 		return -EFAULT;
3053 
3054 	return add_timeline_fence_array(eb, &timeline_fences);
3055 }
3056 
3057 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3058 {
3059 	struct i915_request *rq, *rn;
3060 
3061 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
3062 		if (rq == end || !i915_request_retire(rq))
3063 			break;
3064 }
3065 
3066 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
3067 			  int err, bool last_parallel)
3068 {
3069 	struct intel_timeline * const tl = i915_request_timeline(rq);
3070 	struct i915_sched_attr attr = {};
3071 	struct i915_request *prev;
3072 
3073 	lockdep_assert_held(&tl->mutex);
3074 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
3075 
3076 	trace_i915_request_add(rq);
3077 
3078 	prev = __i915_request_commit(rq);
3079 
3080 	/* Check that the context wasn't destroyed before submission */
3081 	if (likely(!intel_context_is_closed(eb->context))) {
3082 		attr = eb->gem_context->sched;
3083 	} else {
3084 		/* Serialise with context_close via the add_to_timeline */
3085 		i915_request_set_error_once(rq, -ENOENT);
3086 		__i915_request_skip(rq);
3087 		err = -ENOENT; /* override any transient errors */
3088 	}
3089 
3090 	if (intel_context_is_parallel(eb->context)) {
3091 		if (err) {
3092 			__i915_request_skip(rq);
3093 			set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
3094 				&rq->fence.flags);
3095 		}
3096 		if (last_parallel)
3097 			set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
3098 				&rq->fence.flags);
3099 	}
3100 
3101 	__i915_request_queue(rq, &attr);
3102 
3103 	/* Try to clean up the client's timeline after submitting the request */
3104 	if (prev)
3105 		retire_requests(tl, prev);
3106 
3107 	mutex_unlock(&tl->mutex);
3108 
3109 	return err;
3110 }
3111 
3112 static int eb_requests_add(struct i915_execbuffer *eb, int err)
3113 {
3114 	int i;
3115 
3116 	/*
3117 	 * We iterate in reverse order of creation to release timeline mutexes in
3118 	 * same order.
3119 	 */
3120 	for_each_batch_add_order(eb, i) {
3121 		struct i915_request *rq = eb->requests[i];
3122 
3123 		if (!rq)
3124 			continue;
3125 		err |= eb_request_add(eb, rq, err, i == 0);
3126 	}
3127 
3128 	return err;
3129 }
3130 
3131 static const i915_user_extension_fn execbuf_extensions[] = {
3132 	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3133 };
3134 
3135 static int
3136 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3137 			  struct i915_execbuffer *eb)
3138 {
3139 	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3140 		return 0;
3141 
3142 	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3143 	 * have another flag also using it at the same time.
3144 	 */
3145 	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3146 		return -EINVAL;
3147 
3148 	if (args->num_cliprects != 0)
3149 		return -EINVAL;
3150 
3151 	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3152 				    execbuf_extensions,
3153 				    ARRAY_SIZE(execbuf_extensions),
3154 				    eb);
3155 }
3156 
3157 static void eb_requests_get(struct i915_execbuffer *eb)
3158 {
3159 	unsigned int i;
3160 
3161 	for_each_batch_create_order(eb, i) {
3162 		if (!eb->requests[i])
3163 			break;
3164 
3165 		i915_request_get(eb->requests[i]);
3166 	}
3167 }
3168 
3169 static void eb_requests_put(struct i915_execbuffer *eb)
3170 {
3171 	unsigned int i;
3172 
3173 	for_each_batch_create_order(eb, i) {
3174 		if (!eb->requests[i])
3175 			break;
3176 
3177 		i915_request_put(eb->requests[i]);
3178 	}
3179 }
3180 
3181 static struct sync_file *
3182 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
3183 {
3184 	struct sync_file *out_fence = NULL;
3185 	struct dma_fence_array *fence_array;
3186 	struct dma_fence **fences;
3187 	unsigned int i;
3188 
3189 	GEM_BUG_ON(!intel_context_is_parent(eb->context));
3190 
3191 	fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
3192 	if (!fences)
3193 		return ERR_PTR(-ENOMEM);
3194 
3195 	for_each_batch_create_order(eb, i) {
3196 		fences[i] = &eb->requests[i]->fence;
3197 		__set_bit(I915_FENCE_FLAG_COMPOSITE,
3198 			  &eb->requests[i]->fence.flags);
3199 	}
3200 
3201 	fence_array = dma_fence_array_create(eb->num_batches,
3202 					     fences,
3203 					     eb->context->parallel.fence_context,
3204 					     eb->context->parallel.seqno++,
3205 					     false);
3206 	if (!fence_array) {
3207 		kfree(fences);
3208 		return ERR_PTR(-ENOMEM);
3209 	}
3210 
3211 	/* Move ownership to the dma_fence_array created above */
3212 	for_each_batch_create_order(eb, i)
3213 		dma_fence_get(fences[i]);
3214 
3215 	if (out_fence_fd != -1) {
3216 		out_fence = sync_file_create(&fence_array->base);
3217 		/* sync_file now owns fence_arry, drop creation ref */
3218 		dma_fence_put(&fence_array->base);
3219 		if (!out_fence)
3220 			return ERR_PTR(-ENOMEM);
3221 	}
3222 
3223 	eb->composite_fence = &fence_array->base;
3224 
3225 	return out_fence;
3226 }
3227 
3228 static struct sync_file *
3229 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
3230 	      struct dma_fence *in_fence, int out_fence_fd)
3231 {
3232 	struct sync_file *out_fence = NULL;
3233 	int err;
3234 
3235 	if (unlikely(eb->gem_context->syncobj)) {
3236 		struct dma_fence *fence;
3237 
3238 		fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
3239 		err = i915_request_await_dma_fence(rq, fence);
3240 		dma_fence_put(fence);
3241 		if (err)
3242 			return ERR_PTR(err);
3243 	}
3244 
3245 	if (in_fence) {
3246 		if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
3247 			err = i915_request_await_execution(rq, in_fence);
3248 		else
3249 			err = i915_request_await_dma_fence(rq, in_fence);
3250 		if (err < 0)
3251 			return ERR_PTR(err);
3252 	}
3253 
3254 	if (eb->fences) {
3255 		err = await_fence_array(eb, rq);
3256 		if (err)
3257 			return ERR_PTR(err);
3258 	}
3259 
3260 	if (intel_context_is_parallel(eb->context)) {
3261 		out_fence = eb_composite_fence_create(eb, out_fence_fd);
3262 		if (IS_ERR(out_fence))
3263 			return ERR_PTR(-ENOMEM);
3264 	} else if (out_fence_fd != -1) {
3265 		out_fence = sync_file_create(&rq->fence);
3266 		if (!out_fence)
3267 			return ERR_PTR(-ENOMEM);
3268 	}
3269 
3270 	return out_fence;
3271 }
3272 
3273 static struct intel_context *
3274 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
3275 {
3276 	struct intel_context *child;
3277 
3278 	if (likely(context_number == 0))
3279 		return eb->context;
3280 
3281 	for_each_child(eb->context, child)
3282 		if (!--context_number)
3283 			return child;
3284 
3285 	GEM_BUG_ON("Context not found");
3286 
3287 	return NULL;
3288 }
3289 
3290 static struct sync_file *
3291 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
3292 		   int out_fence_fd)
3293 {
3294 	struct sync_file *out_fence = NULL;
3295 	unsigned int i;
3296 
3297 	for_each_batch_create_order(eb, i) {
3298 		/* Allocate a request for this batch buffer nice and early. */
3299 		eb->requests[i] = i915_request_create(eb_find_context(eb, i));
3300 		if (IS_ERR(eb->requests[i])) {
3301 			out_fence = ERR_CAST(eb->requests[i]);
3302 			eb->requests[i] = NULL;
3303 			return out_fence;
3304 		}
3305 
3306 		/*
3307 		 * Only the first request added (committed to backend) has to
3308 		 * take the in fences into account as all subsequent requests
3309 		 * will have fences inserted inbetween them.
3310 		 */
3311 		if (i + 1 == eb->num_batches) {
3312 			out_fence = eb_fences_add(eb, eb->requests[i],
3313 						  in_fence, out_fence_fd);
3314 			if (IS_ERR(out_fence))
3315 				return out_fence;
3316 		}
3317 
3318 		/*
3319 		 * Not really on stack, but we don't want to call
3320 		 * kfree on the batch_snapshot when we put it, so use the
3321 		 * _onstack interface.
3322 		 */
3323 		if (eb->batches[i]->vma)
3324 			eb->requests[i]->batch_res =
3325 				i915_vma_resource_get(eb->batches[i]->vma->resource);
3326 		if (eb->batch_pool) {
3327 			GEM_BUG_ON(intel_context_is_parallel(eb->context));
3328 			intel_gt_buffer_pool_mark_active(eb->batch_pool,
3329 							 eb->requests[i]);
3330 		}
3331 	}
3332 
3333 	return out_fence;
3334 }
3335 
3336 static int
3337 i915_gem_do_execbuffer(struct drm_device *dev,
3338 		       struct drm_file *file,
3339 		       struct drm_i915_gem_execbuffer2 *args,
3340 		       struct drm_i915_gem_exec_object2 *exec)
3341 {
3342 	struct drm_i915_private *i915 = to_i915(dev);
3343 	struct i915_execbuffer eb;
3344 	struct dma_fence *in_fence = NULL;
3345 	struct sync_file *out_fence = NULL;
3346 	int out_fence_fd = -1;
3347 	int err;
3348 
3349 	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3350 	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3351 		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3352 
3353 	eb.i915 = i915;
3354 	eb.file = file;
3355 	eb.args = args;
3356 	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3357 		args->flags |= __EXEC_HAS_RELOC;
3358 
3359 	eb.exec = exec;
3360 	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3361 	eb.vma[0].vma = NULL;
3362 	eb.batch_pool = NULL;
3363 
3364 	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3365 	reloc_cache_init(&eb.reloc_cache, eb.i915);
3366 
3367 	eb.buffer_count = args->buffer_count;
3368 	eb.batch_start_offset = args->batch_start_offset;
3369 	eb.trampoline = NULL;
3370 
3371 	eb.fences = NULL;
3372 	eb.num_fences = 0;
3373 
3374 	eb_capture_list_clear(&eb);
3375 
3376 	memset(eb.requests, 0, sizeof(struct i915_request *) *
3377 	       ARRAY_SIZE(eb.requests));
3378 	eb.composite_fence = NULL;
3379 
3380 	eb.batch_flags = 0;
3381 	if (args->flags & I915_EXEC_SECURE) {
3382 		if (GRAPHICS_VER(i915) >= 11)
3383 			return -ENODEV;
3384 
3385 		/* Return -EPERM to trigger fallback code on old binaries. */
3386 		if (!HAS_SECURE_BATCHES(i915))
3387 			return -EPERM;
3388 
3389 		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3390 			return -EPERM;
3391 
3392 		eb.batch_flags |= I915_DISPATCH_SECURE;
3393 	}
3394 	if (args->flags & I915_EXEC_IS_PINNED)
3395 		eb.batch_flags |= I915_DISPATCH_PINNED;
3396 
3397 	err = parse_execbuf2_extensions(args, &eb);
3398 	if (err)
3399 		goto err_ext;
3400 
3401 	err = add_fence_array(&eb);
3402 	if (err)
3403 		goto err_ext;
3404 
3405 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3406 	if (args->flags & IN_FENCES) {
3407 		if ((args->flags & IN_FENCES) == IN_FENCES)
3408 			return -EINVAL;
3409 
3410 		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3411 		if (!in_fence) {
3412 			err = -EINVAL;
3413 			goto err_ext;
3414 		}
3415 	}
3416 #undef IN_FENCES
3417 
3418 	if (args->flags & I915_EXEC_FENCE_OUT) {
3419 		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3420 		if (out_fence_fd < 0) {
3421 			err = out_fence_fd;
3422 			goto err_in_fence;
3423 		}
3424 	}
3425 
3426 	err = eb_create(&eb);
3427 	if (err)
3428 		goto err_out_fence;
3429 
3430 	GEM_BUG_ON(!eb.lut_size);
3431 
3432 	err = eb_select_context(&eb);
3433 	if (unlikely(err))
3434 		goto err_destroy;
3435 
3436 	err = eb_select_engine(&eb);
3437 	if (unlikely(err))
3438 		goto err_context;
3439 
3440 	err = eb_lookup_vmas(&eb);
3441 	if (err) {
3442 		eb_release_vmas(&eb, true);
3443 		goto err_engine;
3444 	}
3445 
3446 	i915_gem_ww_ctx_init(&eb.ww, true);
3447 
3448 	err = eb_relocate_parse(&eb);
3449 	if (err) {
3450 		/*
3451 		 * If the user expects the execobject.offset and
3452 		 * reloc.presumed_offset to be an exact match,
3453 		 * as for using NO_RELOC, then we cannot update
3454 		 * the execobject.offset until we have completed
3455 		 * relocation.
3456 		 */
3457 		args->flags &= ~__EXEC_HAS_RELOC;
3458 		goto err_vma;
3459 	}
3460 
3461 	ww_acquire_done(&eb.ww.ctx);
3462 	err = eb_capture_stage(&eb);
3463 	if (err)
3464 		goto err_vma;
3465 
3466 	out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
3467 	if (IS_ERR(out_fence)) {
3468 		err = PTR_ERR(out_fence);
3469 		out_fence = NULL;
3470 		if (eb.requests[0])
3471 			goto err_request;
3472 		else
3473 			goto err_vma;
3474 	}
3475 
3476 	err = eb_submit(&eb);
3477 
3478 err_request:
3479 	eb_requests_get(&eb);
3480 	err = eb_requests_add(&eb, err);
3481 
3482 	if (eb.fences)
3483 		signal_fence_array(&eb, eb.composite_fence ?
3484 				   eb.composite_fence :
3485 				   &eb.requests[0]->fence);
3486 
3487 	if (unlikely(eb.gem_context->syncobj)) {
3488 		drm_syncobj_replace_fence(eb.gem_context->syncobj,
3489 					  eb.composite_fence ?
3490 					  eb.composite_fence :
3491 					  &eb.requests[0]->fence);
3492 	}
3493 
3494 	if (out_fence) {
3495 		if (err == 0) {
3496 			fd_install(out_fence_fd, out_fence->file);
3497 			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3498 			args->rsvd2 |= (u64)out_fence_fd << 32;
3499 			out_fence_fd = -1;
3500 		} else {
3501 			fput(out_fence->file);
3502 		}
3503 	}
3504 
3505 	if (!out_fence && eb.composite_fence)
3506 		dma_fence_put(eb.composite_fence);
3507 
3508 	eb_requests_put(&eb);
3509 
3510 err_vma:
3511 	eb_release_vmas(&eb, true);
3512 	WARN_ON(err == -EDEADLK);
3513 	i915_gem_ww_ctx_fini(&eb.ww);
3514 
3515 	if (eb.batch_pool)
3516 		intel_gt_buffer_pool_put(eb.batch_pool);
3517 err_engine:
3518 	eb_put_engine(&eb);
3519 err_context:
3520 	i915_gem_context_put(eb.gem_context);
3521 err_destroy:
3522 	eb_destroy(&eb);
3523 err_out_fence:
3524 	if (out_fence_fd != -1)
3525 		put_unused_fd(out_fence_fd);
3526 err_in_fence:
3527 	dma_fence_put(in_fence);
3528 err_ext:
3529 	put_fence_array(eb.fences, eb.num_fences);
3530 	return err;
3531 }
3532 
3533 static size_t eb_element_size(void)
3534 {
3535 	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3536 }
3537 
3538 static bool check_buffer_count(size_t count)
3539 {
3540 	const size_t sz = eb_element_size();
3541 
3542 	/*
3543 	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3544 	 * array size (see eb_create()). Otherwise, we can accept an array as
3545 	 * large as can be addressed (though use large arrays at your peril)!
3546 	 */
3547 
3548 	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3549 }
3550 
3551 int
3552 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3553 			   struct drm_file *file)
3554 {
3555 	struct drm_i915_private *i915 = to_i915(dev);
3556 	struct drm_i915_gem_execbuffer2 *args = data;
3557 	struct drm_i915_gem_exec_object2 *exec2_list;
3558 	const size_t count = args->buffer_count;
3559 	int err;
3560 
3561 	if (!check_buffer_count(count)) {
3562 		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3563 		return -EINVAL;
3564 	}
3565 
3566 	err = i915_gem_check_execbuffer(i915, args);
3567 	if (err)
3568 		return err;
3569 
3570 	/* Allocate extra slots for use by the command parser */
3571 	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3572 				    __GFP_NOWARN | GFP_KERNEL);
3573 	if (exec2_list == NULL) {
3574 		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3575 			count);
3576 		return -ENOMEM;
3577 	}
3578 	if (copy_from_user(exec2_list,
3579 			   u64_to_user_ptr(args->buffers_ptr),
3580 			   sizeof(*exec2_list) * count)) {
3581 		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3582 		kvfree(exec2_list);
3583 		return -EFAULT;
3584 	}
3585 
3586 	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3587 
3588 	/*
3589 	 * Now that we have begun execution of the batchbuffer, we ignore
3590 	 * any new error after this point. Also given that we have already
3591 	 * updated the associated relocations, we try to write out the current
3592 	 * object locations irrespective of any error.
3593 	 */
3594 	if (args->flags & __EXEC_HAS_RELOC) {
3595 		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3596 			u64_to_user_ptr(args->buffers_ptr);
3597 		unsigned int i;
3598 
3599 		/* Copy the new buffer offsets back to the user's exec list. */
3600 		/*
3601 		 * Note: count * sizeof(*user_exec_list) does not overflow,
3602 		 * because we checked 'count' in check_buffer_count().
3603 		 *
3604 		 * And this range already got effectively checked earlier
3605 		 * when we did the "copy_from_user()" above.
3606 		 */
3607 		if (!user_write_access_begin(user_exec_list,
3608 					     count * sizeof(*user_exec_list)))
3609 			goto end;
3610 
3611 		for (i = 0; i < args->buffer_count; i++) {
3612 			if (!(exec2_list[i].offset & UPDATE))
3613 				continue;
3614 
3615 			exec2_list[i].offset =
3616 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3617 			unsafe_put_user(exec2_list[i].offset,
3618 					&user_exec_list[i].offset,
3619 					end_user);
3620 		}
3621 end_user:
3622 		user_write_access_end();
3623 end:;
3624 	}
3625 
3626 	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3627 	kvfree(exec2_list);
3628 	return err;
3629 }
3630